[Vegan-commits] r981 - pkg/vegan/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Sep 1 21:36:32 CEST 2009


Author: psolymos
Date: 2009-09-01 21:36:32 +0200 (Tue, 01 Sep 2009)
New Revision: 981

Modified:
   pkg/vegan/man/adipart.Rd
Log:
separating adipart and multipart docs

Modified: pkg/vegan/man/adipart.Rd
===================================================================
--- pkg/vegan/man/adipart.Rd	2009-09-01 18:53:43 UTC (rev 980)
+++ pkg/vegan/man/adipart.Rd	2009-09-01 19:36:32 UTC (rev 981)
@@ -1,28 +1,22 @@
 \encoding{UTF-8}
 \name{adipart}
 \alias{adipart}
-\alias{multipart}
 \alias{print.adipart}
-\alias{print.multipart}
 \alias{hiersimu}
 \alias{print.hiersimu}
-\title{Diversity Partitioning and Hierarchical Null Model Testing}
+\title{Additive Diversity Partitioning and Hierarchical Null Model Testing}
 \description{
-In diversity partitioning, mean values of alpha diversity at lower levels of a sampling 
+In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling 
 hierarchy are compared to the total diversity in the entire data set (gamma diversity). 
-The partitioning can be additive (\code{adipart}) or multiplicative (\code{multipart}). 
 In hierarchical null model testing, a statistic returned by a function is evaluated 
 according to a nested hierarchical sampling design (\code{hiersimu}).
 }
 \usage{
 adipart(formula, data, index=c("richness", "shannon", "simpson"),
     weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)
-multipart(formula, data, index=c("renyi", "tsallis"), scales = 1,
-    global = FALSE, relative = FALSE, nsimul=99, ...)
 hiersimu(formula, data, FUN, location = c("mean", "median"),
     relative = FALSE, drop.highest = FALSE, nsimul=99, ...)
 \method{print}{adipart}(x, ...)
-\method{print}{multipart}(x, ...)
 \method{print}{hiersimu}(x, ...)
 }
 \arguments{
@@ -39,17 +33,13 @@
     weighting proportional to sample abundances to use in weighted averaging of individual 
     alpha values within strata of a given level of the sampling hierarchy.}
   \item{relative}{Logical, if \code{TRUE} then alpha and beta diversity values are given 
-    relative to the value of gamma for function \code{adipart}. For function \code{multipart},
-    it sets the standardization of the beta diversity value with its maximum (see Details).}
-  \item{scales}{Numeroc, of length 1, the order of the generalized diversity index 
-    to be used.}
-  \item{global}{Logical, indicates the calculation of beta values, see Details.}
+    relative to the value of gamma for function \code{adipart}.}
   \item{nsimul}{Number of permutation to use if \code{matr} is not of class 'permat'.
     If \code{nsimul = 0}, only the \code{FUN} argument is evaluated. It is thus possible
     to reuse the statistic values without using a null model.}
   \item{FUN}{A function to be used by \code{hiersimu}. This must be fully specified,
     because currently other arguments cannot be passed to this function via \code{\dots}.}
-  \item{location}{Character, identifies which function (mean or median) is used to 
+  \item{location}{Character, identifies which function (mean or median) is to be used to 
     calculate location of the samples.}
   \item{drop.highest}{Logical, to drop the highest level or not. When \code{FUN} 
     evaluates only arrays with at least 2 dimensions, highest level should be dropped, 
@@ -84,35 +74,8 @@
 
 The implementation of additive diversity partitioning in \code{adipart} follows Crist et 
 al. 2003. It is based on species richness (\eqn{S}, not \eqn{S-1}), Shannon's and 
-Simpson's diversity indices states as argument \code{index}.
+Simpson's diversity indices stated as the \code{index} argument.
 
-Multiplicative diversity partitioning is based on Whittaker's (1972) ideas, that has 
-recently been generalised to one parametric diversity families (i.e. \enc{R\'enyi}{Renyi} 
-and Tsallis) by Jost (2006, 2007). Jost recommends to use the numbers equivalents 
-(Hill numbers), instead of pure diversities, and proofs, that this satisfies the 
-multiplicative partitioning requirements.
-
-The current implementation of \code{multipart} calculates Hill numbers based on the 
-functions \code{\link{renyi}} and \code{\link{tsallis}} (provided as \code{index} argument). 
-If values for more than one \code{scales} values are desired, it should be done in separate 
-runs, because it adds extra dimensionality to the implementation, which has not been resolved 
-efficiently.
-
-Alpha diversities are then the averages of these Hill numbers for each hierarchy levels, 
-the global gamma diversity is the alpha value calculated for the highest hierarchy level. 
-When \code{global = TRUE}, beta is calculated relative to the global gamma value:
-\deqn{\beta_i = \gamma / \alpha_{i}}{beta_i = gamma / alpha_i}
-when \code{global = FALSE}, beta is calculated relative to local gamma values (local gamma
-means the diversity the calculated for a particular cluster based on the pooled abundance vector):
-\deqn{\beta_ij = \alpha_{(i+1)j} / mean(\alpha_{ij})}{beta_ij = alpha_(i+1)j / mean(alpha_i)}
-where \eqn{j} is a particular cluster at hierarchy level \eqn{i}. Then beta diversity value for
-level \eqn{i} is the mean of the beta values of the clusters at that level,
-\eqn{\beta_{i} = mean(\beta_{ij})}.
-
-If \code{relative = TRUE} for \code{multipart}, the respective beta diversity values are
-standardized by their maximum expected values (\eqn{mean(\beta_{ij}) / \beta_{max,ij}})
-given as \eqn{\beta_{max,ij} = n_{j}} (the number of lower level units in a given cluster \eqn{j}).
-
 The expected diversity components are calculated \code{nsimul} times by individual based 
 randomisation of the community data matrix. This is done by the \code{"r2dtable"} method
 in \code{\link{oecosimu}} by default.
@@ -125,7 +88,6 @@
 \value{
 An object of class 'adipart' or 'hiersimu' with same structure as 'oecosimu' objects.
 }
-
 \references{
 Crist, T.O., Veech, J.A., Gering, J.C. and Summerville,
 K.S. (2003). Partitioning species diversity across landscapes and regions:
@@ -133,23 +95,13 @@
 \eqn{\gamma}-diversity.
 \emph{Am. Nat.}, \bold{162}, 734--743.
 
-Jost, L. (2006). Entropy and diversity.
-\emph{Oikos}, \bold{113}, 363--375.
-
-Jost, L. (2007). Partitioning diversity into independent alpha and beta components.
-\emph{Ecology}, \bold{88}, 2427--2439.
-
 Lande, R. (1996). Statistics and partitioning of species
 diversity, and similarity among multiple communities.
 \emph{Oikos}, \bold{76}, 5--13.
-
-Whittaker, R. (1972). Evolution and measurement of species diversity.
-\emph{Taxon}, \bold{21}, 213--251.
 }
 
 \author{\enc{P\'eter S\'olymos}{Peter Solymos}, \email{solymos at ualberta.ca}}
-\seealso{See \code{\link{permatfull}}, \code{\link{permatswap}} and \code{\link{permat.control}} 
-  for permutation settings, and \code{\link{oecosimu}} for calculating confidence levels.}
+\seealso{See \code{\link{oecosimu}} for permutation settings and calculating \eqn{p}-values.}
 \examples{
 data(mite)
 data(mite.xy)
@@ -173,20 +125,7 @@
 plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1)
 par(mfrow=c(1,1))
 ## Additive diversity partitioning
-adpMite <- adipart(mite ~., levsm, index="richness", nsimul=20)
-adpMite
-## Simple artificial example
-set.seed(4321)
-matr <- r2dtable(1, c(3,4,3,7,4,8,7,6), 3:9)[[1]]
-strata <- data.frame(letters[1:8], rep(letters[1:4],each=2), rep("a",8))
-## Restricted permutation within habitat classes
-contr <- permat.control(strata = c("a","a","a","b","a","b","b","b"))
-## Additive diversity partitioning
-x1 <- adipart(matr ~ ., strata, index="shannon", nsimul=25, control=contr)
-x1
-## Multiplicative diversity partitioning
-x2 <- multipart(matr ~ ., strata, index="renyi", scales=1, nsimul=25)
-x2
+adipart(mite ~., levsm, index="richness", nsimul=20)
 ## Hierarchical null model testing
 ## diversity analysis (similar to adipart)
 hiersimu(mite ~., levsm, diversity, relative=TRUE, nsimul=25)



More information about the Vegan-commits mailing list