[Vegan-commits] r2431 - in pkg/vegan: . R inst man tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Feb 11 19:34:53 CET 2013


Author: jarioksa
Date: 2013-02-11 19:34:53 +0100 (Mon, 11 Feb 2013)
New Revision: 2431

Added:
   pkg/vegan/R/tabasco.R
Modified:
   pkg/vegan/NAMESPACE
   pkg/vegan/inst/ChangeLog
   pkg/vegan/man/vegemite.Rd
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
Log:
add tabasco: a sister to vegemite to display compact tables, but hotter

Modified: pkg/vegan/NAMESPACE
===================================================================
--- pkg/vegan/NAMESPACE	2013-02-11 12:36:04 UTC (rev 2430)
+++ pkg/vegan/NAMESPACE	2013-02-11 18:34:53 UTC (rev 2431)
@@ -25,7 +25,7 @@
 rda, renyiaccum, renyi, rrarefy, scores, scoverage,
 showvarparts, simper, spandepth,
 spantree, specaccum, specnumber, specpool2vect, specpool, spenvcor,
-stepacross, stressplot, swan, taxa2dist, taxondive, tolerance,
+stepacross, stressplot, swan, tabasco, taxa2dist, taxondive, tolerance,
 treedist, treedive, treeheight, tsallisaccum, tsallis, varpart,
 vectorfit, vegandocs, vegdist, vegemite, veiledspec, wascores,
 wcmdscale, wisconsin)

Added: pkg/vegan/R/tabasco.R
===================================================================
--- pkg/vegan/R/tabasco.R	                        (rev 0)
+++ pkg/vegan/R/tabasco.R	2013-02-11 18:34:53 UTC (rev 2431)
@@ -0,0 +1,81 @@
+### The function displays (ordered) heatmaps of community data. It
+### copies vegemite() for handling 'use', 'sp.ind', 'site.ind' and
+### 'select', but then switches to heatmap() to display the
+### data. Unlike heatmap(), it does not insist on showing dendrograms,
+### but only uses these for sites, and only if given as 'use'.
+
+`tabasco` <-
+    function (x, use, sp.ind = NULL, site.ind = NULL,  
+              select, ...) 
+{
+    Rowv <- Colv <- NA
+    if (!missing(use)) {
+        if (!is.list(use) && is.vector(use)) {
+            if (is.null(site.ind)) 
+                site.ind <- order(use)
+            if (is.null(sp.ind)) 
+                sp.ind <- order(wascores(use, x))
+        }
+        else if (inherits(use, "hclust")) {
+            if (is.null(site.ind)) 
+                site.ind <- use$order
+            if (is.null(sp.ind)) 
+                sp.ind <- order(wascores(order(site.ind), x))
+            Colv <- as.dendrogram(use)
+        }
+        else if (inherits(use, "dendrogram")) {
+            if (is.null(site.ind)) {
+                site.ind <- 1:nrow(x)
+                names(site.ind) <- rownames(x)
+                site.ind <- site.ind[labels(use)]
+            }
+            if (is.null(sp.ind)) 
+                sp.ind <- order(wascores(order(site.ind), x))
+            Colv <- use
+        }
+        else if (is.list(use)) {
+            tmp <- scores(use, choices = 1, display = "sites")
+            if (is.null(site.ind)) 
+                site.ind <- order(tmp)
+            if (is.null(sp.ind)) 
+                sp.ind <- try(order(scores(use, choices = 1, 
+                                           display = "species")))
+            if (inherits(sp.ind, "try-error")) 
+                sp.ind <- order(wascores(tmp, x))
+        }
+        else if (is.matrix(use)) {
+            tmp <- scores(use, choices = 1, display = "sites")
+            if (is.null(site.ind)) 
+                site.ind <- order(tmp)
+            if (is.null(sp.ind)) 
+                sp.ind <- order(wascores(tmp, x))
+        }
+    }
+    if (!is.null(sp.ind) && is.logical(sp.ind))
+        sp.ind <- (1:ncol(x))[sp.ind]
+    if (!is.null(site.ind) && is.logical(site.ind))
+        site.ind <- (1:nrow(x))[site.ind]
+    if (is.null(sp.ind)) 
+        sp.ind <- 1:ncol(x)
+    if (is.null(site.ind)) 
+        site.ind <- 1:nrow(x)
+    if (!missing(select)) {
+        if (!is.logical(select))
+            select <- sort(site.ind) %in% select
+        stake <- colSums(x[select, , drop = FALSE]) > 0
+        site.ind <- site.ind[select[site.ind]]
+        site.ind <- site.ind[!is.na(site.ind)]
+    }
+    else {
+        stake <- colSums(x[site.ind, ]) > 0
+    }
+    sp.ind <- sp.ind[stake[sp.ind]]
+    x <- x[site.ind, sp.ind]
+    x <- as.matrix(x)
+    x <- t(x)
+    sp.nam <- rownames(x)
+    sp.len <- max(nchar(sp.nam))
+    heatmap((max(x) - x), Rowv, Colv,  scale = "none", ...)
+    out <- list(sites = site.ind, species = sp.ind)
+    invisible(out)
+}

Modified: pkg/vegan/inst/ChangeLog
===================================================================
--- pkg/vegan/inst/ChangeLog	2013-02-11 12:36:04 UTC (rev 2430)
+++ pkg/vegan/inst/ChangeLog	2013-02-11 18:34:53 UTC (rev 2431)
@@ -6,6 +6,9 @@
 
 	* New version opened with the release of vegan_2.0-6 on February
 	11, 2013.
+
+	* tabasco: a sister function of vegemite() to display a compact
+	community table using heatmap(). 
 	
 Version 2.1-25 (closed February 11, 2013)
 

Modified: pkg/vegan/man/vegemite.Rd
===================================================================
--- pkg/vegan/man/vegemite.Rd	2013-02-11 12:36:04 UTC (rev 2430)
+++ pkg/vegan/man/vegemite.Rd	2013-02-11 18:34:53 UTC (rev 2431)
@@ -1,16 +1,21 @@
 \name{vegemite}
 \alias{vegemite}
+\alias{tabasco}
 \alias{coverscale}
 
-\title{Prints a Compact, Ordered Vegetation Table }
+\title{Display Compact Ordered Community Tables }
 \description{
-  The function prints a compact vegetation table, where species are
-  rows, and each site takes only one column without spaces.  The
-  vegetation table can be ordered by explicit indexing, by environmental
-  variables or results from an ordination or cluster analysis.
+  The functions display compact community tables.  Function
+  \code{vegemite} prints text tables where species are rows, and each
+  site takes only one column without spaces.  Function \code{tabasco}
+  provides interface for \code{\link{heatmap}} for a colour map of
+  the data. The community table can be ordered by explicit indexing,
+  by environmental variables or results from an ordination or cluster
+  analysis.
 }
 \usage{
 vegemite(x, use, scale, sp.ind, site.ind, zero=".", select ,...)
+tabasco(x, use, sp.ind = NULL, site.ind = NULL, select, ...) 
 coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix","log"),
            maxabund)
 }
@@ -32,19 +37,28 @@
   \item{maxabund}{Maximum abundance used with \code{scale = "log"}.
     Data maximum in the \code{select}ed subset will be used if this is
     missing.}
-  \item{...}{Arguments passed to \code{coverscale} (i.e., \code{maxabund}).}
+  \item{...}{Arguments passed to \code{coverscale} (i.e., \code{maxabund}) in
+    \code{vegemite} and to \code{\link{heatmap}} in \code{tabasco}.}
 }
 \details{
-  The function prints a traditional vegetation table.
+  The function \code{vegemite} prints a traditional community table.
   Unlike in ordinary data matrices, species are used as rows and sites
   as columns.  The table is printed in compact form:  only one character
   can be used for abundance, and there are no spaces between
   columns. Species with no occurrences are dropped from the table.
 
+  Function \code{tabasco} produces a similar table as \code{vegemite}
+  using \code{\link{heatmap}}, where abundances are coded by heatmap
+  colours.
+
   The parameter \code{use} can be a vector or an object from
   \code{\link{hclust}}, a \code{\link{dendrogram}} or any ordination
   result recognized by \code{\link{scores}} (all ordination methods in
-  \pkg{vegan} and some of those not in \pkg{vegan}).
+  \pkg{vegan} and some of those not in \pkg{vegan}). The
+  \code{\link{hclust}} an \code{\link{dendrogram}} must be for
+  sites. The dendrogram is displayed in above the sites in
+  \code{tabasco}.
+
   If \code{use} is a vector, it is used
   for ordering sites.  If \code{use} is an object from ordination, both
   sites and species are arranged by the first axis.  
@@ -106,15 +120,19 @@
 }
 \author{Jari Oksanen}
 
-\seealso{\code{\link{cut}} and \code{\link{approx}} for making your own
-  `cover scales', \code{\link{wascores}} for weighted averages.
+\seealso{\code{\link{cut}} and \code{\link{approx}} for making your
+  own \sQuote{cover scales} for \code{vegemite}.  Function
+  \code{tabasco} is based on \code{\link{heatmap}}. Both functions
+  order species with weighted averages using \code{\link{wascores}}.
   }
 
-\note{ This function was called \code{vegetab} in older versions of
-  \code{vegan}.  The new name was chosen  because the output is so
-  compact (and to avoid confusion with the \code{vegtab} function in the
-  \pkg{labdsv} package).
-    }
+\note{   
+
+  The name \code{vegemite} was chosen because the output is so
+  compact, and the \code{tabasco} because it is just as compact, but
+  uses heat colours.
+    
+}
 \examples{
 data(varespec)
 ## Print only more common species 
@@ -129,6 +147,15 @@
 sel <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")
 # Re-create previous
 vegemite(varespec, sp=sel$sp, site=sel$site, scale="Hult")
+
+## Abundance values have such a wide range that they must be rescaled
+## or all abundances will not be shown in tabasco
+tabasco(decostand(varespec, "log"), clus)
+## reorder dendrogram by the first DCA axis
+clus <- as.dendrogram(clus)
+clus <- reorder(clus, scores(dca, choices=1, display="sites"))
+tabasco(decostand(varespec, "log"), clus)
+
 }
 \keyword{ print }
 \keyword{ manip }

Modified: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-02-11 12:36:04 UTC (rev 2430)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-02-11 18:34:53 UTC (rev 2431)
@@ -1,8 +1,8 @@
 
-R Under development (unstable) (2013-01-21 r61719) -- "Unsuffered Consequences"
-Copyright (C) 2013 The R Foundation for Statistical Computing
+R version 2.15.2 (2012-10-26) -- "Trick or Treat"
+Copyright (C) 2012 The R Foundation for Statistical Computing
 ISBN 3-900051-07-0
-Platform: x86_64-unknown-linux-gnu (64-bit)
+Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
 
 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
@@ -23,7 +23,7 @@
 > options(warn = 1)
 > library('vegan')
 Loading required package: permute
-This is vegan 2.1-23
+This is vegan 2.1-26
 > 
 > assign(".oldSearch", search(), pos = 'CheckExEnv')
 > cleanEx()
@@ -161,7 +161,7 @@
 
 Formula:
 y ~ poly(x1, 1) + poly(x2, 1)
-<environment: 0x2e94a50>
+<environment: 0x10245b5b8>
 Total model degrees of freedom 3 
 
 GCV score: 0.04278782
@@ -227,7 +227,7 @@
 hump at max  7.8160 9.0487 0.01191 *
 Combined                   0.03338 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > plot(mod)
 > par(op)
 > ## Confidence Limits
@@ -305,14 +305,14 @@
 > marr <- nls(S ~ SSarrhenius(sipoo.area, k, z))
 > marr
 Nonlinear regression model
-  model: S ~ SSarrhenius(sipoo.area, k, z)
-   data: parent.frame()
+  model:  S ~ SSarrhenius(sipoo.area, k, z) 
+   data:  parent.frame() 
      k      z 
 3.4062 0.4364 
  residual sum-of-squares: 78.1
 
 Number of iterations to convergence: 5 
-Achieved convergence tolerance: 1.056e-06
+Achieved convergence tolerance: 1.056e-06 
 > ## confidence limits from profile likelihood
 > confint(marr)
 Waiting for profiling to be done...
@@ -348,14 +348,14 @@
 > mlom <- nls(S ~ SSlomolino(sipoo.area, Smax, A50, Hill))
 > mlom
 Nonlinear regression model
-  model: S ~ SSlomolino(sipoo.area, Smax, A50, Hill)
-   data: parent.frame()
+  model:  S ~ SSlomolino(sipoo.area, Smax, A50, Hill) 
+   data:  parent.frame() 
   Smax    A50   Hill 
 53.493 94.697  2.018 
  residual sum-of-squares: 55.37
 
 Number of iterations to convergence: 6 
-Achieved convergence tolerance: 9.715e-07
+Achieved convergence tolerance: 9.715e-07 
 > lines(xtmp, predict(mlom, newdata=data.frame(sipoo.area=xtmp)), 
 +   lwd=2, col = 4)
 > ## One canned model of standard R:
@@ -402,7 +402,7 @@
 + Manure      4 88.832 1.5251    199  0.025 * 
 + Use         2 89.134 1.1431     99  0.250   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step:  AIC=86.61
 dune ~ Moisture
@@ -415,7 +415,7 @@
 + Manure      4 87.342 1.3143    199  0.090 . 
 - Moisture    3 87.657 2.2536    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 Call: cca(formula = dune ~ Moisture, data = dune.env)
 
               Inertia Proportion Rank
@@ -453,7 +453,7 @@
 Use         2 91.032 1.1741     99  0.180   
 Manure      4 89.232 1.9539    199  0.010 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > m0 <- update(m0, . ~ . + Management)
 > add1(m0, scope=formula(mbig), test="perm")
          Df    AIC      F N.Perm Pr(>F)   
@@ -463,7 +463,7 @@
 Use       2 88.284 1.0510     99  0.430   
 Manure    3 87.517 1.3902    199  0.130   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > m0 <- update(m0, . ~ . + Moisture)
 > ## -- included variables still significant?
 > drop1(m0, test="perm")
@@ -472,7 +472,7 @@
 Management  3 87.707 2.1769    199  0.010 **
 Moisture    3 87.082 1.9764    199  0.015 * 
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > add1(m0, scope=formula(mbig), test="perm")
        Df    AIC      F N.Perm Pr(>F)
 <none>    85.567                     
@@ -536,7 +536,7 @@
 gamma      35.000   0.00 35.000 35.000 35.000 35.000     1.00  
 beta.1     19.886  38.43 12.656 12.392 12.700 12.968     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > adipart(mite ~ ., levsm, index="richness", nsimul=19)
 adipart object
 
@@ -556,7 +556,7 @@
 beta.2      3.250  13.1373  0.18421  0.00000  0.00000  0.6375     0.05 *
 beta.3      2.000   0.0000  0.00000  0.00000  0.00000  0.0000     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Hierarchical null model testing
 > ## diversity analysis (similar to adipart)
 > hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
@@ -572,7 +572,7 @@
 level_1   0.76064 -71.195 0.93904 0.93487 0.93856 0.9444     0.05 *
 leve_2    1.00000   0.000 1.00000 1.00000 1.00000 1.0000     1.00  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > hiersimu(mite ~., levsm, FUN=diversity, relative=TRUE, nsimul=19)
 hiersimu object
 
@@ -589,7 +589,7 @@
 l3   0.92791 -417.338 0.99940 0.99904 0.99943 0.9996     0.05 *
 l4   1.00000    0.000 1.00000 1.00000 1.00000 1.0000     1.00  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Hierarchical testing with the Morisita index
 > morfun <- function(x) dispindmorisita(x)$imst
 > hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
@@ -607,7 +607,7 @@
 l2   0.60234 14.3854  0.153047  0.096700  0.150434  0.1969     0.05 *
 l3   0.67509 20.3162 -0.182473 -0.234793 -0.195937 -0.0988     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -642,7 +642,7 @@
 Residuals     12    1.8004 0.15003         0.41878          
 Total         19    4.2990                 1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > ### Example of use with strata, for nested (e.g., block) designs.
@@ -668,10 +668,6 @@
 > library(lattice)
 > dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,
 +         type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE) )
-Warning in FUN(X[[8L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[9L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[8L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[9L]], ...) : 'x' is NULL so the result will be NULL
 > 
 > Y <- data.frame(Agropyron, Schizachyrium)
 > mod <- metaMDS(Y)
@@ -679,7 +675,7 @@
 Run 1 stress 0.1560544 
 Run 2 stress 0.08556586 
 ... New best solution
-... procrustes: rmse 1.094382e-06  max resid 1.88838e-06 
+... procrustes: rmse 1.094365e-06  max resid 1.88838e-06 
 *** Solution reached
 > plot(mod)
 > ### Hulls show treatment
@@ -701,7 +697,7 @@
 Residuals 10  0.138667 0.013867         0.71286          
 Total     11  0.194524                  1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > ### Incorrect (no strata)
 > adonis(Y ~ NO3, data=dat, perm=999)
@@ -716,7 +712,7 @@
 Residuals 10  0.138667 0.013867         0.71286          
 Total     11  0.194524                  1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -800,7 +796,7 @@
 Model     3 0.6441 2.9840    199  0.005 **
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Test for axes
 > anova(vare.cca, by="axis", perm.max=500)
 Model: cca(formula = varespec ~ Al + P + K, data = varechem)
@@ -810,7 +806,7 @@
 CCA3      1 0.1126 1.5651    399  0.100 . 
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Sequential test for terms
 > anova(vare.cca, by="terms", permu=200)
 Permutation test for cca under reduced model
@@ -823,7 +819,7 @@
 K         1 0.1561 2.1688    199  0.030 * 
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Marginal or Type III effects
 > anova(vare.cca, by="margin")
 Permutation test for cca under reduced model
@@ -836,7 +832,7 @@
 K         1 0.1561 2.1688    599 0.02833 * 
 Residual 20 1.4391                         
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Marginal test knows 'scope'
 > anova(vare.cca, by = "m", scope="P")
 Permutation test for cca under reduced model
@@ -847,7 +843,7 @@
 P         1 0.1681 2.3362    199  0.015 *
 Residual 20 1.4391                       
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -1141,7 +1137,7 @@
 Groups     1 0.07931 0.079306  4.6156 0.04295 *
 Residuals 22 0.37801 0.017182                  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > ## Permutation test for F
 > permutest(mod, pairwise = TRUE)
@@ -1162,7 +1158,7 @@
 Groups     1 0.07931 0.079306 4.6156    999   0.05 *
 Residuals 22 0.37801 0.017182                       
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Pairwise comparisons:
 (Observed p-value below diagonal, permuted p-value above diagonal)
@@ -1290,7 +1286,7 @@
 Groups     1 0.033468 0.033468 3.1749    100 0.06931 .
 Residuals 18 0.189749 0.010542                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > anova(mod3)
 Analysis of Variance Table
 
@@ -1299,7 +1295,7 @@
 Groups     1 0.033468 0.033468  3.1749 0.09166 .
 Residuals 18 0.189749 0.010542                  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > plot(mod3)
 > boxplot(mod3)
 > plot(TukeyHSD(mod3))
@@ -1563,7 +1559,7 @@
 Model     3 0.99717 2.2324    199  0.005 **
 Residual 19 2.82904                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Avoid negative eigenvalues with additive constant
 > capscale(varespec ~ N + P + K + Condition(Al), varechem,
 +                      dist="bray", add =TRUE)
@@ -2286,7 +2282,7 @@
 
 	Pearson's Chi-squared test
 
-data:  dune
+data:  dune 
 X-squared = 1448.956, df = 551, p-value < 2.2e-16
 
 > deviance(cca(dune))
@@ -2641,7 +2637,7 @@
 Humdepth  0.932909 -0.360112 0.5200  0.002 ** 
 pH       -0.648094  0.761560 0.2308  0.060 .  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 P values based on 999 permutations.
 
 
@@ -3503,7 +3499,7 @@
 D.cl.12    8.526186  66.000000         NA         NA            NA  
 D.cl.13    9.254550  32.000000         NA         NA            NA  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > # or: print(mite.correlog)
 > # or: print.mantel.correlog(mite.correlog)
 > plot(mite.correlog)
@@ -3542,7 +3538,7 @@
 D.cl.12    8.526186  66.000000  -0.054242       0.04          0.24  
 D.cl.13    9.254550  32.000000  -0.066677       0.02          0.26  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > plot(mite.correlog2)
 > 
 > # NOTE: 'nperm' argument usually needs to be larger than 49.
@@ -3633,7 +3629,7 @@
 Run 0 stress 0.1067169 
 Run 1 stress 0.1067169 
 ... New best solution
-... procrustes: rmse 1.234853e-05  max resid 2.993582e-05 
+... procrustes: rmse 1.234853e-05  max resid 2.993581e-05 
 *** Solution reached
 > sol
 
@@ -3837,7 +3833,7 @@
 > plot(dune.ord <- metaMDS(dune), type="text", display="sites" )
 Run 0 stress 0.1192678 
 Run 1 stress 0.119268 
-... procrustes: rmse 8.185687e-05  max resid 0.0001982896 
+... procrustes: rmse 8.18569e-05  max resid 0.0001982896 
 *** Solution reached
 > ordihull(dune.ord, dune.env$Management)
 > 
@@ -4039,7 +4035,7 @@
 beta.2     1.0710   30.431  1.00339  0.99912  1.00340  1.0059     0.05 *
 beta.3     1.1794  460.550  1.00148  1.00083  1.00148  1.0021     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19)
 multipart object
 
@@ -4059,7 +4055,7 @@
 beta.2     1.0710   33.423  1.0041  1.0015  1.0035  1.0078     0.05 *
 beta.3     1.1794  419.166  1.0015  1.0008  1.0016  1.0023     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, relative=TRUE)
 multipart object
 
@@ -4079,7 +4075,7 @@
 beta.2   0.535514   35.966  0.501994  0.500294  0.502062  0.5035     0.05 *
 beta.3   0.589695  404.814  0.500885  0.500583  0.500848  0.5013     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, global=TRUE)
 multipart object
 
@@ -4099,7 +4095,7 @@
 beta.2     1.2603  102.695  1.00483  0.99985  1.00484  1.0077     0.05 *
 beta.3     1.1794  378.335  1.00154  1.00104  1.00144  1.0025     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -4161,7 +4157,7 @@
         statistic      z   mean   2.5%    50%  97.5% Pr(sim.)   
 C.score    2.2588 -28.92 9.2234 8.6935 9.2384 9.6053     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -4289,7 +4285,7 @@
           statistic       z   mean   2.5%    50%  97.5% Pr(sim.)   
 statistic      2767 -17.768 8034.6 7529.9 8052.0 8518.5     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## sequential model, one-sided test, a vector statistic
 > out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10, 
 +    statistic="evals", alt = "less")
@@ -4322,7 +4318,7 @@
 DCA3  0.166788  0.5209 0.155941 0.105269 0.155716 0.1859     0.30  
 DCA4  0.087226 -1.9822 0.130151 0.066742 0.126492 0.1649     0.99  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Inspect the swap sequence as a time series object
 > plot(as.ts(out))
 > lag.plot(as.ts(out))
@@ -4348,7 +4344,7 @@
           statistic     z    mean    2.5%     50%  97.5% Pr(sim.)   
 statistic   0.64565 14.66 0.46734 0.44069 0.46760 0.4903     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > ## Define your own null model as a 'commsim' function: shuffle cells
 > ## in each row
@@ -4372,7 +4368,7 @@
           statistic      z    mean    2.5%     50%  97.5% Pr(sim.)  
 statistic   0.64565 3.1832 0.63514 0.63016 0.63441 0.6419     0.03 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -4650,14 +4646,14 @@
 + A1          1 89.591 1.9217    199  0.035 * 
 + Use         2 91.032 1.1741     99  0.310   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: dune ~ Management 
 
              Df   AIC    F N.Perm Pr(>F)   
 - Management  3 89.62 2.84     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
            Df    AIC      F N.Perm Pr(>F)   
 + Moisture  3 85.567 1.9764    199  0.005 **
@@ -4665,7 +4661,7 @@
 + A1        1 87.424 1.2965     99  0.240   
 + Use       2 88.284 1.0510     99  0.480   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: dune ~ Management + Moisture 
 
@@ -4673,7 +4669,7 @@
 - Moisture    3 87.082 1.9764     99   0.02 * 
 - Management  3 87.707 2.1769     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
          Df    AIC      F N.Perm Pr(>F)
 + Manure  3 85.762 1.1225     99   0.26
@@ -4726,7 +4722,7 @@
 - Manure      3 85.567 1.1225     99   0.30  
 - Moisture    3 87.517 1.5788     99   0.03 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: dune ~ Moisture + Manure 
 
@@ -4734,7 +4730,7 @@
 - Manure    4 87.707 1.8598     99   0.02 * 
 - Moisture  3 89.232 2.3275     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Call: rda(formula = dune ~ Moisture + Manure, data = dune.env)
 
@@ -4784,7 +4780,7 @@
            Df     AIC     F N.Perm Pr(>F)   
 + WatrCont  1 -84.336 25.35    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: R2.adj= 0.2608453 
 Call: mite.hel ~ WatrCont 
@@ -4801,7 +4797,7 @@
         Df     AIC     F N.Perm Pr(>F)   
 + Shrub  2 -88.034 3.836    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: R2.adj= 0.3177536 
 Call: mite.hel ~ WatrCont + Shrub 
@@ -4818,7 +4814,7 @@
             Df     AIC      F N.Perm Pr(>F)   
 + Substrate  6 -87.768 1.8251    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: R2.adj= 0.3653551 
 Call: mite.hel ~ WatrCont + Shrub + Substrate 
@@ -4835,7 +4831,7 @@
        Df     AIC      F N.Perm Pr(>F)   
 + Topo  1 -90.924 4.5095    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: R2.adj= 0.4004249 
 Call: mite.hel ~ WatrCont + Shrub + Substrate + Topo 
@@ -4852,7 +4848,7 @@
            Df     AIC      F N.Perm Pr(>F)   
 + SubsDens  1 -94.489 4.7999    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: R2.adj= 0.4367038 
 Call: mite.hel ~ WatrCont + Shrub + Substrate + Topo + SubsDens 
@@ -4875,7 +4871,7 @@
 + SubsDens      0.43670  1 -94.489  4.7999    199  0.005 **
 <All variables> 0.43670                                    
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > ## Example of ordiR2step with direction = "forward"
 > ## Not run: 
@@ -4912,7 +4908,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x9b271c0>
+<environment: 0x10ac51d18>
 
 Estimated degrees of freedom:
 6.45  total = 7.45 
@@ -4928,7 +4924,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0xa13f470>
+<environment: 0x109d00ed8>
 
 Estimated degrees of freedom:
 6.12  total = 7.12 
@@ -4940,13 +4936,13 @@
 > ## Get fitted values
 > calibrate(fit)
          1          2          3          4          5          6          7 
-22.0596536  6.0185658  3.6298560  4.1000950  8.9833602  5.9067474  8.6617386 
+22.0596535  6.0185659  3.6298559  4.1000950  8.9833600  5.9067472  8.6617389 
          8          9         10         11         12         13         14 
-11.0812151  0.6432692 35.2567122 10.4452454  7.2748480  5.5780162 24.6561684 
+11.0812152  0.6432691 35.2567124 10.4452454  7.2748478  5.5780162 24.6561685 
         15         16         17         18         19         20         21 
-18.8879904 29.7642960  5.6095921  9.5945523  3.2753635  2.6966144 10.7869350 
+18.8879906 29.7642964  5.6095920  9.5945524  3.2753633  2.6966143 10.7869351 
         22         23         24 
- 2.9902833  9.8082238  7.3406584 
+ 2.9902832  9.8082237  7.3406581 
 > 
 > ## Plot method
 > plot(fit, what = "contour")
@@ -5063,10 +5059,6 @@
 > ordicloud(ord, form = CA2 ~ CA3*CA1, groups = Manure, data = dune.env)
 > ordicloud(ord, form = CA2 ~ CA3*CA1 | Management, groups = Manure,
 +    data = dune.env, auto.key = TRUE, type = c("p","h"))
-Warning in FUN(X[[8L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[9L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[8L]], ...) : 'x' is NULL so the result will be NULL
-Warning in FUN(X[[9L]], ...) : 'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -5100,7 +5092,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0xa1184a0>
+<environment: 0x109cb80e8>
 
 Estimated degrees of freedom:
 8.93  total = 9.93 
@@ -5113,7 +5105,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x9b48ba0>
+<environment: 0x10adbb588>
 
 Estimated degrees of freedom:
 7.75  total = 8.75 
@@ -5126,7 +5118,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x9dbf4a8>
+<environment: 0x108d98b90>
 
 Estimated degrees of freedom:
 8.9  total = 9.9 
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/vegan -r 2431


More information about the Vegan-commits mailing list