[Vegan-commits] r982 - pkg/vegan/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Sep 1 21:52:04 CEST 2009
Author: psolymos
Date: 2009-09-01 21:52:04 +0200 (Tue, 01 Sep 2009)
New Revision: 982
Added:
pkg/vegan/man/multipart.Rd
Log:
multipart doc
Added: pkg/vegan/man/multipart.Rd
===================================================================
--- pkg/vegan/man/multipart.Rd (rev 0)
+++ pkg/vegan/man/multipart.Rd 2009-09-01 19:52:04 UTC (rev 982)
@@ -0,0 +1,107 @@
+\encoding{UTF-8}
+\name{multipart}
+\alias{multipart}
+\alias{print.multipart}
+\title{Multiplicative Diversity Partitioning}
+\description{
+In multiplicative diversity partitioning, mean values of alpha diversity at lower levels of a sampling
+hierarchy are compared to the total diversity in the entire data set or the pooled samples (gamma diversity).
+}
+\usage{
+multipart(formula, data, index=c("renyi", "tsallis"), scales = 1,
+ global = FALSE, relative = FALSE, nsimul=99, ...)
+\method{print}{multipart}(x, ...)
+}
+\arguments{
+ \item{formula}{A two sided model formula in the form \code{y ~ x}, where \code{y}
+ is the community data matrix with samples as rows and species as column. Right
+ hand side (\code{x}) must contain factors referring to levels of sampling hierarchy,
+ terms from right to left will be treated as nested (first column is the lowest,
+ last is the highest level). These variables must be factors in order to unambiguous
+ handling. Interaction terms are not allowed.}
+ \item{data}{A data frame where to look for variables defined in the right hand side
+ of \code{formula}. If missing, variables are looked in the global environment.}
+ \item{index}{Character, the entropy index to be calculated (see Details).}
+ \item{relative}{Logical, if \code{TRUE} then beta diversity is
+ standardized by its maximum (see Details).}
+ \item{scales}{Numeroc, of length 1, the order of the generalized diversity index
+ to be used.}
+ \item{global}{Logical, indicates the calculation of beta diversity values, see Details.}
+ \item{nsimul}{Number of permutation to use if \code{matr} is not of class 'permat'.
+ If \code{nsimul = 0}, only the \code{FUN} argument is evaluated. It is thus possible
+ to reuse the statistic values without using a null model.}
+ \item{x}{An object to print.}
+ \item{\dots}{Other arguments passed to \code{\link{oecosimu}}, i.e.
+ \code{method}, \code{thin} or \code{burnin}.}
+}
+\details{
+Multiplicative diversity partitioning is based on Whittaker's (1972) ideas, that has
+recently been generalised to one parametric diversity families (i.e. \enc{R\'enyi}{Renyi}
+and Tsallis) by Jost (2006, 2007). Jost recommends to use the numbers equivalents
+(Hill numbers), instead of pure diversities, and proofs, that this satisfies the
+multiplicative partitioning requirements.
+
+The current implementation of \code{multipart} calculates Hill numbers based on the
+functions \code{\link{renyi}} and \code{\link{tsallis}} (provided as \code{index} argument).
+If values for more than one \code{scales} are desired, it should be done in separate
+runs, because it adds extra dimensionality to the implementation, which has not been resolved
+efficiently.
+
+Alpha diversities are then the averages of these Hill numbers for each hierarchy levels,
+the global gamma diversity is the alpha value calculated for the highest hierarchy level.
+When \code{global = TRUE}, beta is calculated relative to the global gamma value:
+\deqn{\beta_i = \gamma / \alpha_{i}}{beta_i = gamma / alpha_i}
+when \code{global = FALSE}, beta is calculated relative to local gamma values (local gamma
+means the diversity calculated for a particular cluster based on the pooled abundance vector):
+\deqn{\beta_ij = \alpha_{(i+1)j} / mean(\alpha_{ij})}{beta_ij = alpha_(i+1)j / mean(alpha_i)}
+where \eqn{j} is a particular cluster at hierarchy level \eqn{i}. Then beta diversity value for
+level \eqn{i} is the mean of the beta values of the clusters at that level,
+\eqn{\beta_{i} = mean(\beta_{ij})}.
+
+If \code{relative = TRUE}, the respective beta diversity values are
+standardized by their maximum expected values (\eqn{mean(\beta_{ij}) / \beta_{max,ij}})
+given as \eqn{\beta_{max,ij} = n_{j}} (the number of lower level units in a given cluster \eqn{j}).
+
+The expected diversity components are calculated \code{nsimul} times by individual based
+randomisation of the community data matrix. This is done by the \code{"r2dtable"} method
+in \code{\link{oecosimu}} by default.
+}
+\value{
+An object of class 'multipart' with same structure as 'oecosimu' objects.
+}
+\references{
+Jost, L. (2006). Entropy and diversity.
+\emph{Oikos}, \bold{113}, 363--375.
+
+Jost, L. (2007). Partitioning diversity into independent alpha and beta components.
+\emph{Ecology}, \bold{88}, 2427--2439.
+
+Whittaker, R. (1972). Evolution and measurement of species diversity.
+\emph{Taxon}, \bold{21}, 213--251.
+}
+\author{\enc{P\'eter S\'olymos}{Peter Solymos}, \email{solymos at ualberta.ca}}
+\seealso{See \code{\link{adipart}} for additive diversity partitioning,
+ \code{\link{hiersimu}} for hierarchical null model testing
+ and \code{\link{oecosimu}} for permutation settings and calculating \eqn{p}-values.}
+\examples{
+data(mite)
+data(mite.xy)
+data(mite.env)
+## Function to get equal area partitions of the mite data
+cutter <- function (x, cut = seq(0, 10, by = 2.5)) {
+ out <- rep(1, length(x))
+ for (i in 2:(length(cut) - 1))
+ out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
+ return(as.factor(out))}
+## The hierarchy of sample aggregation
+levsm <- data.frame(
+ l1=as.factor(1:nrow(mite)),
+ l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
+ l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
+ l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))
+## Multiplicative diversity partitioning
+multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25)
+multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25, relative=TRUE)
+multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25, global=TRUE)
+}
+\keyword{multivariate}
More information about the Vegan-commits
mailing list