[Rsiena-commits] r150 - in pkg: RSiena RSiena/R RSiena/man RSiena/src RSiena/src/model/ml RSienaTest RSienaTest/R RSienaTest/doc RSienaTest/inst/doc RSienaTest/man RSienaTest/src RSienaTest/src/model/ml

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri May 27 17:20:18 CEST 2011


Author: ripleyrm
Date: 2011-05-27 17:20:17 +0200 (Fri, 27 May 2011)
New Revision: 150

Modified:
   pkg/RSiena/DESCRIPTION
   pkg/RSiena/R/RSienaRDocumentation.r
   pkg/RSiena/R/Sienatest.r
   pkg/RSiena/R/bayes.r
   pkg/RSiena/R/effects.r
   pkg/RSiena/R/initializeFRAN.r
   pkg/RSiena/R/maxlike.r
   pkg/RSiena/R/maxlikecalc.r
   pkg/RSiena/R/observationErrors.r
   pkg/RSiena/R/phase1.r
   pkg/RSiena/R/phase2.r
   pkg/RSiena/R/phase3.r
   pkg/RSiena/R/print01Report.r
   pkg/RSiena/R/printDataReport.r
   pkg/RSiena/R/printInitialDescription.r
   pkg/RSiena/R/robmon.r
   pkg/RSiena/R/siena01.r
   pkg/RSiena/R/siena07.r
   pkg/RSiena/R/siena08.r
   pkg/RSiena/R/sienaDataCreate.r
   pkg/RSiena/R/sienaDataCreateFromSession.r
   pkg/RSiena/R/simstatsc.r
   pkg/RSiena/changeLog
   pkg/RSiena/cleanup
   pkg/RSiena/cleanup.win
   pkg/RSiena/man/RSiena-package.Rd
   pkg/RSiena/src/Makevars
   pkg/RSiena/src/Makevars.win
   pkg/RSiena/src/model/ml/Chain.cpp
   pkg/RSiena/src/siena07models.cpp
   pkg/RSiena/src/siena07utilities.cpp
   pkg/RSienaTest/DESCRIPTION
   pkg/RSienaTest/R/RSienaRDocumentation.r
   pkg/RSienaTest/R/Sienatest.r
   pkg/RSienaTest/R/bayes.r
   pkg/RSienaTest/R/initializeFRAN.r
   pkg/RSienaTest/R/maxlike.r
   pkg/RSienaTest/R/maxlikecalc.r
   pkg/RSienaTest/R/observationErrors.r
   pkg/RSienaTest/R/phase1.r
   pkg/RSienaTest/R/phase2.r
   pkg/RSienaTest/R/phase3.r
   pkg/RSienaTest/R/print01Report.r
   pkg/RSienaTest/R/printDataReport.r
   pkg/RSienaTest/R/printInitialDescription.r
   pkg/RSienaTest/R/robmon.r
   pkg/RSienaTest/R/siena01.r
   pkg/RSienaTest/R/siena07.r
   pkg/RSienaTest/R/siena08.r
   pkg/RSienaTest/R/sienaDataCreate.r
   pkg/RSienaTest/R/sienaDataCreateFromSession.r
   pkg/RSienaTest/R/sienaGOF.r
   pkg/RSienaTest/R/simstatsc.r
   pkg/RSienaTest/changeLog
   pkg/RSienaTest/cleanup
   pkg/RSienaTest/cleanup.win
   pkg/RSienaTest/doc/RSiena.bib
   pkg/RSienaTest/doc/s_man400.tex
   pkg/RSienaTest/inst/doc/s_man400.pdf
   pkg/RSienaTest/man/RSiena-package.Rd
   pkg/RSienaTest/src/Makevars
   pkg/RSienaTest/src/Makevars.win
   pkg/RSienaTest/src/model/ml/Chain.cpp
   pkg/RSienaTest/src/siena07models.cpp
   pkg/RSienaTest/src/siena07utilities.cpp
Log:
Removing check warnings, fixing manual and bibtex errors

Modified: pkg/RSiena/DESCRIPTION
===================================================================
--- pkg/RSiena/DESCRIPTION	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/DESCRIPTION	2011-05-27 15:20:17 UTC (rev 150)
@@ -1,8 +1,8 @@
 Package: RSiena
 Type: Package
 Title: Siena - Simulation Investigation for Empirical Network Analysis
-Version: 1.0.12.148
-Date: 2011-05-25
+Version: 1.0.12.150
+Date: 2011-05-27
 Author: Various
 Depends: R (>= 2.10.0), xtable
 Imports: Matrix

Modified: pkg/RSiena/R/RSienaRDocumentation.r
===================================================================
--- pkg/RSiena/R/RSienaRDocumentation.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/RSienaRDocumentation.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -58,7 +58,7 @@
     mystr <- paste("##", "@", sep="")
     comms1 <- strsplit(comms, mystr)
     ## join up rest
-    comms2 <- do.call(rbind, comms1)
+    ## comms2 <- do.call(rbind, comms1)
     ## turn into dataframe
     comms3 <- sapply(comms1, function(x)
                  {
@@ -107,7 +107,6 @@
     tt <- lapply(1:length(ttmp), function(x, y, z)
              {
                  yy <- y[x]
-                 zz <- z[[x]]
                  yy <- getFromNamespace(yy, pkgname)
                  targs <- formals(yy)
                  n <- length(targs)
@@ -126,7 +125,7 @@
                   yy <- y[[x]]
                   n <- length(y[[x]])
                   bb <- names(yy)
-                  t1<- lapply(1:length(yy), function(x,  b, a)
+                  t1<- lapply(1:n, function(x,  b, a)
                           {
                               y <- a[[x]]
                               bb <- b[[x]]
@@ -136,7 +135,7 @@
                               else
                                   c( bb, " ")
                           },  a=yy, b=bb)
-                  t2 <- do.call(rbind,t1)
+                  do.call(rbind,t1)
               }, y=tt
                   )
 
@@ -200,7 +199,7 @@
     names(tttt7) <- c("Called from", "Function")
     tttt7 <- tttt7[order(tttt7[,2],tttt7[,1]), ]
 
-    tmp7bit <- tmp7[tmp7$Function %in% tttt7$Function, ]
+   ## tmp7bit <- tmp7[tmp7$Function %in% tttt7$Function, ]
 
     tmp7new <- merge(tmp7, tttt7, by=c("Function", "Called from"), all=TRUE)
 

Modified: pkg/RSiena/R/Sienatest.r
===================================================================
--- pkg/RSiena/R/Sienatest.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/Sienatest.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -16,7 +16,7 @@
     ## can be obtained via svd(data) (which is stored in z$sf). Square of ratio
     ## of smallest to largest singular value.
     Report('Instability Analysis\n')
-    pp<- length(z$diver)
+   # pp<- length(z$diver)
     constant<- z$diver
     test<- z$test
     covtheta<- z$covtheta

Modified: pkg/RSiena/R/bayes.r
===================================================================
--- pkg/RSiena/R/bayes.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/bayes.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -100,7 +100,7 @@
             {
                 u <- 1 / (2 - (actual / desired))
             }
-            if (tol <- abs(actual - desired) <= tolerance)
+            if (abs(actual - desired) <= tolerance)
             {
                 number <<- number + 1
                 if (number == 2) success <<- TRUE
@@ -172,7 +172,7 @@
 
     npar <- length(z$theta)
     basicRate <- z$effects$basicRate
-    iter <- 0
+    ##iter <- 0
     z$numm <- 20
     z$scaleFactor <- 1
     z <- createStores()

Modified: pkg/RSiena/R/effects.r
===================================================================
--- pkg/RSiena/R/effects.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/effects.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -264,26 +264,20 @@
                     {
                         objEffects <-
                             rbind(objEffects,
-                                  createEffects("covarNetNetObjective",
-                                                otherName,
-                                                names(xx$cCovars)[k],
-                                                name=varname,
-                                         groupName=groupName, group=group,
-                                         netType=netType))
+                                  covarNetNetEff(otherName, names(xx$cCovars)[k],
+                                                 attr(xx$cCovars[[k]], 'poszvar'),
+                                                 name=varname))
                     }
                 }
-                 for (k in seq(along=xx$vCovars))
+                for (k in seq(along=xx$vCovars))
                 {
                     if (attr(xx$vCovars[[k]], 'nodeSet') == nodeSet)
                     {
                         objEffects <-
                             rbind(objEffects,
-                                  createEffects("covarNetNetObjective",
-                                                otherName,
-                                                names(xx$vCovars)[k],
-                                                name=varname,
-                                         groupName=groupName, group=group,
-                                         netType=netType))
+                                  covarNetNetEff(otherName, names(xx$vCovars)[k],
+                                                 attr(xx$vCovars[[k]], 'poszvar'),
+                                                 name=varname))
                     }
                 }
                   for (k in seq(along=xx$depvars))
@@ -293,12 +287,9 @@
                     {
                         objEffects <-
                             rbind(objEffects,
-                                  createEffects("covarNetNetObjective",
-                                                otherName,
-                                                names(xx$depvars)[k],
-                                                name=varname,
-                                         groupName=groupName, group=group,
-                                         netType=netType))
+                                  covarNetNetEff(otherName, names(xx$depvars)[k],
+                                                 poszvar=TRUE,
+                                                 name=varname))
                     }
                 }
 
@@ -862,13 +853,13 @@
     }
     ##@covarNetNetEff internal getEffects
     covarNetNetEff<- function(othernetname,
-                              covarname, poszvar, moreThan2, name)
+                              covarname, poszvar, name)
     {
         objEffects <- createEffects("covarNetNetObjective", othernetname,
                                    covarname, name=name,
                                    groupName=groupName, group=group,
                                    netType=netType)
-        if (!(poszvar && (!moreThan2)))
+        if (!poszvar)
         {
             objEffects <- objEffects[objEffects$shortName != "covNetNet", ]
         }

Modified: pkg/RSiena/R/initializeFRAN.r
===================================================================
--- pkg/RSiena/R/initializeFRAN.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/initializeFRAN.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -119,7 +119,6 @@
         interactionNos <- interactionNos[interactionNos > 0]
         interactions <- effects$effectNumber %in%
                                           interactionNos
-        interactionMainEffects <- effects[interactions, ]
         effects$requested <- effects$include
         requestedEffects <- effects[effects$include, ]
 
@@ -168,7 +167,7 @@
             }
         }
         types <- sapply(data[[1]]$depvars, function(x) attr(x, 'type'))
-        nets <- sum(types != "behavior")
+        ##nets <- sum(types != "behavior")
         ## now check if conditional estimation is OK and copy to z if so
         z$cconditional <- FALSE
         if (x$cconditional)
@@ -1354,7 +1353,6 @@
 {
     beh <- depvar[, 1, ]
     behmiss <- is.na(beh)
-    origbeh <- beh
     allna <- apply(beh, 1, function(x)all(is.na(x)))
     modes <- attr(depvar, "modes")
     ## carry forward missings ### nb otherwise use the mode
@@ -1463,7 +1461,6 @@
 unpackVDyad<- function(dyvCovar, observations)
 {
     edgeLists <- vector('list', observations)
-    varmats <- vector('list', observations)
     sparse <- attr(dyvCovar, 'sparse')
     means <- attr(dyvCovar, "meanp")
     nodeSets <- attr(dyvCovar, "nodeSet")
@@ -1565,7 +1562,6 @@
     atts <- attributes(compositionChange)
     events <- atts$events
     activeStart <- atts$activeStart
-    nActors <- nrow(activeStart)
     observations <- ncol(activeStart)
     ## check that there is someone there always
     for (i in 1:(observations - 1))

Modified: pkg/RSiena/R/maxlike.r
===================================================================
--- pkg/RSiena/R/maxlike.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/maxlike.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -1,33 +1,40 @@
-maxlikefn<- function(z,x,INIT=FALSE,TERM=FALSE, data, effects=NULL,nstart=1000,
-                     pinsdel=0.6,pperm=0.3,prelins=0.1,multfactor=2.0,
-                     promul=0.1,promul0=0.5,pdiaginsdel=0.1,
+maxlikefn<- function(z, x, INIT=FALSE, TERM=FALSE, data, effects=NULL,
+                     nstart=1000,
+                     pinsdel=0.6, pperm=0.3, prelins=0.1, multfactor=2.0,
+                     promul=0.1, promul0=0.5, pdiaginsdel=0.1,
                      fromFiniteDiff=FALSE, noSamples=1, sampInterval=50, int=1)
 {
-    mlInit<- function(z,x,data,effects)
+    mlInit <- function(z, x, data, effects)
     {
         f <- NULL
-        if (!inherits(data, 'siena'))
-            stop('not valid siena data object')
+        if (!inherits(data, "siena"))
+        {
+            stop("not valid siena data object")
+        }
         if (is.null(effects))
+        {
             effects <- getEffects(data)
+        }
         if (!is.data.frame(effects))
+        {
             stop('effects is not a data.frame')
-        effects <- effects[effects$include,]
+        }
+        effects <- effects[effects$include, ]
         z$theta <- effects$initialValue
         z$fixed <- effects$fix
         z$test <- effects$test
         z$pp <- length(z$test)
-        z$posj <- rep(FALSE,z$pp)
+        z$posj <- rep(FALSE, z$pp)
         z$targets <- rep(0, z$pp)
         ##  effectsNames<- getEffectNames(effects)
-        z$posj[grep('basic', effects$effectName)] <- TRUE
-        z$posj[grep('constant', effects$effectName)] <- TRUE
+        z$posj[grep("basic", effects$effectName)] <- TRUE
+        z$posj[grep("constant", effects$effectName)] <- TRUE
         z$BasicRateFunction <- z$posj
         observations <- data$observations
-        mats <- vector('list', observations)
-        f$mynets <- vector('list', observations)
-        types <- sapply(data$depvars, function(x)attr(x,'type'))
-        netsubs <- which(types=='oneMode')
+        mats <- vector("list", observations)
+        f$mynets <- vector("list", observations)
+        types <- sapply(data$depvars, function(x) attr(x, "type"))
+        netsubs <- which(types=="oneMode")
         netsub <- min(netsubs) ### only one for now
         actsubs <- which(types=='behavior')
         for (i in 1:observations)
@@ -35,10 +42,14 @@
             mats[[i]] <- data$depvars[[netsub]][, , i]
             f$mynets[[i]] <- mats[[i]]
             if (i==1)
-                f$mynets[[i]][is.na(mats[[i]])] <-0
+            {
+                f$mynets[[i]][is.na(mats[[i]])] <- 0
+            }
             else ##carry missing forward!
+            {
                 f$mynets[[i]][is.na(mats[[i]])] <-
                     f$mynets[[i - 1]][is.na(mats[[i]])]
+            }
             f$mynets[[i]][mats[[i]]==10] <- 0
             f$mynets[[i]][mats[[i]]==11] <- 1
         }
@@ -56,28 +67,28 @@
             f$mats[[i]][mats[[i]]==11] <- 1
             f$mats[[i]][mats[[i]]==10] <- 0
         }
-        if (length(actsubs)>0)
+        if (length(actsubs) > 0)
         {
             acts <- matrix(data$depvars[[actsubs[1]]],
                           ncol=observations)
             f$acts <- acts
             f$myacts <- acts
             f$myacts[is.na(acts)] <- 0
-            f$meanact <- round(mean(acts,na.rm=TRUE))
+            f$meanact <- round(mean(acts, na.rm=TRUE))
         }
         f$observations <- observations
         ## browser()
 
         if (any(z$targets!=0))
         {
-            Report(c('Targets should be zero for maximum likelihood:',
-                     'they have been zeroed\n'))
+            Report(c("Targets should be zero for maximum likelihood:',
+                     'they have been zeroed\n"))
             z$targets <- rep(0, z$pp)
         }
         mat1 <- data$depvars[[netsub]][, , 1]
         mat2 <- data$depvars[[netsub]][, , 2]
-       # f$mat1<- mat1
-       # f$mat2<- mat2
+        ## f$mat1<- mat1
+        ## f$mat2<- mat2
         startmat <- mat1
         startmat[is.na(startmat)] <- 0
         endmat <- mat2
@@ -146,7 +157,7 @@
     {
         f <- FRANstore()
         niter <- f$niter
-        nactors <- nrow(f$startmat)
+      ##  nactors <- nrow(f$startmat)
         promul <- promul0
       #  int <- x$int
         if (z$Phase==2)
@@ -262,9 +273,9 @@
             tmpnet[ii,jj] <- 1- tmpnet[ii,jj]
         }
         diag(tmpnet)<- 0
-        ps<- calcprobs(i,tmpnet,betapar,nactors)
-        pr<- 1/sum(ps)
-        ndiag<-nrow(chain[chain[,1]==chain[,2],,drop=FALSE])
+        ps <- calcprobs(i,tmpnet,betapar,nactors)
+        pr <- 1/sum(ps)
+        ndiag <- nrow(chain[chain[, 1] == chain[, 2], , drop=FALSE])
         ##   ans <- kappasigmamu(nactors,nrow(chain),lambda,add1=TRUE)
         ##  mu<- ans$mu + 1/lambda/nactors
         ##  sigma2 <- ans$sigma2 + 1/lambda/lambda/nactors/nactors
@@ -328,51 +339,65 @@
             list(ccps=ccps, nc=nc)
         }
         ##fix up numm
-        numm<- f$numm
+        numm <- f$numm
         if (numm > nrow(chain))
+        {
             numm <- nrow(chain)
+        }
         if (numm > 40)
+        {
             numm <- 40
+        }
         if (numm < 2)
+        {
             numm <- 2
+        }
         num <- trunc(numm)
         if (!f$madechain)
+        {
             num <- 0
+        }
         ##  else
         ##      cat('num=', num, 'numm=', numm, '\n')
         if (insdel)
         {
-            mults<-as.matrix(unique(chain[duplicated(chain[,1:2])&
-                                          chain[,1]!=chain[,2],,drop=FALSE]))
-            nmul<- nrow(mults)
+            mults <- as.matrix(unique(chain[duplicated(chain[, 1:2]) &
+                                          chain[, 1]!=chain[, 2], , drop=FALSE]))
+            nmul <- nrow(mults)
             if (is.null(nmul))
                 nmul <- 0
-            if (nmul>0 && runif(1)<promul)
+            if (nmul > 0 && runif(1) < promul)
             {
                 ##choose one of unique duplicates
-                mypair <- mults[sample(1:nmul,1),]
+                mypair <- mults[sample(1:nmul, 1), ]
             }
             else
             {
-                mypair <- sample(1:nactors,2)
+                mypair <- sample(1:nactors, 2)
             }
             from <- mypair[1]
             to <- mypair[2]
-            similar<- chain[chain[,1]==from&chain[,2]==to,,drop=FALSE]
-            nk<- nrow(similar)
+            similar <- chain[chain[, 1] == from & chain[, 2]==to, , drop=FALSE]
+            nk <- nrow(similar)
             ##nk is number of this connection
             tmp <- findCCPs(similar)
             nc <- tmp$nc
             ccps <- tmp$ccps
             ## nc<- nrow(similar[similar[,3]>0,,drop=FALSE])/2
             if (nc < 1)
-                ins<- TRUE
+            {
+                ins <- TRUE
+            }
             else
             {
                 if (runif(1) < prelins)
+                {
                     ins <- TRUE
+                }
                 else
+                {
                     ins <- FALSE
+                }
             }
             del <- !ins
             if (ins)
@@ -389,39 +414,43 @@
                 else
                 {
                     ##   if (nc>0)
-####   {
-                    ##       ccps<- chain[chain[,1]==from&chain[,2]==to&
-                    ##                    chain[,3]>0,]
-                    ##       ccpsubs<- unique(ccps[,3])
-                    ##       subslist<- 1:(max(ccpsubs)+1)
-                    ##       newsub<- min(subslist[!subslist %in% ccpsubs])
+                    ##   {
+                    ##       ccps <- chain[chain[, 1]==from & chain[, 2]==to &
+                    ##                    chain[, 3] > 0, ]
+                    ##       ccpsubs <- unique(ccps[, 3])
+                    ##       subslist <- 1:(max(ccpsubs) + 1)
+                    ##       newsub <- min(subslist[!subslist %in% ccpsubs])
                     ##   }
                     ##   else
-                    ##       newsub<- 1
-                    samplist<- 1:nrow(chain)
-                    samplist<- samplist[!(from==chain[,1]&to==chain[,2])]
-                    samplist<- c(samplist,nrow(chain)+1)
-                    numav1<- length(samplist)
+                    ##   {
+                    ##       newsub <- 1
+                    ##   }
+                    samplist <- 1:nrow(chain)
+                    samplist <- samplist[!(from==chain[, 1] & to==chain[, 2])]
+                    samplist <- c(samplist, nrow(chain) + 1)
+                    numav1 <- length(samplist)
 
-                    k1<- sample(samplist,1)
+                    k1 <- sample(samplist, 1)
                     ## find last previous and next of this kind
-                    thiskind<-(1:nrow(chain))[from==chain[,1]&to==chain[,2]]
-                    k<- max(c(0,thiskind[thiskind<k1]))+1
-                    kk<- min(c(thiskind[thiskind>k1],nrow(chain)+1))
+                    thiskind <- (1:nrow(chain))[from==chain[, 1] & to==chain[, 2]]
+                    k <- max(c(0, thiskind[thiskind<k1])) + 1
+                    kk <- min(c(thiskind[thiskind>k1], nrow(chain) + 1))
                     if (k>nrow(chain))   ##not possible to proceed
-                        return(list(chain=chain,accept=FALSE))
-                    numav2<- kk-k
+                    {
+                        return(list(chain=chain, accept=FALSE))
+                    }
+                    numav2 <- kk - k
 
-                    k2<- sample(1:numav2,1)
+                    k2 <- sample(1:numav2, 1)
                     if (k2==k1)
                     {
                         k2 <- kk
                     }
-                    if (k2<k1)
+                    if (k2 < k1)
                     {
-                        kk<- k2
-                        k2<- k1
-                        k1<- kk
+                        kk <- k2
+                        k2 <- k1
+                        k1 <- kk
                     }
                 }
             }
@@ -649,34 +678,52 @@
         ##cat('probrat ',probrat1,' ')
         ##   probrat <- prdelphi * pp
         ## cat(probrat,' ',probrat-probrat1,'\n')
-        if (insdel&ins)
-            nn<- 3
-        else if (insdel&del)
-            nn<- 4
+        ## if (insdel & ins)
+        ## {
+        ##    nn <- 3
+        ##  }
+        ##else if (insdel & del)
+        ##{
+        ##    nn <- 4
+        ##}
+        ##else
+        ##{
+        ##    nn <- 5
+        ##}
+        ##  cat(probrat, '\n')
+        accept <- FALSE
+        if (probrat > 1)
+        {
+            accept <- TRUE
+        }
         else
-            nn<- 5
-      ##  cat(probrat, '\n')
-        accept<- FALSE
-        if (probrat>1)
         {
-            accept<- TRUE
+            if (runif(1) < probrat)
+            {
+                accept <- TRUE
+            }
         }
-        else
-            if (runif(1)< probrat)
-                accept<- TRUE
-        if (sum(tempchain[,3]==1)%%2!=0)
+        if (sum(tempchain[, 3]==1) %% 2!=0)
+        {
             browser()
+        }
         if (accept)
-            chain<- tempchain
+        {
+            chain <- tempchain
+        }
         ## cat(num,f$numm,accept , insdel,truncated,accept,'\n')
         ##   if (!insdel)
         ##      browser()
         if (accept && !insdel && !truncated)
-            numm<- numm+0.5
+        {
+            numm <- numm + 0.5
+        }
         if (!accept && !insdel && !truncated)
-            numm <- numm-0.5
+        {
+            numm <- numm - 0.5
+        }
         #browser()
-        list(chain=chain,accept=accept,numm=numm)
+        list(chain=chain, accept=accept, numm=numm)
     }##end of procedure
     #########################################################################
     ##start of mhstep

Modified: pkg/RSiena/R/maxlikecalc.r
===================================================================
--- pkg/RSiena/R/maxlikecalc.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/maxlikecalc.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -127,21 +127,25 @@
         grad <- derivs(pars, Z, varmat)
     grad
 }
-kappa1<- function(n,nc,lambda)
+kappa1 <- function(n, nc, lambda)
 {
-    nc<- nc+1
-    mu<- nc/n/lambda
-    sigma2<- nc/n/n/lambda/lambda
-    logp<- -(1-mu)^2/2/sigma2 - log(sigma2)/2 -log(2*pi)/2 -log(n*lambda)
-    pp<-dpois(nc,n*lambda,log=TRUE)
- #   cat(logp,pp,'\n')
-    -logp+nc*log(n)
+    nc <- nc + 1
+    mu <- nc/ n / lambda
+    sigma2 <- nc/ n / n / lambda / lambda
+    logp <- -(1 - mu)^2 / 2 / sigma2 - log(sigma2) / 2 - log(2 * pi) / 2 -
+        log(n * lambda)
+    ##   pp <- dpois(nc, n * lambda, log=TRUE)
+    ##   cat(logp, pp, '\n')
+    -logp + nc * log(n)
 }
-kappasigmamu<- function(n,nc,lambda,add1=FALSE)
+kappasigmamu<- function(n, nc, lambda, add1=FALSE)
 {
-   if (add1) nc<- nc+1
-    mu<- nc/n/lambda
-    sigma2<- nc/n/n/lambda/lambda
-    kappa1<- -(1-mu)^2/2/sigma2 - log(sigma2)/2
-   list(kappa= kappa1,mu=mu,sigma2=sigma2)
+    if (add1)
+    {
+        nc <- nc + 1
+    }
+    mu <- nc / n / lambda
+    sigma2 <- nc / n / n / lambda / lambda
+    kappa1 <- -(1 - mu)^2 / 2 / sigma2 - log(sigma2) / 2
+    list(kappa=kappa1, mu=mu, sigma2=sigma2)
 }

Modified: pkg/RSiena/R/observationErrors.r
===================================================================
--- pkg/RSiena/R/observationErrors.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/observationErrors.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -17,9 +17,9 @@
 ##@deviance.observationErrors siena08: deviance under normality assumptions
 deviance.observationErrors <- function(mu, sig, x, se)
 {
-## deviance.observationErrors: given vector observations x, assuming model
-## x ~ normal(expected = mu, variance = sig^2 + se^2)
-## required is length(x) = length(se)
+    ## deviance.observationErrors: given vector observations x, assuming model
+    ## x ~ normal(expected = mu, variance = sig^2 + se^2)
+    ## required is length(x) = length(se)
     sig2 <- sig^2
     sum((x - mu)^2/(sig2 + se^2)) + sum(log(sig2 + se^2))
 }
@@ -27,36 +27,46 @@
 ##@profdev.mu siena08 (profile deviance =) minus twice profile loglik for mu
 profdev.mu <- function(mu,x,se)
 {
-## deviance.observationErrors maximized over sigma
+    ## deviance.observationErrors maximized over sigma
     ra <- max(x) - min(x)  # easy upper bound for sigma
     optimize(function(sig)deviance.observationErrors(mu, sig, x, se),
-                    c(0, ra))
+             c(0, ra))
 }
 
 
 ##@profdev.sig siena08 (profile deviance =) minus twice prof. loglik for sigma
 profdev.sig <- function(sig,x,se)
 {
-## deviance.observationErrors maximized over mu
+    ## deviance.observationErrors maximized over mu
     optimize(function(mu)deviance.observationErrors(mu, sig, x, se),
-                    range(x))
+             range(x))
 }
 
 ##@maxlik siena08 maximum likelihood estimator
 maxlik <- function(x,se)
 {
-    ## deviance.observationErrors minimized over mu and sigma
-    ## Minimize profile deviance for mu:
-    opmu  <- optimize(function(mu)profdev.mu(mu, x, se)$objective,
-                      range(x))
-    ## MLE for mu:
-    mu    <- opmu$minimum
-    ## minimized deviance:
-    dev   <- opmu$objective
-    ## Location for minimum of deviance for this value of mu:
-    sig   <- profdev.mu(mu, x ,se)$minimum
-    ## Standard error of MLE(mu):
-    se.mu <- sqrt(1 / sum(1 / (se^2 + sig^2)))
+    if (length(x) > 1)
+    {
+        ## deviance.observationErrors minimized over mu and sigma
+        ## Minimize profile deviance for mu:
+        opmu  <- optimize(function(mu)profdev.mu(mu, x, se)$objective,
+                          range(x))
+        ## MLE for mu:
+        mu    <- opmu$minimum
+        ## minimized deviance:
+        dev   <- opmu$objective
+        ## Location for minimum of deviance for this value of mu:
+        sig   <- profdev.mu(mu, x , se)$minimum
+        ## Standard error of MLE(mu):
+        se.mu <- sqrt(1 / sum(1 / (se^2 + sig^2)))
+    }
+    else
+    {
+        mu <- x
+        se.mu <- NA
+        sig <- NA
+        dev <- NA
+    }
     return(list(mu = mu, se.mu = se.mu, sigma = sig, deviance = dev))
 }
 
@@ -88,7 +98,7 @@
             {
                 x2 <- x2 + ra
             }
-            if (f(x1)*f(x2) < 0)
+            if (f(x1) * f(x2) < 0)
             {
                 break
             }
@@ -104,7 +114,7 @@
     }
 }
 
-##@ confint.mu siena08 confidence interval for mu
+##@confint.mu siena08 confidence interval for mu
 confint.mu <- function(x, se, alpha=0.05)
 {
     ## confidence interval for mu in model
@@ -114,33 +124,40 @@
     ## confidence level (1-alpha).
     ma <- max(x)
     mi <- min(x)
-    ra <- max(x) - min(x)          # easy upper bound for sigma
     maxli <- maxlik(x, se)        # ML estimators
     mindev <- maxli$deviance       # minimized deviance
     mlemu <- maxli$mu             # MLE for mu
     chidev <- qchisq(1 - alpha, 1) # critical value chi-squared distribution
-    ## The end points of the confidence interval are the values
-    ## where the profile deviance for mu is equal to mindev + chidev.
-    ## Now first the solution for the left side of the confidence interval:
-    tmp1 <- unisroot(function(mu)
-                {
-                    tmp <- profdev.mu(mu, x, se)
-                    tmp$objective - mindev - chidev
-                },
-                    c(mi, mlemu))
-    mu1 <- tmp1$root
-    ## and then the solution for the right side of the confidence interval:
-    tmp1 <- unisroot(function(mu)
-                {
-                    tmp <- profdev.mu(mu, x, se)
-                    tmp$objective - mindev - chidev
-                },
-                    c(mlemu, ma), left=FALSE)
-    mu2 <- tmp1$root
+    if (length(x) > 1)
+    {
+        ## The end points of the confidence interval are the values
+        ## where the profile deviance for mu is equal to mindev + chidev.
+        ## Now first the solution for the left side of the confidence interval:
+        tmp1 <- unisroot(function(mu)
+                     {
+                         tmp <- profdev.mu(mu, x, se)
+                         tmp$objective - mindev - chidev
+                     },
+                         c(mi, mlemu))
+        mu1 <- tmp1$root
+        ## and then the solution for the right side of the confidence interval:
+        tmp1 <- unisroot(function(mu)
+                     {
+                         tmp <- profdev.mu(mu, x, se)
+                         tmp$objective - mindev - chidev
+                     },
+                         c(mlemu, ma), left=FALSE)
+        mu2 <- tmp1$root
+    }
+    else
+    {
+        mu1 <- NA
+        mu2 <- NA
+    }
     c(mu1, mu2, 1 - alpha)
 }
 
-##@ confint.sig siena08 confidence interval for sigma
+##@confint.sig siena08 confidence interval for sigma
 confint.sig <- function(x, se, alpha=0.05)
 {
     ## confidence interval for sigma in model
@@ -148,7 +165,6 @@
     ## with length(x) = length(se)
     ## returns list consisting of bounds confidence interval and
     ## confidence level (1 - alpha).     ma <- max(x)
-    mi <- min(x)
     ra <- max(x) - min(x)          # easy upper bound for sigma
     maxli  <- maxlik(x, se)        # ML estimators
     mindev <- maxli$deviance       # minimized deviance
@@ -159,20 +175,28 @@
     ## unless the profile deviance in 0 is smaller than this.
     ## Now first the solution for the left side of the confidence interval;
     ## this may be 0.
-    if (profdev.sig(0, x, se)$objective <= mindev + chidev)
+    if (length(x) > 1)
     {
-        sig1 <- 0
+        if (profdev.sig(0, x, se)$objective <= mindev + chidev)
+        {
+            sig1 <- 0
+        }
+        else
+        {
+            sig1 <- uniroot(function(sig)
+                            profdev.sig(sig, x, se)$objective - mindev - chidev,
+                            c(0, mlesig))$root
+        }
+        ## and then the solution for the right side of the confidence interval:
+        sig2 <- unisroot(function(sig)
+                         profdev.sig(sig, x, se)$objective - mindev - chidev,
+                         c(mlesig, ra), left=FALSE)$root
     }
     else
     {
-        sig1 <- uniroot(function(sig)
-                        profdev.sig(sig, x, se)$objective - mindev - chidev,
-                        c(0, mlesig))$root
+        sig1 <- NA
+        sig2 <- NA
     }
-    ## and then the solution for the right side of the confidence interval:
-    sig2 <- unisroot(function(sig)
-                       profdev.sig(sig,x,se)$objective - mindev - chidev,
-                       c(mlesig, ra), left=FALSE)$root
     return(c(sig1, sig2, 1 - alpha))
 }
 

Modified: pkg/RSiena/R/phase1.r
===================================================================
--- pkg/RSiena/R/phase1.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/phase1.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -408,7 +408,6 @@
 ##@CalculateDerivative siena07 Calculates derivative in Phase 1
 CalculateDerivative <- function(z, x)
 {
-    f <- FRANstore()
     if (z$FinDiff.method || x$maxlike)
     {
         dfra <- t(apply(z$sdf, c(2, 3), mean))

Modified: pkg/RSiena/R/phase2.r
===================================================================
--- pkg/RSiena/R/phase2.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/phase2.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -31,8 +31,8 @@
         z$phase2fras <- array(0, dim=c(4, z$pp, 1000))
         z$rejectprops <- array(0, dim=c(4, 4, 1000))
     }
-    int <- 1
-    f <- FRANstore()
+    ##  int <- 1
+    ## f <- FRANstore()
     z$Phase <- 2
     z$writefreq <- 1
     if (!is.batch())
@@ -107,7 +107,6 @@
         ## report truncations and positivizations
         if (any(z$truncated))
         {
-            truncations<- (1 : length(z$truncated))[z$truncated]
             msg<- paste('Intervention 2.', subphase,
                         '.1: changes truncated, iterations: ',sep='')
             Report(msg, cf)
@@ -600,9 +599,9 @@
     nc[names(ncvals)] <- ncvals
     logChoiceProb <- sapply(chain, function(x)x[[9]])
     logOptionSetProb <- sapply(chain, function(x)x[[8]])
-    loglik <- sum(logChoiceProb) # + sum(logOptionSetProb)
+    loglik <- sum(logChoiceProb) + sum(logOptionSetProb)
     #print(sum(logOptionSetProb))
-    loglik <- loglik - sum(nactors * lambda) + sum(nc * log(lambda))
+    #loglik <- loglik - sum(nactors * lambda) + sum(nc * log(lambda))
     loglik
 }
 

Modified: pkg/RSiena/R/phase3.r
===================================================================
--- pkg/RSiena/R/phase3.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/phase3.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -454,7 +454,6 @@
 ##@CalulateDerivative3 siena07 Calculates derivative at end of phase 3
 CalculateDerivative3<- function(z,x)
 {
-    f <- FRANstore()
     z$mnfra <- colMeans(z$sf)
     if (z$FinDiff.method || x$maxlike)
     {
@@ -479,7 +478,7 @@
     z$msf <- cov(z$sf)
     if (z$Phase3nits > 2)
     {
-       z$sfl <- apply(z$sf, 2, function(x)acf(x, plot=FALSE, lag=1)[[1]][[2]])
+       z$sfl <- apply(z$sf, 2, function(x)acf(x, plot=FALSE, lag.max=1)[[1]][[2]])
    }
     z$dfra1 <- z$dfra
     z$dfra <- dfra

Modified: pkg/RSiena/R/print01Report.r
===================================================================
--- pkg/RSiena/R/print01Report.r	2011-05-26 16:14:47 UTC (rev 149)
+++ pkg/RSiena/R/print01Report.r	2011-05-27 15:20:17 UTC (rev 150)
@@ -334,7 +334,6 @@
         reportBehaviors <- function()
         {
             Heading(2, outf, "Reading dependent actor variables.")
-            anymissings <- FALSE
             iBehav <- 0
             for (i in 1:length(x$depvars))
             {
@@ -343,10 +342,8 @@
                     depvar <- x$depvars[[i]]
                     atts <- attributes(depvar)
                     netname <- atts$name
-                    type <- atts$type
 
                     iBehav <- iBehav + 1
-                    mymat <- depvar[, 1, ]
                     mystr <- paste(iBehav, switch(as.character(iBehav),
                                                   "1"=, "21"=, "31"= "st",
                                                   "2"=, "22"=, "32"= "nd",
@@ -718,7 +715,6 @@
         reportCompositionChange <- function()
         {
             comps <- x$compositionChange
-            nComps <- length(comps)
             Heading(2, outf, "Reading files with times of composition change.")
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/rsiena -r 150


More information about the Rsiena-commits mailing list