[Rsiena-commits] r243 - in pkg: RSiena RSiena/R RSiena/inst/doc RSiena/man RSiena/src/model/effects RSienaTest RSienaTest/R RSienaTest/inst/doc RSienaTest/man RSienaTest/src/model/effects
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Sep 17 18:05:35 CEST 2013
Author: tomsnijders
Date: 2013-09-17 18:05:34 +0200 (Tue, 17 Sep 2013)
New Revision: 243
Added:
pkg/RSiena/src/model/effects/AntiIsolateEffect.cpp
pkg/RSiena/src/model/effects/AntiIsolateEffect.h
Modified:
pkg/RSiena/DESCRIPTION
pkg/RSiena/R/sienaGOF.r
pkg/RSiena/changeLog
pkg/RSiena/inst/doc/RSiena.bib
pkg/RSiena/inst/doc/RSiena_Manual.pdf
pkg/RSiena/inst/doc/RSiena_Manual.tex
pkg/RSiena/man/RSiena-package.Rd
pkg/RSiena/man/sienaGOF-auxiliary.Rd
pkg/RSiena/man/sienaGOF.Rd
pkg/RSiena/src/model/effects/EffectFactory.cpp
pkg/RSiena/src/model/effects/IsolatePopEffect.cpp
pkg/RSiena/src/model/effects/IsolatePopEffect.h
pkg/RSienaTest/DESCRIPTION
pkg/RSienaTest/R/sienaGOF.r
pkg/RSienaTest/changeLog
pkg/RSienaTest/inst/doc/RSiena.bib
pkg/RSienaTest/inst/doc/RSiena_Manual.pdf
pkg/RSienaTest/inst/doc/RSiena_Manual.tex
pkg/RSienaTest/man/RSiena-package.Rd
pkg/RSienaTest/man/sienaGOF-auxiliary.Rd
pkg/RSienaTest/man/sienaGOF.Rd
pkg/RSienaTest/src/model/effects/EffectFactory.cpp
pkg/RSienaTest/src/model/effects/IsolatePopEffect.h
Log:
Added functions AntiIsolateEffect.h and AntiIsolateEffect.cpp to RSiena, these were forgotten to include in revision 242.
Corrected bug in EffectFactory for isolatePop effect.
Changes in sienaGOF.r: improved treatment of changing structural values, and small improvement in plotting.
Modified: pkg/RSiena/DESCRIPTION
===================================================================
--- pkg/RSiena/DESCRIPTION 2013-09-10 15:55:45 UTC (rev 242)
+++ pkg/RSiena/DESCRIPTION 2013-09-17 16:05:34 UTC (rev 243)
@@ -1,8 +1,8 @@
Package: RSiena
Type: Package
Title: Siena - Simulation Investigation for Empirical Network Analysis
-Version: 1.1-242
-Date: 2013-09-10
+Version: 1.1-243
+Date: 2013-09-17
Author: Ruth Ripley, Krists Boitmanis, Tom A.B. Snijders
Depends: R (>= 2.15.0)
Imports: Matrix
Modified: pkg/RSiena/R/sienaGOF.r
===================================================================
--- pkg/RSiena/R/sienaGOF.r 2013-09-10 15:55:45 UTC (rev 242)
+++ pkg/RSiena/R/sienaGOF.r 2013-09-17 16:05:34 UTC (rev 243)
@@ -553,6 +553,13 @@
## Need to check for useless statistics here:
n.obs <- nrow(obs)
+# Added version 1.1-243 by ts:
+ sims.min <- apply(sims, 2, min)
+ sims.max <- apply(sims, 2, max)
+ sims.min <- pmin(sims.min, obs)
+ sims.max <- pmax(sims.max, obs)
+# Also further use of ymin, ymax was added.
+
if (center)
{
sims.median <- apply(sims, 2, median)
@@ -560,18 +567,24 @@
(sims[,i] - sims.median[i]) )
obs <- matrix(sapply(1:ncol(sims), function(i)
(obs[,i] - sims.median[i])), nrow=n.obs )
+ sims.min <- sims.min - sims.median
+ sims.max <- sims.max - sims.median
}
if (scale)
{
- sims.min <- apply(sims, 2, min)
- sims.max <- apply(sims, 2, max)
- sims <- sapply(1:ncol(sims), function(i) sims[,i]/(sims.max[i] -
- sims.min[i] ) )
- obs <- matrix(sapply(1:ncol(sims), function(i) obs[,i] /(sims.max[i] -
- sims.min[i] )
- ), nrow=n.obs )
+# sims.min <- apply(sims, 2, min)
+# sims.max <- apply(sims, 2, max)
+ sims.range <- sims.max - sims.min + 1e-6
+ sims <- sapply(1:ncol(sims), function(i) sims[,i]/(sims.range[i]))
+ obs <- matrix(sapply(1:ncol(sims), function(i) obs[,i]/(sims.range[i]))
+ , nrow=n.obs )
+ sims.min <- sims.min/sims.range
+ sims.max <- sims.max/sims.range
}
+ ymin <- 1.05*min(sims.min) - 0.05*max(sims.max)
+ ymax <- -0.05*min(sims.min) + 1.05*max(sims.max)
+
if (is.null(args$ylab))
{
ylabel = "Statistic"
@@ -670,11 +683,50 @@
}
}
bwplot(as.numeric(sims)~rep(xAxis, each=itns), horizontal=FALSE,
- panel = panelFunction, xlab=xlabel, ylab=ylabel,
+ panel = panelFunction, xlab=xlabel, ylab=ylabel, ylim=c(ymin,ymax),
scales=list(x=list(labels=key), y=list(draw=FALSE)),
- main=main, ...)
+ main=main)
+
}
+##@changeToStructural sienaGOF Utility to change
+# values in X to structural values in S
+# X must have values 0, 1.
+# NA values in X will be 0 in the result.
+changeToStructural <- function(X, S)
+ {if (any(S >= 10, na.rm=TRUE))
+ {
+ S[is.na(S)] <- 0
+ S0 <- Matrix(S==10)
+ S1 <- Matrix(S==11)
+# the 1* turns the logical into numeric
+ X <- 1*((X - S0 + S1)>=1)
+ }
+ X[is.na(X)] <- 0
+ drop0(X)
+ }
+
+##@changeToNewStructural sienaGOF Utility to change
+# values in X to structural values in SAfter
+# for tie variables that have no structural values in SBefore.
+# X must have values 0, 1.
+# NA values in X or SBefore or SAfter will be 0 in the result.
+changeToNewStructural <- function(X, SBefore, SAfter)
+ {
+ SB <- Matrix(SBefore>=10)
+ SA <- Matrix(SAfter>=10)
+ if (any(SA>SB, na.rm=TRUE))
+ {
+ S0 <- (SA>SB)*Matrix(SAfter==10)
+ S1 <- (SA>SB)*Matrix(SAfter==11)
+# the 1* turns the logical into numeric
+ X <- 1*((X - S0 + S1)>=1)
+}
+ X[is.na(X)] <- 0
+ drop0(X)
+ }
+
+
##@sparseMatrixExtraction sienaGOF Extracts simulated networks
# This function returns the simulated network as a dgCMatrix;
# this is the "standard" class for sparse numeric matrices
@@ -682,6 +734,31 @@
# Ties for ordered pairs with a missing value for wave=period or period+1
# are zeroed;
# note that this also is done in RSiena for calculation of target statistics.
+# To obtain equality between observed and simulated tie values
+# in the case of structurally determined values, the following is done.
+# The difficulty lies in the possibility
+# that there is change in structural values.
+# The reasoning is as follows:
+# structural values affect the following period.
+# Therefore the simulated values at the end of the period
+# should be compared with an observation containing the structural values
+# present at the beginning of the period.
+# This implies that observations (wave=period+1) should be modified to contain
+# the structural values of the preceding observation (wave=period).
+# But if there are any tie variables with
+# structural values for wave=period+1 and free values for wave=period,
+# then there is no valid reference value for the simulations in this period,
+# and the simulated tie values should be set to
+# the observed (structural) values for wave=period+1.
+# Concluding:
+# For ties that have a structurally determined value at wave=period,
+# this value is used for the observation at the end of the period.
+# For ties that have a structurally determined value at the end of the period
+# and a free value at the start,
+# the structurally determined value at wave=period+1 is used
+# for the simulations at the end of the period.
+# TODO: Calculate the matrix of structurals and of missings outside
+# of this procedure, doing it only once. Perhaps in sienaGOF.
sparseMatrixExtraction <-
function(i, obsData, sims, period, groupName, varName){
# require(Matrix)
@@ -702,18 +779,25 @@
{
# sienaGOF wants the observation;
# transform structurally fixed values into regular values
- # by "modulo 10" operation
+ # by "modulo 10" (%%10) operation
+ # If preceding observation contains structural values
+ # use these to replace the observations at period+1.
if (attr(obsData[[groupName]]$depvars[[varName]], "sparse"))
{
- returnValue <- drop0(
- Matrix(obsData[[groupName]]$depvars[[varName]][[period+1]] %% 10))
+ returnValue <- drop0(Matrix(
+ obsData[[groupName]]$depvars[[varName]][[period+1]] %% 10))
+ returnValue[is.na(returnValue)] <- 0
+ returnValue <- changeToStructural(returnValue,
+ Matrix(obsData[[groupName]]$depvars[[varName]][[period]]))
}
- else
+ else # not sparse
{
returnValue <-
Matrix(obsData[[groupName]]$depvars[[varName]][,,period+1] %% 10)
+ returnValue[is.na(returnValue)] <- 0
+ returnValue <- changeToStructural(returnValue,
+ Matrix(obsData[[groupName]]$depvars[[varName]][,,period]))
}
- returnValue[is.na(returnValue)] <- 0
}
else
{
@@ -723,9 +807,23 @@
sims[[i]][[groupName]][[varName]][[period]][,2],
x=sims[[i]][[groupName]][[varName]][[period]][,3],
dims=dimsOfDepVar[1:2] )
+ # If observation at end of period contains structural values
+ # use these to replace the simulations.
+ if (attr(obsData[[groupName]]$depvars[[varName]], "sparse"))
+ {
+ returnValue <- changeToNewStructural(returnValue,
+ Matrix(obsData[[groupName]]$depvars[[varName]][[period]]),
+ Matrix(obsData[[groupName]]$depvars[[varName]][[period+1]]))
+ }
+ else # not sparse
+ {
+ returnValue <- changeToNewStructural(returnValue,
+ Matrix(obsData[[groupName]]$depvars[[varName]][,,period]),
+ Matrix(obsData[[groupName]]$depvars[[varName]][,,period+1]))
}
- ## Zero missings:
- 1*((returnValue - missings) > 0)
+ }
+ ## Zero missings (the 1* turns the logical into numeric):
+ 1*drop0((returnValue - missings) > 0)
}
##@networkExtraction sienaGOF Extracts simulated networks
@@ -736,6 +834,7 @@
# Ties for ordered pairs with a missing value for wave=period or period+1
# are zeroed;
# note that this also is done in RSiena for calculation of target statistics.
+# Structural values are treated as in sparseMatrixExtraction.
networkExtraction <- function (i, obsData, sims, period, groupName, varName){
require(network)
dimsOfDepVar<- attr(obsData[[groupName]]$depvars[[varName]], "netdims")
@@ -752,8 +851,6 @@
# Initialize empty networks:
if (isbipartite)
{
- # for bipartite networks, package <<network>> numbers
- # the second mode vertices consecutively to the first mode.
emptyNetwork <- network.initialize(dimsOfDepVar[1]+dimsOfDepVar[2],
bipartite=dimsOfDepVar[1])
}
@@ -761,96 +858,22 @@
{
emptyNetwork <- network.initialize(dimsOfDepVar[1], bipartite=NULL)
}
- if (sparseData)
- {
- # Which tie variables are regarded as missings:
- missings <- as(
- is.na(obsData[[groupName]]$depvars[[varName]][[period]]) |
- is.na(obsData[[groupName]]$depvars[[varName]][[period+1]]),
- "lgTMatrix")
- # For lgTMatrix, slots i and j are the rows and columns,
- # numbered from 0 to dimension - 1.
+ # Use what was defined in the function above:
+ matrixNetwork <- sparseMatrixExtraction(i, obsData, sims,
+ period, groupName, varName)
+ sparseMatrixNetwork <- as(matrixNetwork, "dgTMatrix")
+# For dgTMatrix, slots i and j are the rows and columns,
+# numbered from 0 to dimension - 1. Slot x are the values.
# Actors in class network are numbered starting from 1.
# Hence 1 must be added to missings at i and missings at j.
- # Put the missings into network shape:
- if (length(missings at i) <= 0)
- {
- missings <- emptyNetwork
- }
- else
- {
- missings <- network.edgelist(
- cbind(missings at i + 1, missings at j + bipartiteOffset, 1), emptyNetwork)
- }
- }
- else # not sparse
- {
- # For adjacency matrices the size is evident.
- if (isbipartite)
- {
- missings <- network(
- (is.na(obsData[[groupName]]$depvars[[varName]][,,period]) |
- is.na(obsData[[groupName]]$depvars[[varName]][,,period+1]))*1,
- matrix.type="adjacency", bipartite=dimsOfDepVar[1])
- }
- else
- {
- missings <- network(
- (is.na(obsData[[groupName]]$depvars[[varName]][,,period]) |
- is.na(obsData[[groupName]]$depvars[[varName]][,,period+1]))*1,
- matrix.type="adjacency")
- }
- }
-
- if (is.null(i))
- {
- # sienaGOF wants the observation;
- if (sparseData)
- {
- # transform structurally fixed values into regular values
- # by "modulo 10" operation;
- # drop NAs and 0 values
- original <-
- obsData[[groupName]]$depvars[[varName]][[period+1]] %% 10
- original[is.na(original)] <- 0
- original <- as(drop0(original), "dgTMatrix")
- # now original at x is a column of ones;
- # the 1 here is redundant because of the default ignore.eval=TRUE
- # in network.edgelist
- returnValue <- network.edgelist(
- cbind(original at i + 1, original at j + bipartiteOffset, 1),
- emptyNetwork) - missings
-
- }
- else # not sparse: deal with adjacency matrices
- {
- original <-
- obsData[[groupName]]$depvars[[varName]][,,period+1] %% 10
- original[is.na(original)] <- 0
- if (isbipartite)
- {
- returnValue <- network(original, matrix.type="adjacency",
- bipartite=dimsOfDepVar[1]) - missings
- }
- else
- {
- returnValue <- network(original, matrix.type="adjacency",
- bipartite=FALSE) - missings
- }
- }
- }
- else
- {
- # sienaGOF wants the i-th simulation;
- # the 1 in cbind is redundant because of the default ignore.eval=TRUE
- # in network.edgelist
- bipartiteOffset <- ifelse (isbipartite, dimsOfDepVar[1], 0)
+# sparseMatrixNetwork at x is a column of ones;
+# the 1 in the 3d column of cbind below is redundant
+# because of the default ignore.eval=TRUE in network.edgelist.
+# But it is good to be explicit.
returnValue <- network.edgelist(
- cbind(
- sims[[i]][[groupName]][[varName]][[period]][,1],
- (sims[[i]][[groupName]][[varName]][[period]][,2] + bipartiteOffset),
- 1), emptyNetwork) - missings
- }
+ cbind(sparseMatrixNetwork at i + 1,
+ sparseMatrixNetwork at j + bipartiteOffset, 1),
+ emptyNetwork)
returnValue
}
Modified: pkg/RSiena/changeLog
===================================================================
--- pkg/RSiena/changeLog 2013-09-10 15:55:45 UTC (rev 242)
+++ pkg/RSiena/changeLog 2013-09-17 16:05:34 UTC (rev 243)
@@ -1,3 +1,15 @@
+2013-09-17 R-forge revision 243
+Changes in RSiena and RSienaTest:
+ * Correct bug in EffectFactory for isolatePop effect.
+ * Improved plotting of sienaGOF objects so that observed values
+ outside of the range of simulated values don't run off the chart.
+ * Improve treatment of structural values in sienaGOF by
+ modifying sparseMatrixExtraction(); and simplify
+ networkExtraction() by building it directly on sparseMatrixExtraction().
+Changes in RSiena:
+ * Add functions AntiIsolateEffect.h and AntiIsolateEffect.cpp
+ which were forgotten to include in revision 242.
+
2013-09-10 R-forge revision 242
Changes in RSiena and RSienaTest:
* New effects: anti isolates, anti in-isolates, anti in-near-isolates.
Modified: pkg/RSiena/inst/doc/RSiena.bib
===================================================================
--- pkg/RSiena/inst/doc/RSiena.bib 2013-09-10 15:55:45 UTC (rev 242)
+++ pkg/RSiena/inst/doc/RSiena.bib 2013-09-17 16:05:34 UTC (rev 243)
@@ -3026,6 +3026,14 @@
%edited by Ross M.\ Stolzenberg. Boston, MA: Blackwell Publishing.
+ at Article{Pearson1894,
+ author = {Karl Pearson},
+ title = {Contributions to the Mathematical Theory of Evolution},
+ journal = {Philosophical Transactions of the Royal Society A},
+ year = 1894,
+ volume = 185,
+ pages = {71--110}}
+
@Article{PearsonMichell00,
author = {Michael A. Pearson and Lynn Michell},
title = {Smoke Rings: Social network analysis of friendship groups,
@@ -3097,10 +3105,10 @@
@Book{Pflug96,
- author = {Georg Ch Pflug},
+ author = {Georg Ch. Pflug},
title = {Optimization of stochastic models},
publisher = {Kluwer},
- year = 1990,
+ year = 1996,
address = {Boston}
}
@article{
Modified: pkg/RSiena/inst/doc/RSiena_Manual.pdf
===================================================================
--- pkg/RSiena/inst/doc/RSiena_Manual.pdf 2013-09-10 15:55:45 UTC (rev 242)
+++ pkg/RSiena/inst/doc/RSiena_Manual.pdf 2013-09-17 16:05:34 UTC (rev 243)
@@ -23,55 +23,55 @@
203 0 obj <<
/Type /ObjStm
/N 100
-/First 867
-/Length 1487
+/First 868
+/Length 1519
/Filter /FlateDecode
>>
stream
-xÚVËÛF¼ë+úhÙ5çÁa°Ûà¬gÉÑj²$GRûøûTS"E&¶¨ÍAâHdWwUõ4GF"QB*Á%¥T |¤$âWM"ãkGø~FRño|Ò¤¤DºRÒ@Ëø²Ti-p¤sþ)Vü;¦X#^eg²ÇsäЯ¤V$xN'F|åòGf|
«¦L£¦8¦,^Q®Úó÷I"j%
E;I)È/Sæò¤¥
-2æELBI^dXôÿäX0sT-´+4B³¨Kh`Èȱ
-9ã,gÂͺ(>"á\9õä@NPÁh¥" §È£ ¤ÈXj¸$²5r<Ê¡b§r®z«$ßÊØ]~
-ð ¤PùJÁ.Xád{Rf¤Tï"ììmBÏàÀÈUßü05ò(ø&u¬W
-ÆIÍ5÷n n¶¿Áf+'Áÿ ¹+Ø'¨¥b¶7_Ö÷&3®j ÐBG¾ºRÁA
[Pbá
Ð,Ty¥Ì6BêW
-*¶ZÁAÐæF$çQ\ê
-0à (á0X¼
Î\·^½yC¯®éÕgÿÍÓ«éE»»imÑ9ß\Æ"zIoß®^ð¾¸Úu®¹¥nc©6®ÞÕäw]ioµ/Ä$è³÷ecÛüÖ®£×mÈì]åLx¢¶3k;W´ß= &{¸>âÁÚð'+H.`Aß@Àq´Þ5ýCÔ:Û(ý>Ðk¼_c*úÃT;Û.á>øæÞ[Û>llq·ÀdtíkK®ÞúЦ£ÂcÙئë¥ezJ ±¿ù Èj at Vô®ºõ¾Ô!zÑôu×mwÝ2}}TËýâÇôçò é7Lm;è¾wLSr5¥ %Ù|hÏUGP
²ªÊ5Ö@§SuññÓÕaw|qw¶r´{_Ò{ód[gIó-`m~ÐWØ(ØÚ;0¼ÁÎë4²9íÙøèA²÷ t|]ÌbGLþY*w,À>¹GÛÁ¡öuD@#î:ÏÉý<8}Óô»ý{ç-a©inÑ+ëàk²íüsèò¤û)]ÓvCÐ`tµ«@rÒt¡rEÿ[¸;à°ë×ÉRéÖkxcµ¹6¾ü1lÑ7Ð=]v6ýiªò¢{ÚZêÎC FWá=?R
->>z[Ù×QwѺfö?Q÷àçp/÷Ouv;ø¸<¡äHQ
-Þ\]wVÁz Ð¥jÐA÷Ìv[¹¢ï¦×ÜvãèÛSÙz 6`ãÞ)ÞSol÷`mC®)íÖâo
ÛàwÛ%ÜdÀMF\¨eiÃ=J´<]szïàò=XN×Õò ˹± w´ÃA3VRj³oIHraªµ§j;À
- >Û®WïrNV!¢¯èʶÂÀñ®°KqrN´Ç<¤<ôkeïõ øê©u§ÕãÁW¶ïÛNâ q6Q$]ÙÎ\<¡öPÁ¶_Ü1)JrY3ÀÓ¼àþ0û÷amñe·ï1E
-Kwç¿4ú<
-ÿ!1Ë9ìç§P|àhº`ÚnÜÃóè¹®q¢Úñþõ»¯9ÈbNKÕf=´½÷Õî GMf8ÍÜg¡É Ü7%ÆÿØÙ'YýJM ÔXXìá
¶ÁÐô5ÏÍ¡Èó õZÐ<ºØAD%½·sï|àóÇ3´ºÇþÍ`þü³ªæu²áþÁ·þ·
+xÚWMsÛ6½ëWì1© @2ÉL&ÎÔM§Î´gmÔ$¡¤?þ}ßRDµ($,)ìþ}$A DÔrÊ3iB)>"M)U%F¼KøYÈy,HNÏ%I~'I¬$Ï2ÁcNJIȲÇTcÌH)QNø¹ ñsIZÁ¶.åJdrD&2°xDx9æ©Ç
+QQò¨¨%ÇO$ ÔFD-a¢5(J6r
¥Ì@ä`-2¸#©(ØPJ&04@ζ(éb% fL¾ ²bÈ
+!È
+rj$A Tk6¬s6<q-N0s-W2rTÓB¤0\H6UJ6\j6\lÒ%A¢$ÄI¡`°YB.æ@æ(
À&8«A=Ld5®0% Õ Â`þtä¡
+VÏ&qÊrB x±l9cÆ2Ð8\òIÅ2L?q} ~Ã)f:¬b`-((L¬$Þ"£9Y(¡ LRä
+ÊPdr¸óGéÈù£$$.XÁ´³)9×yAA9=AApÃ6&À 0Nºâ<CA©SIZe«wïèͽ¹ðß<½ù^õãuo«Áùî\§Ékzÿ~õ-úÕµnpÝ-
+wZóäÚ±%?µ½
+Ö¾^@JwH)]x_w¶ïÉßÐèÑ
+wdÆ'×8©ÌàúÁUý÷AqÏgÈç)}Öío]ßsĵ®t«a¦¡Ó¶'×Qïlg.¾~¡ï,·]HoÖÐôqµß%¬cTCB¾ìÎnÆn´Y7ÉHb¼_:è NNq{wA|÷`Ãí*Kîlu¿Àdç,èÊ·\»öa0ÈpåavÈõ¤$ÅDé$õ×`YFdI[PíK]2ú:ëqX¦í³ó~õcúb èwLkb
+m*ß&ÔdCð¡?TîA%Âj×Y$<k篢·¢ËífüÕÝÛÆÝawM!}4϶w¦ßf,ósM_!g `[îÁð}RxVÈæ¸fÀ{
+ôFÚñO¨b;böf)ÜC`±ôÅ=ñ~_G
úSä
8¯Ð&,TöËà²=\FØFl
+IMwZ¹ ¾¥9ÛÁ¿þv|³FNW§]t"À ˱ÉYÑ-¸èú¶r=WÀv×ß8t$Kµ»¹±7VOHׯL ØÀô
+t]Ä°aÐ_¦©Ïçµ¥áGѺ*ìé2zJúüdÚucßZÝYïj9!üDã?|Áµ<Íì:ê¸Ü¡±È¢Úíªî¤³¡Â©C=X2ëu㪩ÞrÙíZß:øëƶK°*ªI©é0É|mGk;¢µ][|áT¸
+~\/áê«w¸È¥;&ì¢å>ÃùèÞÛ°®ÐåFWÆtà ôñ^Ã+VSj½oID$±ÐÕúc±máâ}·;LYÁ¹ÎÑ(Ò$b.}m4ï*»ä'v~#åãÛzmìVÝf
+üMóÜ»ãÙÛ_Þ¦«Û¦ì§ò¸H"v(.í`΢#w¨
+T°=à÷"CÌÖ`n^q}ÍyØZ°¬öº¨áÔmâéÆ´ÎÂÿH¬wË˳%øÂÑ
+ÁôÃn3"Ä£{læ)qíAG*!Æó×®rs>E¨WºÏ6çú·mùØß§Ü ØkpÛÙáû$41C¢DûßUöQVÿ3(¹¬â¿(Ó
+e¦é§ÿ+1ÈÓ ³t¶æÖµÀv²'*製3Îó£ä~®ëw óôÿ{
+V
endstream
endobj
-495 0 obj <<
-/Length 1203
+499 0 obj <<
+/Length 1204
/Filter /FlateDecode
>>
stream
xÚVKsÛF¾ëWðHÍ}ñÕÄIÓ»©¥ÖÔZÞ
¤êßX,IV&ãLG3"°°åÑ:âÑûÿÁóõröêÈ#©Y^ä"ZÞGgkeg:Z®¢Oñµiç2·¦'Ëø¾ëç/ËâÐRe âdu»p¶5¤¨y$4S:¨d%Ëd3¦êÛñÜÃ>×y|ë6µÝ¡()Xd@µ2îÒ½d¯Y/Z÷ÏÊö·Ó¬'fç n¶µlÞàco+gVÝ7¤iJH|h] ÔeiJ.þjÝz]Ü/;òÔÝÓó!C«_æViüÖnL?6¶EÅñP1£Ý\ÄÃ<°&bW
¿ÒÒÍö3Wdñ¦«k»¶>(!`Á°Jª0-ìf´
-îq7O<62ü^$
-Íqàj9ðqG"OYÆ¥b¹Î£ª})¿Hÿ^0iÁ«wÞv³?áwê{RM&ÏÉkO>`ZÉÊLf{9£ R¥ñ2£È.ï±7Õx<8)¦qQ0QÈW7t¼Å²£åb¢ëgò=±I CÐ[¸f[ñu-äUgñöÉ£[ïE9ÔÇ\qOëWÍÆõ®òµ7Ö3æ+jÚ#-\¶¦Þ
-nxSÐRàdº~;CU×l¶£
-Ûnú.¡Ò
di®ËÈkò²î
-VNÅãé2}ï,:-ò¸ÛÓº¥É
-R( À°)l4¹'yÓx|¶Hì*àc¯öÉg¢ÞN~BuòÐy&CqÖ>~B,B&ûGØAilª
-jϵkú;|jÚ«]kWXÕõIQ·èeôpW´6EakúT@Lhqá_ë¨_GÏd·ïgÑ'¿Ýa7ÚÖ¯iϸú*æâÄW|ñ3ÀÀQzê©õBg'g²7Q¥-R¨3©Ùiü¸üñçça'ZðØ´«&ÂNlýÿÂÜÃ
-C+-\ØÜ
ÜQ 14|aá|R0J/ÏÍÞ£VR°\ì[É4ê*-X!E8ÐÐ|«*£wwÐ[p oL
ÂÇyÅfmIæ¸'ýVÝ#ê\Í}»À?Ç1¥Ó:#wFÚÇÔCØzk\;K<|h0|íÝ8BÍSä
-ƨ8&²5}íl(¥¶%3AÁÉ
-.|grh½Å>°ïÍ!ÎRAÉ÷C¼Y`;D×*¸Ã
É®
-
-òÛÖ
- &è\Cgù ×ÞëµþÀöÇ:ÿη8Û¯1R¡êdX`U%J©øÍC'jZú\v]]M4+ôGÖÛêÊ*p÷½ý²
--¸Þl»ñÍeuxQ8Wýr×Ò]Köp1ðê#5µB!m´.àeúÁ0eây(½m-åoE?ö¯8êGµ¨$ãJ=vL®`"ÁZ·!ô"8+yéoÝeU+£DÃ+\q'Üïþ½ñ
+îq7O<62ù½H.?ãÀÕr&àâD²JÅrGU3û2S~þ½`ÒWï½ífÂïÔ÷¤L×|À´Ì<÷r F¤JãeF]Þ
+coªñ,xp $"SLã>¢`¢!7®n.éxeGËÅD×Ï<å{b9%@ ·pͶcëZÈ«ÎâíF·Þr¨¹,âÖ¯ë]åk>o¬gÌWÔ µGZ¸lM½Ü𧠥<À)Ètýv>«®ÙlG¶Ýô]B¥#ÉÒ\!×äeݬ"Ç3Ò[eúÞYtZäq·§uK/"¥P@a7SØhrOò¦ñ
+ølØ51U0ÁÇ^íÏD½üê å¡óLâ¬}$ü83YLö°.ÒØTÔk×ô9vøÔ´
+V»Ö4®")°ªë¢nÑËèá®hmÂÖô
+¨<Ðâ¿ÖQ¿ÉnßÏ¢O~»Ãn´'_Óq/ô UÌůøâg£ôÔRë
ÎNÎdn¢J[¤P gR³Óøqù'ãÏÏÃN´à±iW/M"9Øúÿ
-¸9V,[>¸°¹¹£Ac<7iøÂÂù¥`
+^½G¤`¹Ø·)iÔ'TZ°Bp ¡ùVUFïî ·à02Þ
+
ó4ÍÚ+Í?=p!Nú¬»GÔ¹ûv?;c0J§uFî>´©°õÖ¸v8xøÐ`2ùÚ»q§þÈQqLdkúÚÙþ;PJmKf?:\øÎäÐz}`ßC¥0ïx³Àv®U q;]ä· LйÎ-ó:® ½×k-ü=ì'uþoq¶_c¤>B+&ÔÉ°ÀªJRñOÔ´ô¹íº;2ºhVé¬·Õ Uà:<ï{ûeZp½#ÙvãÿÊ ëð£p®û宥7»$&ìáZ?càÕGj(k
BÚh]À9Êô7aÊÄóPzÛZÊß6?ì)^qÔjQIÆ:{ì\ÁD'(áD:z¼ô·î2ªQ¢á®¸Çîwÿnñ
endstream
endobj
-485 0 obj <<
+489 0 obj <<
/Type /XObject
/Subtype /Form
/BBox [0 0 84 59.04]
/FormType 1
/Matrix [1 0 0 1 0 0]
-/Resources 505 0 R
+/Resources 509 0 R
/Length 34
/Filter /FlateDecode
>>
@@ -79,7 +79,7 @@
xÚ+ä²0Q0 BSK=+9Kß3×PÁ%+ hÆ
endstream
endobj
-484 0 obj <<
+488 0 obj <<
/Type /XObject
/Subtype /Image
/Width 350
@@ -191,7 +191,7 @@
klÇ,TÄñéïöw¬u?ÜèéÒÃ$V¾gedc#ýsÏqELè¯N)FËìkñöñýÄrF|¤ùWýcm1çzyÅvZÝ´X®`iPIGä½*¤là}VU7Fî`i¾ñ^u}®A«X%õÖöiCîÁ,3ù*í£I.PÜ^E[`Ês³»oÖ*»ÔâÄI·qñ¨@¢ghÔgcÅçýìdþ5*Ìåc0)9#~pqôQV`N$UB6½qÛZS~(wF¢dûhôoÒíýÖý(¢}´z7ä(ûhôoÈQE 'ÛÇ£þuêI[¶¹ö¢C3ï5HX"û!Ï®<}«4ÛyÁÄÜ8'îqÀíùQEsÔoî¥N=Íã-ý"m*iå%ie{¢ÄáGÞ8ëÛëX?¼Wq{cc XãÍãa^I8áOOJ(¬èÉËçM*qU£dqÖÄÒͪê3©cgå³][-²0ùæ<üñSiz§¨É#¶.»9;Xgv aÎ3}I'©4Q]5"¹Né¥ïoí®´é}2Jó¡d1ðëVà$§å⡳Ôtý:Ú(Öå¯×yâ;£Ë={òxêh¢¢ÊÖ#x»5(gÕÑä®ùÃKµåsÐç?tÃãSH¼©DQÉ×÷iF9ùØ»ºzE,«'1óx¾¶µ¤Ë$!o>uPOUè½°?Ö3OÞÝ´H
UP3
àsù÷¢å¨5c ll®§g Ö Ilc!Kc Øé¥áfW(Ós¾@z{ô¢êVÇö¹ÿÙ
endstream
endobj
-553 0 obj <<
+557 0 obj <<
/Length 1684
/Filter /FlateDecode
>>
@@ -209,51 +209,59 @@
m¯OÄ@éãUS×Öy½Âÿ%åL¬
½tMux´Ù¯|@h:&TéHñ´Ó°lM=ibÃ_Ë8Ëp ,ù7½v3>áß/ÒÓü§è7Å÷I¹.¢ÅZMû\\ÖÎ}
á¦|ó¶È]©vù(7÷þ.iª²C½Smvúz®tû@SyklnÚbäQgä§GCeZ>,£ýTU'ö"cüDÐx6PðÎ 3ò=áÔÕpêuïÕÞßüåÍäê_ ¥Üè
endstream
endobj
-599 0 obj <<
-/Length 1887
+603 0 obj <<
+/Length 1956
/Filter /FlateDecode
>>
stream
-xÚí[Mw8Ý÷WxÏ(BBHÝ¥¤'siOã3³èÌ3åøMþýècÀÆQZÇé&Ø°rßÕÓ}÷ÉþìjæÏ^?óÍÑ#Í|Ï'üO ÃYÍÏϽýìåâÙó3fÔ£8À³Å§¡Ï¯|äÈϤ³N8wi:ÕÜ
² t|Ïì/ $n³ªÿ½øÅìý#uþGõüôFG¹ x4õ<0wίL|yÉ/w!NõIÓ.:QðqD{0ºF7wCß·p@Ú{Øÿ;@$ìsGÚÌÀ£`s¹oSC#á¤ú!öG(æcOº<?ýýdk`Û@¾üV}õ÷Dòáb<p¿èð»`@Çç"æ³£àaIâ\Íf*bAQ_¼'¾ÓôtJ:/UÝÆå¿hõþ¹ÓÖsà¬v]äE,iuÕ§ªVçK~!·g|Ë'~V¥7e\dIóBüÛ³QçìªdnøÔM%3OÄ!&è®ÙðÐ3Þ=ÙYe<vèáônrÅC$S"ÍÔc
-f
-
- )¾)o)H3å´zdBÑQ«Kâ¦Qs?Éâ¥êä׬]ªJÜûeb'®Å£(øqpýàô@ÈWuÕ4®-L¶ãm8¤,Ľë¼ÍV9ÅÇèGâXÂOÒHºJ9,cIªÌ@ȾHPòõ :~uÁûÀ_^¤p±©d$ÄAèÌÝì
NYnÕ<LfÞÿG)
-ïÐáÆû$Meaç]ñÂnY'fBÉÁf%c$é*ÈóÛ¡¡É+$Å#1: 1Å{c:æqWðÝ Î*¡a¸ä ÆâÖM^Ow|ÈÅ^dWÎS"Y¡Eóqx«+V²L²ñ¦ËÊ
pÅý*®ãBÜ6VØ>Z5L,±øük8Äo²gáòJá¨m=.ÆâëL ²B«´u²«±eÙA-É Ð¯¼Ð"£dÍü
pZ¾©%x©±¾Îò,®5Ý6n³¦ÈâÇjíôÀZwpôA¤ÐÇÊ[?å¦Ð±: ¸îBJ¼âíèãÎI_Å6cQëºLÌÈÆ-:+¶ÉXûÑ-Ö-D^H¿«sûàBv0ØtnqÏY?cý1'Èóõ¸~Ç<¦$÷`òØ©qÏ;UI-%«[Vóõ>Ñ^À«%KÄ'GM0øi}OÜ¡Eµ
;ký²2j++TÙ«mÔÈبIeüÕ){µ¶¥s:Ë"þÚ§[¹ìK9yåV½v9¹âj9xì¥;2ÒÐEfߦR B!8ñµOò«ªæª [<{øÎÿæTýG°¥¤eä·ëvµQø~ø3{Í¡ÈéÑ 0Ô-î;¹®Èå
ñ17ì&@lÍnY' 6õ¸B]5H¤¼KG\¦]S¦qß±º®Æ<Áôi ;çyV²¸Îd¿å¦c0ÙÉ`jsÎá%ÉO
-$ÓêºØ6Eó&û,³I-7Õ}ä¤F¿e%.:¦Ébcî¨LEÔÐ!¯¢Ô·DmÓþzÛ.Mf¨%HE,º)ÊQM°jÝn¹TpPLjmL¢AtÐhKî/yýKë2Ùþì6.bB2¿R`ÝBu]k3ô6LãÞ°CkXµìdÝVr[ ×mlÑÝAú©ÁiLß³×YÍô
-¤tA\^1Ó
ª«ÂìRLÿ¶Ú'3Pp ÿF öB&RþïåFQ]~ÄÇb{/uÔ9ÀbkKÒoBt-:ãÖê<AVæIÔ9]ïjdM'L®ét
Þõ®ß¥låÖªbK<+iÕ=ÉðÑæ¤Ð~7FÏF¢fãbN±H)ÍmÍí5ctøI7ÿó4ç©«&¡Þ90hGÇüã
{2Æ¡F6>tRÕl´#6>y:Ùñα±ÓÅ&}z«Ülûà,5{ád|~ѯ7ÛA§/é#ò1-[m©qÛ-Bë(Qð}{Û¬8T]ù%|wÕ÷½v |ÔÎ;åE.ðEWtþûIα-¹<ý2ߤxµÊ3õCÉU)xÕ¾lmÿ\ìó%üWuõ1gÅx÷Õ÷²ïo`)¿k!ÖI1MQÖWBÍh;Ûf cÝÒR¦S8µùEr®êjÍÑ_g9 QU®°2ÞrûmÞ³ÛEnàOTÈ|ÆÁÇäÝ*ÊÁÞNà2µå3fn½h¹}çéâÙ+«YQ
+xÚí[ËrÛ6Ýç+´¤f* @ÈÎIíL:q5í"í!
+*I%ößO/¹±'²IS ûÀ¹çÞìzæÍ^>ñÌÑ%Í<×#üYů¯½{ùäùòÉÓfÔ¥ØdzåÇ¡®ÇGräWÙ{'/¨8å|}'a?èÔkù?Ó¿<â¨IËbþ÷ò·v³÷èù8©ë_9«§¤3#\ÐlK@ÏÈóð|ßù//Rùå¡S~Gä4+¦.ä|Þ>óÌΧ¡ãÎçY8 Jí=ìß ZÃÜÓmf¾ïR0¶´
+@ȹZKÈû®!JáNçwMìPÌç tõêü÷³ÞÄú<ùzô·Dòál<i`?ëð»}`l_Ûç2âÑs³ÄQ¦¢¥²Ø`RãÓÂïï´ûû:%½ÊeÕDÅ4Êõkþ¹ÓTsàlâfSäE,nj5êcY©ëÈä-â_æòÔ ä¶ò4®ÐF³Ë-Úħn*yR(T1A÷ÍÇñôЪwÀ£ð=ÎMñé)¡öÔñ2í)Èÿâ«=%ô¬z
+ÒrÞ5=2¦Cë¨OÍÕ¨®UìÇiÔ°D]ü6+58.Žçv¢JYþ÷ì§72Ð@¾¨Êº^HØÂA¨°÷á42÷n²&]glÒ#Ãï£o G<íÒ}PÌaI§J
+ì³%ÛLQ ÂÓg×!<Ì ¦ürCmËm%#!^
+¾]ËÜÍqPàe±HÒÉÄýÿù(¥ÁàXrx¢ñ>KYXFY[¼p¤VEñ¶¢Ù¦¡äh@³bÎI̱Í
+´ä«»¡¡É3$Å30:#1Å{c:öã¶à»TBÄpÅAÄÛ¼ì Õ'ø½Ð.§:E,Ó\æãð׬`©ôÆÛ6g(JÀih¶&÷ë¨rqÛacøhÙ0±ä½Àã_Ã!~æ<×
+G-ëq2ݤå¥m]WÀð$Ëj^ ~©è
&«{ô:Bjø¦à¥Ææ&ÍÒ¨Òî^7QÖÍD~ ?V¡h_¤wȤR'Å<+/ç:m¥ Ôâ§uÝú}5ú8*uÕÑ
+ (è'Ê6¬¾CkõìJzZ§¬^¾¹¸Kn%.árë¤d¿yÐX@]äS¥9Ĩ)bÕ¯8çnO@7Dæ÷p at ob)qCû&ÆmwbiÛÎEµ"63áûGôä
wØ"7 ßT
+ðâ`ÒcM5wº¯DûÈnÌ ÒA4Æà1-Fù]wú/JÉO¥bÀ*Ρb¯¼X±X|òiÔXÐÄZd°¸mW\Á¦¹úÒ´f]èuj 5¼JX±©\òsörÙ§Çrd/n Û5¦äHxm2&ÑYeß&q´zd·}³ìº¬8ËÊGÅ+?Ü~ï9UOl)aeþͦYoF® </øi½b(´Ç¯¹Ú
}ç²"×¹´ñÒ!>åè¤iô·b£o´õ ÞÖ'½BFþUU9VD¦?°uâ,KU©ì_ݶLvz0µ¹¯éøÍd§VÉi^öE&ä¼N?Él¥«Z:ÉÀ£GJC
ðW§]wT¥ÂjèWQêYpÛN|Ó¬Lf¨$Hy$ºSJURMÅrÓôT?8(¤E¥¶&Q?<j4Í%w¼nϪã"îv/bB2¿R`)¿âv¡ºHo´Èv O¦HÁio¢¾5¬ÍZv¶iJ¹íPÁ-åVá4²çn#ýÄÔ`4¦ïØ¿´bzR¼ *®ü±*sSÆ¿)÷É´#þ. H_û
+ö{µed£¾ò¹ØÞ¶êï¥Ø*wé #^ND´µ'ÈJÊõ¶bqZ·´ÁäWè·ôI*[㪣cg%Íú±<ÚXFÝh$*sEJ©ïjÄPl½CÚPüStÚ¢,Y¨ Ôݵg&ðá)¿r Ç`+¥ ÙjÐqY±±mÐÛxäÇÉ÷¶
+µ9I+DßDù:3ÛÅ{u½
Ò>¿èóíöÚé!bD>¦aëÛ·Ü?°å ϳW~q¨ÚòK.ùuW÷ÚáÄàVÞ)/r,ª2¤ÕßÏ2mÁééçù6UDëuª¤¯J«ö¹kùW¬äâ½Xèä¿®ÊËǻپÜx¾¾¥`7zÜ"±ÝvÒaBõh{àvÛ%cí~ Ó)uÛ×U¹áè¯ÇQÀfT+lwÜ|Ý&Bä¬ÅvL[$ø28ø´[åÅr°³Ëx¢dE9ÁôÃmC¨@íßy¾|òM¦
endstream
endobj
404 0 obj <<
/Type /ObjStm
/N 100
/First 865
-/Length 2562
+/Length 2530
/Filter /FlateDecode
>>
stream
-xÚÅZmo7þ®_Áo Wrør(
-ØNÜ3лIè]{¨%C/múïïݸ±¤\´W w%òáÃápÞ¨èq&ºl¢GSLÁ÷Æ^=Ï/ m2ä¥L$g(´ÁG¢ ø,R6Ñ ã×?Éø>°a'ïɰ̪aèôÁ$_F1FOÌ&˼±±½É ýÀ!Ì"æ,¹Ñ/9SeL
-4)ZÞ³ñΣ#È{ÇxÈX±«*cÉ>b,Æ{1)þ<ɪrŦ ä©b~`ù@akÄC(XF1¤!.Ï"¹²9õ
SS+p0a¼! %n¬4'AαìN
-xÀìES®Ë;6Dí
-!D< 1A¸ÂRÅ"CñbCÉò%9¢{Ùòð`|
#ìêædÙÕyÀ×ûÌòç±@&Ì03`KFíg®ò ¾ÎA^ ZÎ$'¡ÉËrðu¢"`ÓEÃ+IA1¶:¥* zâC6©fÀCÖÛj2$
tC8C³`pv¤,jâå!\Y 0Æx)xÄ¢B$§dqq2EVlC
-«åB«9Ç
-ÅÂvÝ*êÅÊÒú\sp£ï¿7ãçfüãüÅÜËõù×^®&óõdÉæFúgsÚ¾k~ÌÍÔ´³«ùo7íle®×³nÀÃCðâ'xñS¼E³jwAm at 6yÚ,vÕ.Ìdÿoíª¹Çv¼õëÍ?ÛÕoóÅûå¾1´C[ÒûÆlBpßÎÍ+ l¦BxÙNû~fÕ¼¶{§[¨xj2»®ÛÙe{?ÔgÅb¾07írÙ¼Ý7{Ü
-OæÑz1½5ír5¹9@Úq+9<¥Y´Ëõteæצ1ËËù¢ýnõû-¸Ð¼z0]N×W2àûO_=Ü7CØÎÌÅÌ,'í¬ùñÉùÝ6Õ¦÷ÅÅ
yº¿
-Ý´å_ÌM3[7ÓÒcÍíʬ޵f9_/ ÷ËùU»c\ÒqÉ<Á
YÍçÓ¥ù}¾6³¶½Ú10ëÀlNשHå¯ØíåªNEBÍìÊ\¾k/ßwâÛæò=¶sbQÄbþ5»ÂªWÀØ@5WúhÚëkØ-õ²U
-<ÇÛiû·
-°Y-pq¦¯Ì|½úîª}»hÛ{¡Û[ØÉ{Ò£&ËNKÎÕ",±tódÖòéãíåúËÚ·
:í¡NÍÙ»f-Ç>Ý@@h57m³Nõ+¤ è;pÎz3ó¬½nrÒºÞ£ñQÜñS|4>ÃÍVKøBFÌòl4~Ööê±ìÜc÷Ñ?Ú«Is:ÿ`^:|À-e
-¼-õõH1§ìbßýd6ñeç°ñIç¯û¶h[û¶:m½¶Ôµ¯G .L~òæÈÝÈ/n$Jè¦uq.C¡_b)Îå{,èìãØ~ÑøùúMw\Ç?MfïGãÓ¹lH·÷zü÷ñÅø/ ñZÖ _R¬0°W¶óêÄ°gÑ|Æç~'æ®ä/'«Ö>M~u½
â<[à·d8ØÒD«
-©~$S¼%lðádøxd¼.Ä5XFôês±LÛ~.O\>"mD´aC.AT`ÖI¾aS¡ÒØ°¯ ã]s<>Èf,QÝò ÐjOåø<6ÖÞ"þ÷QZÀ13ÙPq¶N_ßÛ·ö}¡@¦ï³¾ç0sÑïÚ-¼ ¦¯U_$wnóâ»ÜK_H¢y}ô%lmÖ§öì¼³g|¯={Ñ~Xݵfwl6s¸k³%Ôþ&-P¨oIÛ mÔµMÚfm¶½¤$ïé[Å#Å#Å#Å#Å#Å#Å#Å#Å/(^P¼ xAñâÅ/*^T¼¨xQñ¢âEþÜ7}íaðÝËæ0ªB²ÈÄm(½¥L;A-©/
mó-GòË,bB+ÂÛvËñYt±è ©ÂVF¸6IVCÀù;AÇcá¬ù]QÁB* åõË4>tLl¸ Y¶$UÊ6à´$Uã~.ÇÂøv. jiBE.-ÕEJ÷2ùÌQE£t2R&ïqZ
-l/vËp Ä 82¶ ¿åýöG:áøtØYÄ«&Hø"´|¨xâñù¥;:)I¡¤?T{øøt(Yñb-^
-m8_éPñ¤º¹vúìá
-mtyÿA@u@)!&kíJ~Mà¤#C®R ·
%°ò6Ö| ãô(ùEj8ãh±d²Ã|Âñu'¦d¥³ÄPs¶\Ð8 6)©'V
-´À
-\$¹Ñ&îSæÓ~.ït'@ÕÖ$ܼÍä÷sÉpñÅV/Iàåºr:@.e .pU²õXZ=>@,õèÑg@@Á]jaö¼ Hä
û`:>8m¹X
-!W pÚ1Ôp8>*6³\³ÁÎäèUüÁNX¤|a NûÃð8ê<2}3lð,à 6ð!ð(*¹v/Õé12ØX²BwÄâ[6CpI0nbÛ°VÒøýTðËðÅ°mHìåAl\Êâösà4!´N~=XÐ¥ú¤2W¦ wjæ.Û¯é ©à ©½GÔÄÑʽ4à~.xeBjO®?ÍR¨"rÖ1íç2Wî| Bn]çÉeª¼Kì?!ܦ¹ÄnÉúx\¼»S'_xlk¿^ÜÝ_(þ¬ó¦PLP$g÷c@Ú¾²ü¿|ûôg%ß¿±äµDµDµDµDÊ}4éägý»JYû³öOZRMÚ?i¿¤%Õ¤%Õ¤%Ú¤ó'?)^R¼¬xYñ²âeÅË/+^V¼¬xYñâÅ+WOoY«ó¬×¬×¬×¬×¬×¬×¬×\Oï[:ÎH
ÉÉ]-&{((û¡Ú &=ÁßãÂdÕ®ºº7¡àB£ÜºtyÁ$ÊG@hÄDj éocÕBú I¥ùQÜF,
-,¦8Ë !
ý;E\8 ¬ yoåb(ÁSæÿ+T ¸òÅT¢³ûü1hü/?x
+xÚÅZko7ý®_q¿ml)¾.EQÀvâ¬v$)ÐÝ$&ò8Q#Ï£Qþû=wD)KÊF¢áÉÃÃËËû¢¼v¤ÉëHÞà(f´¯Æayg²ZÞYçñÌdGåéÈ93ñÖó@²\rx&rã ú9K>ú¡Íx.{ù{&Nx÷Ìã&Þ{
+c2p=è 6 <¶ð) }ú¡OÊ|ÐÁÍGýÄOYæA£±HAXaÅ:£kÄ£0YVæ!c1±².¬}õÄ'0|²× ÄôÆH¬1ñÙg
+"¹b½¹²&¶:Xödá¸Ê"0\lð
+F
+èÉF§±l"æ,MÆ9o ãÑÀ=I&Mè2ãË°Ó@eX½±`àü `ìËúC?Éú10`iÈÄÐ"¶2ÀÇ cIì°JÈ9ià¿¥¬d¤¥=ÖCg¦`e´»/_°í" v z`ó¨"6
ES²,Û5Y&KÃQt¢aXvmd,)¡s YbÊÒH´sQÃd"¾@"ÉA,JädvaûdC5ôKdýbhb¶,
+¨Î]ßÉ?ÐôM´/[>¢ËÕ[ù·õó¶QÆ*üó~üqò`ݦÓú}õû¼íªÍººntµjþs·àÜm¸º¹lÿ¸®þëðü-<¯«úzÔdCÈѳª«®ë¾îhÞàÿ7]ÝW÷óØWf ý»îÿh»Ë}cìvÌ'î³e
+Á=~×Òk«ª
^Öu?ê«·zïô~åïBͫŪnfõýP
+0º®íèº^.«wûf÷[¡EVݼyGõ²_ m¿Zt²¤®^®=µWTÑrÖvõwý7à@zý`ÞÌ«K ð믯îÁmgptÑÐr^7Õ§çvSuý¦÷ÅÅ=ëÚwP¡ëº[þ®«fU-vHË4LOêú÷5-ÛU¹ÏÚËzǸPÆzAõm»XÒíº¾Ü10NWó
HåØíe_-"¡ª¹¤ÙûzöaèÜT³ØΩ &ú¥¹Äª{`l ªËÒ¤úê
+vK=m-zü±º¾YÔßo@Mßá,ãL_R»ê¿»¬ßuu}/tus{2ÿ¨NÖ¨'ôÓ|9hÉy±K,v`-_¬g«/kßêt
+uJgï«Z}ºPßR]u9°~}ÎÙç×Wu''mè=¾Å>È'Ó³&¨épc!ÐóÉôy½Våà[O?×óê´ýH¯4>Àc)x ÁJùÍHSFÜ4t?i¯o/³_?myºòôåÉåç Ó_¾ý
+r'YãŵDò®)Áìúòè\þ}»^åÀe2}±z;×éOóæÃdzÚÊ«Ño¦ÿ^LÏðodýð¿xöJIØà-Ã!â3ß-úÐ]ÉÏæ}^4óßDEõZÏB¡£JpÒ[2ìTáo"ÃY9D[2É(^_AGÆèbBb°)Upnû¹<>ÑñlWÞÛ-«Dõw±A謴ô6*
+û
+:FWÇãã4\)¢â
+$KÒ7ðymÌk0ýõ?ÿ%Y-É[9R³Z,ÞÜÛ7¯ûB4ÌÏg}Ïa*çCî²6ZxÄÄÞ¬ýæqºæͤ'¡¼È¸µY·íÙù`Ïò½öìeý±¿kÍîØlæx×fKþM6[Ò'¡$ÙÓúÊ3g*Ï5uIÖOS¶<]y<[ðlÁ³Ï<[ð\ÁsÏ<Wð\ÁsÏ<Wð\ÁsÏ<_ð|ÁóÏ<_ð|ÁóÏ<?÷M_{Ìð²9¢ªHBÒÊ¥µ¥Ä=@-mv_<Ûæ[äYø ¤`²QTÝÒüEC,:k©J×&Ù°s8~§ ìñX-&+G~g A&±T@Ë(íói|
++í1%²á°×Rð6*g%óÉÊ~?cÊa|;§ µ$KaEJ÷2ùÌQESèD¤L8ÿ.â´$Ø^ìIî@>#'@.pdÖ«7Àú=í¯tÜñé°VWÉIø!¬-*|>NbéN^,)´èPíáãÓ±AHT2RXÃù
+'pÐWRhýa©ë§×qÿAAu@)h)`cRÊ
+ÛdãF8éÈ aay;&ê¾
+ié|Ò½äy(¶ãhI8+DòqÇ×ü¥H+Ë £âtîø¸°W1!û§$7NÔÙý\x.Pà$É
ó*ð:e1ìç2ÂùöNCw9UÂͨhÍ~.q.&©l$é¼ÜùSÈ%À!K¶îëaK>zôéPðF=C|²îþ Øv~¨`X'÷T°t.ïÝñYؤ"¶Æ0ì=?ØÉbK Âp¹ËtÃþ0ÜàÏL at bßë8ÀâÍ|,x$Ä
+ÁÜ4kÉòtFÈ,2ØXÜ!d+9dÜoÙÁ%À¸mÃZETHàöSÁ/Ãö!±{±q!ØÏeÓ$Rih2#VÁ!tÉæ ©àÌF9òíçpTFðÊ©½ü®£bÑg¥"¸Ë^Ù"µ·z}¥eVí~.#xåÁ"ä6Q¾ÐêC÷sÉ#pý·òs ¹ønA\¾S'lk¿Fܽ¿PüYçM¡ØB=ÝS(öi¶þÊrðÿQò
+ëôíoÐæK¾\J¤\J¤\J¤\J¤¼.²&¦¼Ri(ýCéJI5lúoúj(%ÕPJ´±ÌËü±àÅ^,x±àÅ^,x©à¥
+^*x©à¥
+^*xåKuË5&kL.×\®1¹\cr¹Æärɹà{Îc#Rb«åÎËÀ¦zÊfgÈ6iðû8®0]y¨%G$¤:ïM,x) ¶òk2Ðò%Êxs@Ä£Dli°£D
+I
ùQäF.,,§0¡uûwjKåÊSZ
endstream
endobj
-644 0 obj <<
+649 0 obj <<
/Length 1590
/Filter /FlateDecode
>>
@@ -269,7 +277,7 @@
°± Àò\*<¸ÕZ·ýÄÉùÑKC«3
endstream
endobj
-649 0 obj <<
+654 0 obj <<
/Length 211
/Filter /FlateDecode
>>
@@ -278,7 +286,7 @@
¶(Á¨M:¦ú}zyã("1ðãf1Oúl
Í5KDv ½úøÛÝ?,ÛêkfQÜ
endstream
endobj
-680 0 obj <<
+685 0 obj <<
/Length 3648
/Filter /FlateDecode
>>
@@ -308,43 +316,39 @@
ÌcD£çu'o¡<I¿ªS±ÂWuèºG×VFéýK3¬3Ë]þ/¢ë¶¶ëý0~ó#,l*\Ó>íp at oÛz Øüº©Ý]×Y¨Ã½£ÚE¹Áé{´D½Ü¯Án0q@î^ ÎAÀfÎÑ%ϸ°aÄêkpn@V4ÉÓû$Õ·[v å¬0l¹!,9?§ô(ß$E{Þa¥ãv¹«8âXêöósem+×Í·\%)&N<^<õõ<âÍè!ÏàÁº7³8å\´N¾qóúVoÜ<X¹ÈRUjâ$:9Ö¦ÿ3k·ÿ
endstream
endobj
-603 0 obj <<
+607 0 obj <<
/Type /ObjStm
/N 100
/First 919
-/Length 2729
+/Length 2710
/Filter /FlateDecode
>>
stream
-xÚÅ[]ݸ
-}¿¿Bí®HJä£éh`m<äcºm0d&@úï{¯&Ù4±ÑX
-0uÇ6}LRâ!){ÒB)-u{ÐÚBñ²ð(˹â¼óh¡9ô¦8 ¢ýP¼ÉÿÈ+=7ª)HS<J¥jPI¸¦ZPåÅ5µÛk Z(¹zP¯éPj
-Úwµ ¨j«¥`j¸1ïpVs +-Á;¶¬gòSÓCi5dU l-d+rît( ¹V4ä.Ó-T8 &é=xÂjìbÍq
-îÇ(´ñã: óõJpKNeãù¯ë©¯°··k$Á].ªn
-Uy±X¨¡£J;¸P+%Ú2OÕP;ÞÛ!´ñTMñ^Ãàtp(¢Ñ²Z%:
Õ[Í¡u¼®k ã°P×ÊÿÔгpÐB/
º÷ååà,æÇóz8pK¾FÊ7³A»T·$Ï¡I^Æ
£t^¿J]ù?8NCJNtÃðiàx]ÏâÉËup<¡M=C²T¼ÞÛ³xtÚ¥Rr:.ÖÁ+fkÒ±L´âEa.sÄ©h0øTÌwtØÃÏè§ÿ«Ê³x¼ß÷îÏþõî,ï_\\^O?¼º^~ÿùüâãË÷oÎÞ?O»éÅñÇãËòãpüéìõuxÞZLB÷]EcZÌÜ¢yÁe÷ý{áø4ÿxùì2
ß]}xu
{Ï//böûðÃü};8v1ÈÄj
®-³¬CÉûCÁäoVP
-g#Ô´A-ef+¦V{_Çâ°x%J[iYaª×±Ô X
-°Ô^²,zÚ ¶#
8,æoeÓ&ÂïâÖP¾@e<f«ÕÈ@AU}#`+àB`MT"²iĶn«>KêaQ)
-)
¦X½C´?Ükì IÚ{,ÔKjqwfÐØÁ cQÊÍcë·¬yÈ%&»Ç ¶3ìÔW=Å'Ì"ÄEÄDÆFÌ"Ìêì@ØÊY43ðäAb6ho.m3aRgp¯³\£Reëäë¦\A7TG¼¬5®C@c2Ö8C<â<b¥ Vnð༻Ç.Í <þREM}Ëä l
-xóbfe$\YòF<º?PÌ"¤Ë/ÂSíQûVýLðqÈD¼ +¶Áw&ðN< 6B6¼7Ú:½ò]cÂ0hó=#
-ÅlÛ¾qÁÀ);9éÇîà_¢àà ÎjHtþFFWt«vlw<ÄQ±ÔÀfÚ Sk³zòî¬F+à°EakCbt7©«(¨CÃ|Ö.,¢!¿ì«¡²îê½7X
-°(KcØêk^¢ûÛ«\V<@ÁðsFÁVw§MPø]Qk
-àÍëFÚã$|¥'8
-ÈCK²e§nHzÀÀÉìÿ_Dzÿ¢"
-¦Ø§Ø¤;ÔòvÇâßÛ¨PÃ1oÐÍbLN²*CfÙ¬&õ
->34H.BmYöY¹±
-zù5<
-ÏÂOáøó_ÿ¸^ÀkáCj¸øðöík_^\/¢gAþ,§»3¶1f1écüÄg¼¿|ýô ÃñÉ£Çáøììãuxñ¥¼üåìp|Ùg×WÁAVq;ßöêòÃû×gWKyù×_ÎÞ¿|pù1,ú)
- at rÖÀU¶ôäå{ !aÑðÎ?!±äÏ£®X
-þ§ãÍÿë8¶q짣¤qqÔq´qòdÈ!O<òdÈÓ!O<òtÈÓ!O<òtÈÓ!O<òlȳ!Ï<òlȳ!Ï<òlÈË'y/vA°èéP-TÖÁÜ&Ô¤¼!ñÈm)Ja*,'}uÚôK3 2v΢°EÉz¾OàÎÔV62rŽÚ3ªtEÍØÁd7Ï
t½d(iyodU$;סhë%C` ø
-£ÀÀ^¶R0ѬAÑe©)[ÈÖsfÖ)L/$ûÒϹm³fXd°°©ìÓ}uKupf´%iè©«+b^×¼Ð
-e$U ¨,«qdö²YC¶ûybíÓ¶¢Ü$Äèîh$3Ú5Ȳ¦ÓÌ*$zÝʧAFÄîgCæ¾ ÉÐÐæO43ªð]bgÃóYBW¾ÐþNuG>gÎàn¹'(l+ýsµ\Á]@©Ñ»)·Øµl4!AÊ wÜÃDb¶zÝàÍè+rkæJJ²Q93¦ët@Åùen `¾Ï©êtêtGÒfMpg2'¤"ê,*~³ìÛ·Ú¿¢iÍ£5Ö©DÓÎöÞ$fô*ªs«ÐRn`ï¤-ïê¬R1ç@aû}8³Ê,:£bAnÈÈrÌ٠آFà®LźSt Ù¢ +ì襸ïRëû»npLÜâäX¾"0®G<¥ÜÛ±ÚqS*Íðm(Iá¸ÚXç=¥¹IÙÉ8òÍìOé¯
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/rsiena -r 243
More information about the Rsiena-commits
mailing list