[Rsiena-commits] r98 - in pkg: RSiena RSiena/R RSiena/inst/doc RSienaTest RSienaTest/R RSienaTest/doc RSienaTest/inst/doc
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Jun 8 17:14:05 CEST 2010
Author: ripleyrm
Date: 2010-06-08 17:14:02 +0200 (Tue, 08 Jun 2010)
New Revision: 98
Modified:
pkg/RSiena/R/simstatsc.r
pkg/RSiena/changeLog
pkg/RSiena/inst/doc/s_man400.pdf
pkg/RSienaTest/R/simstatsc.r
pkg/RSienaTest/changeLog
pkg/RSienaTest/doc/RSiena.bib
pkg/RSienaTest/doc/s_man400.tex
pkg/RSienaTest/inst/doc/s_man400.pdf
Log:
Changes to dyadic covariates and bipartite networks, also additions to bib file.
Modified: pkg/RSiena/R/simstatsc.r
===================================================================
--- pkg/RSiena/R/simstatsc.r 2010-06-04 14:22:23 UTC (rev 97)
+++ pkg/RSiena/R/simstatsc.r 2010-06-08 15:14:02 UTC (rev 98)
@@ -9,9 +9,9 @@
# * communicating with C++. Only subsidiary routines used for maximum likelihood
# *****************************************************************************/
##@simstats0c siena07 Simulation Module
-simstats0c <-function(z, x, INIT=FALSE, TERM=FALSE, initC=FALSE, data=NULL,
- effects=NULL, fromFiniteDiff=FALSE,
- profileData=FALSE, prevAns=NULL, returnDeps=FALSE)
+simstats0c <- function(z, x, INIT=FALSE, TERM=FALSE, initC=FALSE, data=NULL,
+ effects=NULL, fromFiniteDiff=FALSE,
+ profileData=FALSE, prevAns=NULL, returnDeps=FALSE)
{
if (INIT || initC) ## initC is to initialise multiple C processes in phase3
{
@@ -291,8 +291,7 @@
mymat[, 3] <- 1
mymat
}, y = matorig)
- mat2 <- do.call(rbind, tmp) ##drop the diagonal : no, in case bipartite
- ## mat1 <- mat1[mat1[,1] != mat1[, 2],]
+ mat2 <- do.call(rbind, tmp)
## add attribute of size
attr(mat1,'nActors1') <- nrow(mat)
attr(mat1,'nActors2') <- ncol(mat)
@@ -415,7 +414,7 @@
## set to missing in raw data for distances later
depvar[[i]][j, ] <- NA
depvar[[i]][, j] <- NA
- }
+ }
}
for (j in threes) ## False data is preceded and followed by real
{
@@ -597,7 +596,7 @@
networks[[i]][j, use] <- networks[[i-1]][j, use]
networks[[i]][use, j] <- networks[[i-1]][use, j]
}
- }
+ }
else if (ccOption == 3)
{
depvar[j, , i] <- NA ## missing
@@ -613,7 +612,7 @@
depvar[use, j, i] <- 0
depvar[j, j, i] <- NA
## carry forward already done
- if (i == 1)
+ if (i == 1)
{
networks[[i]][j, use] <- 0
networks[[i]][use, j] <- 0
@@ -624,13 +623,16 @@
networks[[i]][use, j] <- networks[[i-1]][use, j]
}
- }
+ }
else if (ccOption %in% c(2, 3))
{
depvar[j, , i] <- NA ## missing
depvar[, j, i] <- NA
}
}
+ }
+ for (i in 1:observations)
+ {
if (i < observations)
{
## recreate distances, as we have none in c++. (no longer true)
@@ -644,13 +646,12 @@
diag(mymat2[,,1]) <- 0
mydiff <- mymat2 - mymat1
attr(depvar, 'distance')[i] <- sum(mydiff != 0,
- na.rm = TRUE)
+ na.rm = TRUE)
if (all(mydiff >= 0, na.rm=TRUE))
attr(depvar, 'uponly')[i] <- TRUE
if (all(mydiff <= 0, na.rm=TRUE))
attr(depvar, 'downonly')[i] <- TRUE
}
-
diag(networks[[i]]) <- 0
edgeLists[[i]] <- createEdgeLists(networks[[i]], depvar[, , i])
}
@@ -683,8 +684,8 @@
compChange <- any(!is.na(thisComp))
if (compChange)
{
- stop("Composition change is not yet implemented for bipartite",
- "networks")
+ # stop("Composition change is not yet implemented for bipartite",
+ # "networks")
action <- attr(compositionChange[[thisComp]], "action")
ccOption <- attr(compositionChange[[thisComp]], "ccOption")
}
@@ -705,6 +706,7 @@
## extract this matrix
networks[[i]] <- depvar[[i]]
nActors <- nrow(depvar[[i]])
+ nReceivers <- ncol(depvar[[i]])
## stop if any duplicates
netmat <- cbind(networks[[i]]@i+1, networks[[i]]@j+1,
networks[[i]]@x)
@@ -713,12 +715,12 @@
stop("duplicate entries in sparse matrix")
}
## extract missing entries
- netmiss[[i]] <- netmat[is.na(netmat[,3]), , drop = FALSE]
+ netmiss[[i]] <- netmat[is.na(netmat[, 3]), , drop = FALSE]
## carry forward missing values if any
if (i == 1) # set missings to zero
{
netmat <- netmat[!is.na(netmat[,3]), ]
- networks[[i]] <- spMatrix(nActors, nActors, netmat[, 1],
+ networks[[i]] <- spMatrix(nActors, nReceivers, netmat[, 1],
netmat[, 2], netmat[,3])
}
else
@@ -744,6 +746,118 @@
mat3 <- mat1[struct, , drop = FALSE]
## now remove the zeros from reset data
mat1 <- mat1[!mat1[, 3] == 0, ]
+ ## do comp change
+ if (compChange)
+ {
+ ## revert to sparse matrices temporarily
+ mat1 <- spMatrix(nrow=nActors, ncol=nReceivers, i = mat1[, 1],
+ j=mat1[, 2], x=mat1[, 3])
+ mat2 <- spMatrix(nrow=nActors, ncol=nReceivers, i = mat2[, 1],
+ j=mat2[, 2], x=mat2[, 3])
+ mat3 <- spMatrix(nrow=nActors, ncol=nReceivers, i = mat3[, 1],
+ j=mat3[, 2], x=mat3[, 3])
+ ones <- which(action[, i] == 1)
+ twos <- which(action[, i] == 2)
+ threes <- which(action[, i] == 3)
+ for (j in ones) ## False data is not preceded by anything real
+ {
+ if (ccOption %in% c(1, 2))
+ {
+ ## find missing values for this actor
+ use <- mat2[j, ] > 0
+ ## remove from real data (i.e. zero)
+ mat1[j, use] <- 0
+ ## remove from missing data
+ mat2[j, use] <- 0
+ ## remove from raw data for distances later
+ depvar[[i]][j, use] <- 0 ## zero
+ }
+ else if (ccOption == 3)
+ {
+ ## add the row to the missing data
+ mat2[j, ] <- 1
+ ## set to missing in raw data for distances later
+ depvar[[i]][j, ] <- NA
+ }
+ }
+ for (j in threes) ## False data is preceded and followed by real
+ {
+ if (ccOption %in% c(1, 2))
+ {
+ ## find missing values for this actor
+ use <- mat2[j, ] > 0
+ ## remove these from mat2, the missing data
+ mat2[j, use] <- 0
+ ## carry forward
+ if (i == 1)
+ {
+ ## 0 any matches from mat1, the real data
+ mat1[j, use] <- 0
+ }
+ else
+ {
+ mat1[j, use] <- networks[[i-1]][j, use]
+ }
+ depvar[[i]][j, use] <- 0 ## not missing
+ }
+ else if (ccOption == 3)
+ {
+ ## add the row to the missing data
+ mat2[j, ] <- 1
+ depvar[[i]][j, ] <- NA
+ }
+ }
+ for (j in twos) ## False data is not followed by anything real
+ {
+ if (ccOption == 1)
+ {
+ ## find missing values for this actor
+ use <- mat2[j, ] > 0
+ ## remove these from mat2, the missing data
+ mat2[j, use] <- 0
+ depvar[[i]][j, use] <- 0 ## not missing
+ ## carry forward
+ if (i == 1)
+ {
+ ## 0 any matches from mat1, the real data
+ mat1[j, use] <- 0
+ }
+ else
+ {
+ mat1[j, use] <- networks[[i-1]][j , use]
+ }
+ }
+ else if (ccOption %in% c(2, 3))
+ {
+ ## add the row to the missing data
+ mat2[j, ] <- 1
+ depvar[[i]][j, ] <- NA
+ }
+ }
+
+ ## now revert to triplet matrices, after updating networks
+ networks[[i]] <- mat1
+ mat1 <- cbind(mat1 at i + 1, mat1 at j + 1, mat1 at x)
+ mat2 <- cbind(mat2 at i + 1, mat2 at j + 1, mat2 at x)
+ mat3 <- cbind(mat3 at i + 1, mat3 at j + 1, mat3 at x)
+ if (any (mat1[, 3] == 0) || any (mat2[, 3] == 0) ||
+ any (mat3[, 3] == 0))
+ {
+ stop("zero values in sparse matrices")
+ }
+ if (any (duplicated(mat1[, -3])) ||
+ any (duplicated(mat2[, -3])) ||
+ any (duplicated(mat3[, -3])))
+ {
+ stop("duplicate values in sparse matrices")
+ }
+ if (any (mat1[, 1] == mat1[, 2]) ||
+ any (mat2[, 1] == mat2[, 2]) ||
+ any (mat3[, 1] == mat3[, 2]))
+ {
+ stop("loop values in sparse matrices")
+ }
+ }
##fix up storage mode to be integer
storage.mode(mat1) <- 'integer'
storage.mode(mat2) <- 'integer'
@@ -789,6 +903,69 @@
}
for (i in 1:observations)
{
+ ones <- which(action[, i] == 1)
+ twos <- which(action[, i] == 2)
+ threes <- which(action[, i] == 3)
+ for (j in ones) ## False data is not preceded by anything real
+ {
+ if (ccOption %in% c(1, 2))
+ {
+ use <- is.na(depvar[j, , i])
+ depvar[j, use, i] <- 0 ## not missing
+ networks[[i]][j, use] <- 0 ## zero
+ }
+ else if (ccOption == 3)
+ {
+ depvar[j, , i] <- NA ## missing
+ }
+ }
+ for (j in threes) ## False data is preceded and followed by real
+ {
+
+ if (ccOption %in% c(1, 2))
+ {
+ use <- is.na(depvar[j, , i])
+ depvar[j, use, i] <- 0 ## not missing
+ ## carry forward already done
+ if (i == 1)
+ {
+ networks[[i]][j, use] <- 0
+ }
+ else
+ {
+ networks[[i]][j, use] <- networks[[i-1]][j, use]
+ }
+ }
+ else if (ccOption == 3)
+ {
+ depvar[j, , i] <- NA ## missing
+ }
+ }
+ for (j in twos) ## False data is not followed by anything real
+ {
+ if (ccOption == 1)
+ {
+ use <- is.na(depvar[j, , i])
+ depvar[j, use, i] <- 0 ## not missing
+ ## carry forward already done
+ if (i == 1)
+ {
+ networks[[i]][j, use] <- 0
+ }
+ else
+ {
+ networks[[i]][j, use] <- networks[[i-1]][j, use]
+
+ }
+ }
+ else if (ccOption %in% c(2, 3))
+ {
+ depvar[j, , i] <- NA ## missing
+ }
+ }
+ }
+ for (i in 1:observations)
+ {
if (i < observations)
{
## recreate distances, as we have none in c++. (no longer true)
@@ -885,6 +1062,7 @@
unpackCDyad<- function(dycCovar)
{
sparse <- attr(dycCovar, 'sparse')
+ nodeSets <- attr(dycCovar, "nodeSet")
if (sparse)
{
## have a sparse matrix in triplet format
@@ -892,9 +1070,12 @@
## with 0 based indices!
varmat <- cbind(dycCovar at i+1, dycCovar at j+1, dycCovar at x)
##drop the diagonal, if present - not for bipartite
- ## varmat <- varmat[varmat[,1] != varmat[, 2],]
+ if (nodeSets[1] == nodeSets[2])
+ {
+ varmat <- varmat[varmat[,1] != varmat[, 2],]
+ }
mat1 <- varmat
- ##mat1[is.na(varmat[, 3]), 3] <- attr(dycCovar, "mean")
+ mat1[is.na(varmat[, 3]), 3] <- attr(dycCovar, "mean")
mat1 <- mat1[!mat1[, 3] == 0, ]
## add attribute of dim
attr(mat1,'nActors1') <- nrow(dycCovar)
@@ -908,8 +1089,12 @@
}
else
{
+ if (nodeSets[1] == nodeSets[2])
+ {
+ diag(dycCovar) <- 0
+ }
dycCovar1 <- dycCovar
- ##dycCovar1[is.na(dycCovar1)] <- attr(dycCovar, "mean")
+ dycCovar1[is.na(dycCovar1)] <- attr(dycCovar, "mean")
edgeLists <- createCovarEdgeList(dycCovar1, dycCovar)
}
## add attribute of nodesets
@@ -929,6 +1114,7 @@
varmats <- vector('list', observations)
sparse <- attr(dyvCovar, 'sparse')
means <- attr(dyvCovar, "meanp")
+ nodeSets <- attr(dyvCovar, "nodeSet")
if (sparse)
{
## have a list of sparse matrices in triplet format
@@ -938,7 +1124,10 @@
thisvar <- dyvCovar[[i]]
varmat <- cbind(var at i+1, var at j+1, var at x)
## drop the diagonal, if present no - bipartite?
- ## varmat <- varmat[varmat[,1] != varmat[, 2],]
+ if (nodeSets[1] == nodeSets[2])
+ {
+ varmat <- varmat[varmat[,1] != varmat[, 2],]
+ }
mat1 <- varmat
mat1[is.na(varmat[, 3]), 3] <- means[i]
mat1 <- mat1[!mat1[, 3] == 0, ]
@@ -956,6 +1145,10 @@
{
for (i in 1:(observations - 1))
{
+ if (nodeSets[1] == nodeSets[2])
+ {
+ diag(dyvCovar[, , i]) <- 0
+ }
thisvar <- dyvCovar[, , i]
thisvar[is.na(thisvar) ] <- means[i]
edgeLists[[i]] <- createCovarEdgeList(thisvar, dyvCovar[, , i])
Modified: pkg/RSiena/changeLog
===================================================================
--- pkg/RSiena/changeLog 2010-06-04 14:22:23 UTC (rev 97)
+++ pkg/RSiena/changeLog 2010-06-08 15:14:02 UTC (rev 98)
@@ -1,3 +1,16 @@
+2010-06-08 R-forge revision 97
+
+ * R/simstatsc.r: constant dyadic covariates with missing values
+ should now work correctly, varying ones do not fail, but the
+ centering and filling in of missing values for these is still to
+ be sorted out. Also treatment of bipartite nets with composition
+ change has been corrected. (Previously missings were not processed
+ correctly if a sparse-matrix format network (even after the
+ previous change!) and composition change was ignored for all
+ bipartite networks.)
+
+ * doc/RSiena.bib: additions.
+
2010-06-04 R-forge revision 96 (RSiena mainly)
* R/sienaTimeTest.r, R/sienaeffects.r, man/sienaTimeTest.rd,
Modified: pkg/RSiena/inst/doc/s_man400.pdf
===================================================================
--- pkg/RSiena/inst/doc/s_man400.pdf 2010-06-04 14:22:23 UTC (rev 97)
+++ pkg/RSiena/inst/doc/s_man400.pdf 2010-06-08 15:14:02 UTC (rev 98)
@@ -507,12 +507,13 @@
IÉÑߧ¶¨ÈYÊU&Ðè~èåuCA?,È;ßËÅå
¬´¢hù(g5Q+ô5¹-ÉdWTiÆ KÚ.ýmùlÕÌJ,©è`õðùúîjÔÝ¡òUmï¡m×»¶èÑJ#dÒecMÊÅfrìç.ÍiÒî·Þå:Ù{°Äy
öò+DæB² (°æð4ÖE¼ûÝ°pèû¯Jîݶ²ÐôEÆ9S@0g<",SͶÆWøpû}~AXy=£É)ʸÆ2Ï#ò¯T©ªÁ/º}ßþ²¬¾K3ÁóäÝÝPÛÆ+Ç*yÁç§O3
-g4qeÿ}<ºÛ}#TÚj->¶Ue×væ40b!iHÑ·/»ÆFq¡äl°×Ë
AQcIâcÅ*ëÅãÿ ´GÁåMMѧvñübOªÙA²s4PJ
-g¦)æ#F 6LÄP®û¡+ÊáJ rQ© [4,à>*ÿÆ{®g×a©ÄDûo$'¯}4C¥©ó×.rõ®Åî0ÉçfoûÁDOmÊtÒÅÍu½u+c«äÎWLòâ5Z¿êãÁôË¡wý9G)ÃâØQM at 9|øPm½Ý}ÛEÁ¶k×]QG¥aSOr 1Ö@qQË¢ëõ:uç)*Ù(é=G!Ì|Ìõ³7yuF,Ó9Ýà«X»M< p0Ié¦ãuÏ#lQÐ]®YÈ<08Wã°X¢veÜ Ú.k!ÜÆvåu¼\{ðhÖh_ôìäÏ<NäÐxÊ.Îb~ª8ÖÚ;ݬþÑ°³Ã¨\áÿá:w+ÌIçÉryá@=6eæLí$=>I°?ßJbx*È¿ö¥æìè92oÏ\&'ÉË
-
-g(<*âýeü:÷¸á¶(½ð9ÍAo=zÈò:á:hô~°õpX:¹z&5ãØÞ[
-ïÓ,¡K;<&ÒÄDú½A<½Ã|&ØÔQ^`®r¾ëϼ3Ô4Çæÿ¡,WGµÐÉÛkà9)¼*ªÐÂpj
-V¸¦KBU ¢ý8à±Í3òÒ¹a°¾èSDð8ÆÂê8N¿ô»C\ßa¬á;×æÅ()SØÑèa¤Ð4`¬ aØnm»Âó7'G1:ö0Øuå6øä÷ÍñÏ%ªso0ÊÁ9B̼Ä5ýX
+g4qeÿ}<ºÛ}#TÚj->¶Ue×væ40b!iHÑ·/»ÆF}¡äl°×Ë
AQcIâcÅ*ëÅãÿ ´GÁåMMѧvñübOªÙA²s4PJ
+g¦)æ#F 6LÄP®û¡+ÊáJ rQ© [4,à>*ÿÆ{®g×a©ÄDûo$'¯}4C¥©ó×.rõ®Åî0ÉçfoûÁDOmÊtÒÅÍu½u+c«äÎWLòâ5Z¿êãÁôË¡wý9G)ÃâØQM at 9|øPm½Ý}ÛEÁ¶k×]QG¥aSOr 1Ö@qQË¢ëõ:uç)*Ù(é=G!Ì|Ìõ³7yuF,Ó9Ýà«X»M< p0Ié¦ãuÏ#lQÐ]®YÈ<08Wã°X¢veÜ Ú.k!ÜÆvåu¼\{ðhÖh_ôìäÏ<NäÐxÊ.Îb~ª8ÖÚ;ݬþÑ°³Ã¨\áÿá:w+ÌIçÉryá@=6eæLí$=>I°?ßJbx*È¿ö¥æìè92oÏ\)üDã$yÙ@AálÅGE¼¿l?Cçw±Â Ü¥>§9èGÏYÞBQ'\þж>kA'WïÏc£¦sûÃ{«á}%téogÇDH¿÷q1èÇ¢÷axÏ:ÊlÑUÎwý9wæXÐü?Ôåê¨:y{Í<r0eAWEZB
+ Á
+×ôsI¨
+T´'<¶R±yF^:7Ö]°qÇXXÇé÷~wëÛ"U0üqçzмå#e
+;=uô1LÛmwqBxÞâã¦óä(FÇ»®\ Õü¾9þ¹Duá
+F18çãOù`ø/Tµ\
endstream
endobj
341 0 obj <<
@@ -2594,28 +2595,30 @@
/ProcSet [ /PDF /Text ]
>> endobj
616 0 obj <<
-/Length 2253
+/Length 2469
/Filter /FlateDecode
>>
stream
-xÚX[o7~ϯÚû¥E¡8NêÖñÅ¢ÝJ¢mÆ£uȱ¿<$%Æ»ápÏõ;*ÜMÂɧ7áàù~ñæÝÇrR*óÉâv
ÊlRä óh²XOþ2rößůîÐäiÁEǨdêË»YtÀ#MIQ¥@ª¹º¼!Õ¡ $"qY¢vy6Íòà[Iq6Mâ<¸m;µ(FWgqÜã[äz{:uÛ=EÁ¹úPÀ@ßSõùÛÓgYÐÓe
-´7i³ÆŪÕÔF2ͬzÁ;ÔCÞC·}³¼mÄÅÓ<!q^M¦QDª,Cg
-½aòÏ0á_tì4'EX(:´:I´9eÐÊ{|ÕfÊìR-pípÔ¾ñIªËñL(ÎGtªdYaµXµí£æÓP<% Öar5 È4®rM1*'Fù)¡A#úe ßGS[¢5à
-70²ÇR
-àîàøE
îpAå^vDQ4tP?òB*b$*F½ðUeUûQ¢räe²DÎ[²E«WÎÇ)÷å
ÛÚSöÔÐ2!Uå²ü;FÄ$«=Ê£ôùeõã$Yâé²×\Å/¯L:ªõáÕ4l`nÀ ñk÷ÁqèØ_=ï!cÌò$À,Y-Y×PÉU>°z¤½`¨LÓvZÕ|Å~=[["Ëö·ÙÖ&·1tiÅ6w&EP}øàÅÏCúOgÓ4Mn ÏM¿õBÚ4Ó&ipÛÑ
-;BoLRè^Ü«ÿ¼º~nuZ³ú{yU¦$Ûçó(qkãX¹ahOØJÔÏÆ(ü;å¤ÌcϤ°8Q%#íû 5¢ë´ÀD2QH¾¡ª·àû¶C£VlÝwGa)Jf¹Ù7t¨¡¥ú¨ aØhàÐ$|è!ÎûZòmm¼*Be:½3Üx3â¶8
¿ñdñA1Õ(þxVBTMW\3Iymð,QO0ÝÉÿ¾ý¦¼¢Î©9ðÖqå.RÑÀËñ¨gµ0eªAçžÈÐýÁkº×\÷òR¶·^Y*-UÉ
gÌa õÄzh«»4{Ù¤ô±åÅ°v̯¢A½\³ãà`롸íÚ£*CAÊ03å-GÔÁ Ò°'Á·£½ ]í)´Îj5Éú
-¾rpzÛËmP«
-x×5î9_:.%kF; 6)>TªÖë;P0Â6Ðá+CXé¶iDVD»<6º
èO |ëxéÔ;ÜT¦Uz^nCõÈ:3ü öÏÅüëåql§ö×_Úí¾ ªFær¤¢üuiy3Í»Pöä ÉSÈ8#Et1©HGdÒ|Ê1Īl«SÐ:ó9^{«o%2Æ1¹LÕL$qT]!i'!Çþ o´ÂQI²BĸTWºÖ'ÍJm©ê¨*êê©,·"fC3ü&±oŹX<ÝM÷JH´QhCMP»:aÕ®lñ 6ãÂÚ«_tM÷3'~®'Û±«H|XzáJåD·[D}³æÏIÎ
-ànT9!¼.]s;z³È *é÷t92Ü_:ö×1¬/ÚxM¹jsq;23V¦sVµC0t
-#¦KÛuI°óÎoö >ààbÙò Ê?¾æïÓåÍå|vý
-JD at w5êG~â§tV+ûT8VÏ9>l.©µÎ%µp¹¤),¶Ôo}^ÇæÜlÛ«^;«ÏaS0
-ÍÛ%7th/ï9ëô½øÒðoÐzĹUØÈ÷N¶?vçC ²ãËÞÝͧn_zõk+ÌÙëVlyÓ8x
-^xÅùh¯¡¤Ã¸9 F$a N:ò7dR¶
-kØfÃÛG=÷£¼¢Â( X# ÏÌ?ìþ
ÕÛ½%ÜÈÊBfÉìF]í»óÅÇ_½,ZsxC»A at uÿ×N1Wj²NÐd<¾íÚÞ°aV«{ÏËÞ¶ëk¾ìhg̨[º>ª&´Ûì·ÖÈúqË]ré\õÇÜyAUD·kíßÒÕ½câSp¼0°@nC×fEåÀÑÌ
-µrìMÓäõE@íþe¼KV×æç5`RõTK¸+³Õ
-ÝÅÙ®µrINT}y{p8a~ÆÓY¼ôjzh÷/~»m]ºZµ§` /dô]è|ÿÔvN5ï`Âm»Ý©øâ¥
-ØPÒfçEÎvTöJýÔùÇ ¹ÛkXGë`±k$}´%ÖY:+|É~d·ÕåùYßMHX÷úàÑ>Z³}:§÷ó«*n,ñ§¤ðÛäÊuÛ×Ø¿ÙõõÕÍ'â_.qña¶ájvó¿Ï/¯¯>_ÝÌæÿÁϳ«ß¿^ÏWÿºùòê)Ù|>¨u^ UmËmÚWWkéºß×GnR}F¤LO#\û[É0Ä¢iö 0æ¨ U¸äè-xfv³ ENÜp\ÙxOV%&Uò*=l{ïe«~§QH7Þä7ö·ÄW×ÕlÕïX÷
-Òg©~¹wÓ÷ÕþǯeÐ!ƨ$,0ì=ºîd÷÷ÆZÑnØAÅ®ùáööâ§w:ÊÞîc躵+¶)W½ {pO¹:×suÇÒþúå¸\¼ùê-ä½
+xÚY[sÛ6~ϯи¡g,÷KÚ7±Óí¦ÙÇ>´û I
"Y´¿çàF¤ew3ãÁsùÎw(q·ðÞø£ëÏ·oÞ]çi.n·ÀH',
+ÛÍâ/!çÿ½ýÕ¾´øcø¾÷¡e´cøäÝuÉc1,/ý×ÕKµêx£( ¡Eõê|¤Þw¶îÄù2
+So[·8È<F×çaîíÔ]Å:¼{<qÝÞÞ>(<w?póöÃyx´åtUÂZ¦&iµQu-W5Âr¯¼ºSzt;ýÒ¶¯Ö¯+1cñ2He"IM³~aÝ~âÃ_0õA,p²:¤9¹Ww;u+ÍÎÐìÍjVÙaW»ÆG1jã@.ft$If´X×ê)§=¡xL`[ó
+ëÖ#,Ã"+AAÒHÃ(=#eÐ~ID âËhÊB³hC;ªáJM¨ÈNwÉ
+»
ãWÝG¢{ÞYFbßB}â
Ø'
j/jQ6ë
ob.À¬<7ÒïXwõ§D#Ïk$°ÞêjeõÚú8Ш9fd©ié©DzjlF¢pCÿ#BÅò ~z^ý0 Q9ú§ì
+Çø¥
NG:RnÝ@ÃÊ
+ÀHüÒ>°ZöWÏ[¦1\fdÞeÙ±¶¢À|`åA-íSÊTu»§å@àó$tùàfjmA²$2o¿un«ÐÅ"?ZÝéQêÃ'~Òß/ã8ö¸<×þÞΤ¼4½mK÷lÞÄP ¸ÿ/x%þVKÚ°ò¥¼Êcù<c5µ·"'nÛ ¶â(v³1ðÿE)ÉÓÐ1ÉÏN°d@¡#Ú¾RèHB&ï)Öuߴʨ5Ûôí$,YNâ$uÃ0³âKÝYÔÐNíê¢6S
FEÂ
Â9:1ØoJí}¥"P&ÓK0-W3nc 8ùmÄ}Gd*Q|}CTuUÜ°òRãY0`²0k
úÿ~q|÷oô
+¾9òÖ¹³ÄY0òr8ëåËRhª¿Ól :4¼¤+èAxÉe-?¨õÖ¡¥Ìk(&#Ï'ýøÄx¨U=\$w±¤ÙH[¦É+3¨cbÄÖrÕ8ÞÓ+¶m½Ç}2û¦·TmA
+x4 ½{ä=rÓÊXغÔ<*GDïCéÌàý¨NÖ©àkXN¯û®éÊaQì²T³ºR7-ï:V©5Ò0IÕ«PÉb°µXß*zÇì/¬eÙÔ[dfzx¬d `ó÷ K¦dDàÝ©I4}U|¨y© Õkuó'Ø?no¾]Mc»4¯8õ¥n
+TÍôåÐIéëÒ0qzw×@{GûgIcÈ0!Y¦Ö
¤ $¨ø=©#mLÕ)r¨V}ò(Ö-o:%XµÉy=Q§Zum;ÆÔ_äT8ÈIJà-1Ìñ¨Qò ð(Eá²#^1êxEKæÂøÉØ·ÈyèZq K¼ÇÀдÃM¯®´B{ª geÂâlW«+جÆ^y#l®»ÏHØíodg;Óvåp ©TÖA´iê«
+Ré%àIÔá¬~àFÌ áTéÖcYQ_ÒúH8tÇ1Å/Òêûî©ÉÅát¤{xJÌY,:aèZL>¦JJ0ý
+[ÌÊ\ÀÁÁ 0ô)xÍ¿OW_®n.?¿b¥[@uÕêh~Â:ãÈ\Çx½QK8¹Kr
ÁÞ(òïËØ\èiC°x³:}Vè¦^q½îí»gq5E¾Vü;¡çoz»%vcVé×ZèçkÑðª5qH>K#ˬiz%m@1Wèu ÍÆ`è±+W½^ÖÉæT/¢z3ìéYeÚ¼n2ÍÆQÙ T]J£
+öxeOMI+Ý5?Ðz5²¥ÃfËU¨¬Æ)Õg'4ÛÒ= í(`(FJbF]ÿÕCæÏ¡f½µÁãÊ~Ïfìa(ûSû_=è<1^÷ôYS_÷ÓQÙ K1²£slÖ^Øã
+üIN`}67õcUÖàGªl®\ß~ç3)uâ~LWn¼ízE:(+Á»S¡íjH÷kÇ¡øZÓc-Èó¤sã2Î
+#U `¯Jm»%mÛúQÝý´<s%Ct0N#<¤W©ï¡TnÞëÅÚñMù)¤Æ]
yqB¥3möOK:ÇÑÊòÇSõJ}|8JZp±¹õ½®N¡è?ÛYGTn¥)ùz hÊòÁ åµ$Xf;å_XÙánY |MËrÕÆzOÛAíi{?âë¾
+FSø`0Ý%¨»CÝ46Zí{^¬7m¼ùgÉW-5ØÃä=ª"O[;Ù7ÆÈúq#½ãuÕ#Üz»(;kìoèúÞ1qv*»>è24*q{àC#G3³©ÙÇ|ÒTn<dPºöùúÚA½Ð`k\°B¦Ö,ä>ÂîÎàìPEyw_Lþã$q
+¡æ¡R ¶»Eß@±×
3âáºÐúþ±nïÞÔíáuêCõ´:8s7°õ¨ÔMOìk¤Ý±µ´Ùál,UGFU·µÞ¼îΣÖLã·'ùÅMµ¯§
+h6së¬ÞO¯b ISmÝ,ÓÖK±£ö½6ìÃÖýX`ÕW<o1:hX¾aê
l~ç´#bܤMsCüng«ío·àúêè1¯S úx¿ÑµËß*.£øþK!Ô²u?Ш¤þñYá k_¦ÑÊÆ<¦~pòÏbBþ¢`±{vm\wô7{äíÙ4×ç0LqÓ¶n>Ñ´U?"ßQI·]
+Öíq8Ùp>3¯{_D"¯ûqàtv&ñµ£±·²?6ï
+p>Nåù¸ y¯ØÎW·oþwâ9
endstream
endobj
615 0 obj <<
@@ -2668,24 +2671,17 @@
/ProcSet [ /PDF /Text ]
>> endobj
628 0 obj <<
-/Length 1306
+/Length 1351
/Filter /FlateDecode
>>
stream
-xÚXQsâ6~ϯ`èCr3 l!dzsö:éCrtî¡×é[`#QKÆ¡ýíVF;i2ÈDZ}ûíî·k¢Þºõ~¹ìççÅÕèK2ëÍÑ|:ö«ÞÝEÑ]o6Q4{¬÷ûÍÉ8¹YVÒ,ĬdnUê;aÖef±âeKû
-,rdÖ
àfµãBÐeæì·ÈÀ~FKJ^>ü±øUAÆ1'¯s[Â*®ÌçWfã}ãÆåñÍcßóo9¶¨p'Jòéxäv¢ÙÄ3Ç
-*$ZÑïQ©¿ø¸sxakë
-xi5Ïç¯0|áfkïÙðö}
-ÿK3Ì*\´:÷ü5çõO<Õ®õÅj÷mõ68Ýà5ùØ70ú-¾û`´¥'?Ö2Oö¤ ,ÇLÀP;nsÄ0q\Öd)¨ÊÚöìÓ¹»ûѨ®k$$ñWSTmFÿF_2RÐGfÊÄAÔ,
ØUiK53äH.
fárKì{Ìðd
-gª¾ÌyÅÛñØìõy[
-v´YTÇG¦ÚxÈ`mO¦Á¢(:¸°S óÉ/ªjM*sĨÃØcX§%ÁY»]!KL×9ä
-yøØjª\0~*²¸kêáÒ¼)a²fë¦yWYcÈ%Iq%H¶5a¤Td`7HU©ÏÉ5ß.®ÌÏN,KúÚäQÅRõ2 öxiÌQD0ÂÈ#R·W'^WüCNøCþ(Í95¢Aù%j C)
-¥÷o]ö¸VëA )ßnu7k4u/ñóBÿÉ)_ÉAEÀÎíY÷P*ö
-ÒÀ ¯ì¤§uµH>Ñ9ãÖã®ø8}Úaka;=ïûZP¬W¥êvWGùkºÉ_:éÇZ;
-W2û_®²<Ê¡úsoIî[¨Yrßm×ßãÉíóuÐÁm¶VL5¾fôo ïÆnãªRÇ©bWê¦c+ÑÝj ÝM-_ÒÍãȺ®É&MÛN"(ÌX>öéÓ¶t ïñÿºdÜ~õ$S~nþm\¤<çŹé!PuÞ\?kÍMù<jæI´y¨¢*ÉåY%å¥`aþ
Tnºvï4'é&ìÖ¼*Û6îÈUMþÐêqiÉt».o`Ñå v-ú|ÊA³°óÆ0h\\¯=yØ:}ÍsòÖS&Eè®pº0=ù ¿û¸¼¤kÊpú¬qêAÝ:D<7½ôãÖÑwÅèA²X÷¸¨ÎäÖ¦7\,-ªÌ½m©hÞÌÌñ®hµxãjß÷gà>=|¼Æ
ª#qýDüÁáqsóuS+jZ;_R¾Ç%Åòì
-ä1L
-õ"Gä¿»¾M¸ßXA7¤£ó¹Ûda
-Q 9ÍGP¤0e&¦PÙ¼ºÊ¼$°¤ÀÇ«ñZ¸¶Õ!WÔRá[çáì%Ͻõ\×Phý³.>Çã(Á&Î^°zKK>»oÖ1ïª''ßúÍÃb~z¸@£Èú8m¸gF_îN~G34g½a¡d>17ÄcïÄÏ«=ÄE
+xÚXÛnÛ8}ÏWÞ¶MËN|I¢p´õ"uÇb±»XÐm±I¤¢äe¿}Ió&Ñ©i93sxf¤¨³ëDÏgùü°>|O;àr2tÖÛÎìDѬ3A4vÖIç¯×¿½é&£ñë-Î2Lvoúcùý)R¤ f(=é¯îÍ©^m)+ KôA"þæõïK8ãqÕa"f<Ñ\/öxg¬¡Çt¨×ß[Ç7)Âî®Èé¾mðªöü£sùßP¥ä"ÅÆ8><¬ÌÄ9¦¤êirâéÂ{ѶâqÊ#Þà°Æ
íò%ã×eýU¯-ßΤ,3r l ZQ¦ÈŹ@ÉÛg*LÀe®¬Ððq¸1<ÛÓWÞa«cÙÍHä4ç±y`ªx'VïR¼5ÀîÙú\>I
+u%¼|>SI÷LþÉDl ÐBßµ½s¸¨ÖHPýÉLÚ(íHTdyä¹aKp¼ÒNsKî÷μ½ß\ô'ò;êBK«K5ÿLç··åg/7zq=_Ïõj¾¼Öï«ÛÅ×År¾úS_ø:_.¾ÿq;_/¾-ïô¥²õAÚ3¼a=ÕQ𠼩[pg9MJl2ÐNÆÅÌ.Î
+ÆxW)_ÝaDà1©5l)mä>÷¥¢I·YåÎMa`!1À¬/F: ÂAµc HÝ+ ÌÝCcÙc·¿¿rÙlÄƤäO½`룹ýºôl?¼(ÂRz¯Ë2Ñô¼ÂN¡JÖOwãL´î<¾w$0Ö^}¼¼Gý/¡;61$îÆnÝ|p7¹¹Ð]úËka¯=íïÀ·í9PÉà^«H/ÅWº¼F£÷ä¼Jß
+ácóÒ©*ÞXßsätxKs Î Kmóú7º~¯TßXϨÒZtEj2íqÊõÚæ$V×a¼:ÅxªJ)ÊïijÁ]:i8ÔN©¬9Ì3³ºKiqMcåµËÿ»/¢¨Û«èî»®Ò}QÍ¥¥¤½±!Í£d+|AÂwûü\q¬ O´áX ÒÛ»S!WAQ(8 Æ ¿üÇ þ Æ\ø)b[9h']yÚ1¦ePÇ.SÍ@««Ù?ñ9sCp°XÏ 6o[ÙMHYP½¬Y ñ,P sªY´äÎzN¸ï7?ÝÈ©V¯A:.ByñcU].Ts=9VúV½*6ß@
4(·©ò&õ´gçw§Au¨uuÈZlPs°íAÌwfÛëS©þUµ]õõ¸þéPÖTÙ ÃG9
+²Ei[P°olFHßL ~¯"^Û }2Àûú[þHÍy
+Ï<2.îTÃXnà²M%Õz«Ã`nW]¦>î1³lÝèöU^¨ß(u m@,¯&{&<ó40@ó,)µâ¶Î Æ#:gÜDÜv>×~Æ©RNu¯#Ljb%4wù(¿chÑ55ÔÝYµ
+Ôº´U¶»Ðcûç
ò°}ì¾îÅÎàÓ¬ôRgMÁd8íôÏg`r>Óx£Ê7ë³ÿ9AÔ
endstream
endobj
627 0 obj <<
@@ -2703,23 +2699,17 @@
/ProcSet [ /PDF /Text ]
>> endobj
632 0 obj <<
-/Length 1574
+/Length 1198
/Filter /FlateDecode
>>
stream
-xÚµXmoÛ6þ_¡f(Ò*Ùµ´6MH8Þ!J¦m6©ÿûQõ`À¢)ñÞï¹;ÞÚ¼_ýüº8øp5=ñÎü³Ùxæ-V^8 üÓièÌB?
Þbé=¼[qéÒ_"ü]øàþ|<Oß½%ômµÿ
-¦Ált¦ácµõóqõ¼ýòþqñÝ;þú§'Þñxâi?U_HV=Np,«5Ò[y$°Þb+ýùWBj!ú+ª À3WË-âE iÚh?*E¼ã0ôϦ3GªB#Ã*cB$D,4a®ß)³$XM5ʵ¸áU${è;$ 0ßj"H8zgHJÌiaNGÄ)XlEëor]ó/9¡OZ8ðMÃqcýzÒǯr~èz84EI É©ÕãËÔÆÔƯ V*v)mÏ>v Ä`ÇßÕüî¦:øûåÅân~_ýørûZÜ|Y̯/.õöâ®zÞ__ªX/w_¿«÷mÊ @; ôI§ænÀ³èÊ C¤CÚDÚã1ÇHÂK¢Ã>rã+ã8CI¨pÉ$XJB×:2PpÒ{UÔ?ã8¸XHÔý³%õ¶ÄÉE)s]~7bF%gIÝ:6$Þèo ÕÁ¹U |§j+ .m]0øå
-f cO®©æ÷=8É47¢PB{ãre*3ØgÆ¿TTFfÏððAY²¬îì
-ÒÛ{Ð(E{c6ãÏ|Ý"¼&2jdÇ:$*Ü¡~Sàí ËU]Ø"*ý~(ìô.Á¢.ɲԵ%²ÎsRÇE)TÎ~¿|eäÄ#æ·::Ä;å¼
|wÏ5Ùbú¹Yöð
-å´UÊÆ;ÑAÙ Åæí2ÖüXòU7Í«Lª"M+çì[Ú¼B[¼k¶Ê)Ê2LàHäy ]à# ç3UIdÎqÆx+r]¡2ØX¾qêr
-äÓ}ZÀ[¥0¨}y/× ÞkûÏ»uÅ~$¦Áßã#SÀ»k]ï-´U]°[0UÞò§6¯8KCÊ=<ë9ä0xFC'TERØÓï&2td
-P¼»±Ö²=$/èWx£HêOõ¾DlHf³§ e*öKÔ*¬PEbù½åßDÊ
¸¥µEÙÕ¹}Ù¨«½*TA:¦çå±i wÌ¢üþÝèê@
-£J¼V¡GuÅ°`giã`"ä¡9ÖÕ QCÂzM(
-ËJÔï=X!!=2Ð1Äj¶½A÷BÃc2B%5;Ð7®5F0äà
-Úæ0ãî@¥1eÌöjÏ£®¾Hµ!øüØ5¾*ý¡2¹ÒÀ´ÖÃEn¶]ñuJ·¢]ÇJb¶aI¨´GòöDé´5ÝQÍ6+¦2J4ìLc Aw@ÁÛ º6YùÄoêsV{XtÄ@DHJSj:PK4úºÚ W'XFÀ§¹pjÁPËirC!VIBóÁëOíBþï8V°Ç?>;m¯À¶ÕëËêóC$úå¡C
-×3õÙ.-+@ïªTçmß8nÄø/Ä]ºÈ§{{³âÐþ¦¶m«b= 3f´*Zq^¤ÛxÜÓÄ8¨2é¢H§Ñ±;÷^ÝÈ|~UÎ"f)` )¦û¶G~µñnL:u *
-H 9]$·FÞ;.øªÅ`L#> Ó0-ªæ[ShVK¸;*LÒ?>¬1Ç,ÉS*.÷üFq?¸ qï ê>CC~ã:í6fà1³SÃgIb|vÀk)7,Oå.&ÌÑÔ³Ý`S{Ú=9ö0
-?mib¶!Lär,Ô8iïosWüáê´vO<NüYxâONýÙä´+8'.ÿ¸
+xÚµXMoã6½çW N Y«ø+è²@S´(r|Ëæ@S´Å&]RãþúR²dI¶ÝAK&gÞÌ<í;+Çwþ¸òÍø}~õõi4qfÞlùÒÎ<ß:qàùãÀÇÎëíÍÝ0MF·ÁÃÝpn?èþeP>PUcÆ%ÁbÅé$.ß
ÑÙf* pJdù¨RIùêîmþsxÓûÈ73f,%%<öb"o+~<åm^ýñÃù ØKÑüéZü!'éNÈu¯¾ÖoüSlä;à ðf£qË&á§6 »7µl}jèä&±ær}6bX$V±&AK-q¾)¿¥fÚsó¦Iù-MÌ9nc>â©%Êqa~Q`Ó´ÈXHÁ©W>=ét³etß97õpBð,DfÉÊÖFýCIbý'ë!
+⦬0CJåüZ2[¸´êÅsÿó>Gc-ìߤkbÊ=OF°Etcý;ôßkËI°£ø Çûc^U"2±ïÍmÚT®¨à£f@¤+Ê; ;3r_"!`äöð;êuEÒÑÇfí øt¬ïe¤V$.³,Î¥»ä*eÊå}Aï©%°a);iò@Õ+NNÆPJì4"ÕIUª:¹®5ñùñÛ 1]÷jÐÅx;Fø0¢Ïa±?o鸱´Ðêþ¥=¹ôüØ¡^/¼ØFU¶$L%$¹-ÏÂ(Îã;¢ÌXô+ ì\!)B¹o·7§Ò .j©ÊEH§àźÃtj¡8eÜK¥dk
+ñ}}w·§4§'(
ä¾QÚ°"KtÐJõ9ó7°á¢®tÙ·SßȪâP ÝéÁáoÉuFÎgçeÓçQS=NhMp Oà'»ãº¤zhäõmq§]§S%ÆÜëbåØå¯ÁD®;秪ÃÆ@/ã]Ë6úôcÁ²
+«`©J-¢MmÚ·#QS
¢î:¼(0f3иA,¢Æü¯½j½7¼¶]#¾Pþå 0Þ·z«
íT/ß@)zt9zlÕ~§*~rµ%Á9J¶CMÛ3^
+Iu'¥ê¸ñ2c^ÆUI²£¹\%(ïÉ]¨¶'HBW ÓÎRFmÂV7I
+?tºFÉJðl¡Ü¼v¯[æNá¤này"&É¿`Êá5ZAËÑCW·ÃèBês"Ï#ª]½ÄÁL
+ØÕ6hãËx
|fǪg£=(ÑÙ(QÊV§¦¢ºÒæ^º±D;Ý|{rcVå·|4«4\^v6qèÑ%èÑà;"Ì´[ÙÂv\G¢Q5ZÂAåAb at 3PuHAÿîÂíl_ôEö?¬¯OÓÿ¯Bâ3¦Þ8QmÅïó«ÿ[±,t
endstream
endobj
631 0 obj <<
@@ -2737,22 +2727,23 @@
/ProcSet [ /PDF /Text ]
>> endobj
637 0 obj <<
-/Length 1389
+/Length 1240
/Filter /FlateDecode
>>
stream
-xÚXÁrâ8½ç+¨É!*p0`ÙÝÃìl2f/ÙÔ°h#K^I&Ã߯Բ%I.±!rëéõë×m½uoØûv6´×ßgWwÉuoͧ£io±êÍæÑp8ë]Oãh8{¬÷|yþyËÇ'2÷à
4·kÉN±HìÌ+Â5·)§enסRñ)"JwÑçÅÊ £yxû-6ØÜ0Û»ÉÑo8Õ·±
-¸FÄÆ~#ÔOgæÖ(ËKU
-°Rl°Lâh6÷ã$M§ÝÒ,ýu`®[$¾rý§Â´
þôöúÜoF/{UàD£¹Ï¬¬ý)ôU`¤,¼t$K3z¹=Çò_Â9Ïá¸îp«7.^e¿ì´:
-ilÈ2øG^pIá¿tØ7·>sûóÙæ»'¶âo%ôwÜ¢ßLï ÚîWæºã¥M?/©
MɫŨ¸Se¬VX`¦juijüHiIàÿJ, Aöºâò7yãQÐ$ø0ëz©hÔ4´EØÚ[õÖîº@Ü@Æ]]ÔpeS²ÒZÁÌwüÍmoÐ6`Ú<¶Âæ<ÃÔÕ{S$Ø«[§ãPa[ çÜ* ÛçZ2è~êÍ*òMÞÃÞk/HôQp¡|<5
û2´{Ûtc)Âb%!¨/¾E¨ä L¦´ÝI¯§Dù ©
"['ùü{éjºÚ \3y_ß[
-Á³2
-Wl]o6øÅ^Õ6ã#>¢®ÖÊÈø3"t¹ØEÇ2_èbQÃøq£:Óý½"ú
-aÖ=ÆVÔ
L?F?t¨÷cE~¡¶Eku
-×î)
BrÈ+«æX?0ejñö$G}Y£5lèPï<]µ¾nº9²ðWaÇEKÈ5 :ãÁS
-÷Héáo¡û0M»ð*,*ÃÜb`ªEäê1
- ËÁIìÑ¿déÞ£Â{àлÕ
HúõxVèkUûYÏ*Öu¼0[ÊP¼8
ã¦#^µ}¿ ð¡þBí
-¸%,¥e´`î¦n,ýÑÖHä]ÙÑ"ö>¼OãwÍzÔÑ¥IÐ3
VDkt½ÛD²ÇýäÿñøýÖrm½øîË_O·ý.ÿkT+=hL4oã5?-¥}C;é9åFtfA¨õ¹Ú4EßN%«¦Kw6Ý(É× aBÓÇ@¸ÊpËpQMVàxX8zjáüBèÕ L÷ %2jkM0Á8ÇmàPÚ«R Ò-²mUA¯f01,àåÅ¡EÙé1cC êr¬6Þ«ºfÚ[æ,kçw,!`I»öûðuD`Q²CeÇa©ª Aiàð^ÄuþÛuã^8ÐÖrèè
-4q5âï÷UãìÊGÕ:nÁ¯Ñ<ÕzL{uà]³Úrï`³%e¯K\×o®7ÇY{ìý Wê?:¹ïgç8îÏ_üÑÝØV\'çíã°"mÀ¤3àØÜ¥aÄsý1\¤3Ú¨;nòx-°Uð¢¤úe]í:"»yÓ5ðñÔ/H®=èÉi{"ôô#hOÅö>¾öÀǤÔoè$òɬ3º÷ËѾW±ÜïoWw³Æooñ4®¯'½ÁxMÇ3³O<ñ¸]ý(hYÉ
+xÚXmo£8þÞ_tZiWJX %Mr×éõårÚëJmn¥S¯8Å[b²6$Í¿?=;@ï®J
ñÌ33ϼÏyq<çîÌS׫õÙçÛð»ói0uÖg6w=oæ\L}×úÎ:q>þôiáÇ"Í9ËCËEövÕb²R-yɼNÔW*¯ #ôÐù
+JÙªÓþ§çõïæØ÷ÝyXþöBOkÜåd¤ +iLíadóüJKïð¦Ì²#'êàd\qÌÀ6R>TQAB<÷ÝÙùÄwî+àª_Æ-kÿY^?úA®âÊ¢@mO´è±!ÛpÁZcF61fù2eãpHIÊ%_?üy#WxJû6F$RÌì`Ç9MÛEHûcj8*߸JâÐàI8Åñ«òEBø.CGdµE|qê©Zy[ø¹kÚÄæç"Xi¹°Âo"ÀWÉ
+<<ûðòr[@ ë ½ûô#ú¬Ñ¸Í!dTpèÎI5"}G9ü`móËrÄ¥?î[T0òÙU¤_Ì ¸
+P½¡EÈL,)¿òeùá2TfÐ8Ï.íM"B59º2ÔâLë@` Yô ßa×ÙcjÇMIX®àeT©t<"¬³uÛx®!¡åaDQv¬¨9*ع©"É)>)
+qq\@QϽ!Û0"ê°ï&¨@îÁ7½(7aïI8u¤ÝÛ¾¦´`@Z0$-lU
+¿ ÍÙçþ¶þTlWßV÷w*MSuõz¹^ê[«¹|øúåæQ.êúmù°Z^éÛ«{µ-/«{µüãëõ͹lô+ë:êŲ¿åÑwA;EødAÖ l#³?îÞ!V§/7Åd¸(t«ç"DÈ»à#~ÃqYØDÆ\µt×nMÛÀD4¦¸
+UªåjÑNÓ&FP$ÆÎ^- ²(®tü§]@ÝFֶᱠéòûÿÔ]/ -$ÆɦrUí×¹o ã
+âô¦ü´´;;ú"a4 Ô¬ºzÔ5=VO ÑCÎ^ÛX ~äÛÞö0ë;à
+x.#à=1ümHVûâήmf»îÌ}mÜMtä,Ï°©
+ºÙÌr«>DµÐÖÒÙ4^ïW]¼2íbÎS²«ûxO¦:¶yYìà=`C2ì·J½ÙiÚ
+Õ¢àÍ^6êjI]7ëyTÃðÏ
+æ3«Gíe-?ôÔq½¨Â¿lSþ4pýs¿{pLupüïñÐXékÜÞÌþo @bÉTÔÞWc|41c,&$Æõÿn?ê¿ÃήÜÑ3m§·YÅ[)åº:ÞøLFW4>aWÓáaHä;1¤#ÝýÍúmï ÷ÙÊàúÆ_'sûÃVY-`üé´m¾
+0ü£¬0§ïýVÄÊЮÁYãì~^ÿñùvÖúÂîÅŹ3ÌÜéd&eùçÆõÙ?ÌÁwË
endstream
endobj
636 0 obj <<
@@ -2770,21 +2761,20 @@
/ProcSet [ /PDF /Text ]
>> endobj
641 0 obj <<
-/Length 1412
+/Length 1190
/Filter /FlateDecode
>>
stream
-xÚµXKÛ6¾çW»A ^ŲW~4õ!I7E6v] @MÑtDÊ®ÿ}G"([»9ä²¢dræoÜñ`7~{6¶Ï·ëg¯ÞGóÁ2XÎ&³Áz;§ã`
ù,Ƴp°^\g'¶Ý~Æ£åç7Ñ$zñËy®ïÿ¾{yFóèÅ5I©Ldj~ ©f¹Yþ;Æê[ArÃ2|ùyý;(¿ Ã`Em§+`;Ù'éöéÏxJr®O-³ÀÙwB«ÿ!bJE7·a°¸n&Ó`LMoÊMh~`éidØ,23³Êå¦P:=Ù
-;Â
Òæe[è·ÑSæ
óÔýUé¼ åæÑY>ͦB1ïØV¦©<r±Ã×ÜÛÄü1ª®Ä³Ù0\ý}nö~$[ßÉêЬºìÆçú´/³I×!4-b6ü¼ª<úklØ û]üÈ1 ¤`*è!xmS{Fù=*Ðg`¡KûaÃô1û¢Èé#3û\Rï>ñ2[ZµÊ³(G³E¶qmÛ`alà,¾Þø¸M¼A¬!AÚ-ÄmЪ6ÜÚMu6hp+±¼cºCIÊ<ÉF`è7_'}VgPµRÐuò¬Öã M1GýiJh,i{Ý©&RÒF
-OÓ¶3¢þÍ ó 2¤ýli!Ó²O-y.9-mòsxõ·: -ÃÆ#½Åé©óýL9o%ÿ4
-³v(v¯ÂøéDƪí& ÃvÔÈÙ|y¼@¶ÑZ#îjº?'Bs¾GnO4eÓQ«xôóuVÛ:}Pÿ5
-ÎèB>Uí²QÂÕ-[WßH1mL÷qÈBû2DVËëk8béÞ<ò6¼®k"ÖBb &µÓ^%2×u®ØýLS{ð@ ]¸SX¤ö±=~à¤ësÿÈ㯲ø+:W#´~%;¶ºº(3®¦±Ç0ìU"ÑYÚÎÞ¼ÍZÕ¤¦_T
- ó`¨\ ÕFe+
3 I]wåÚ¯ê^ÉdÌÒvÚ¹1ÑädH/´
-XÔQ-eÊǨīf n¦Éêý?îìË7R±jºxsÞ°4;`<
sP»+²O²ðʾ:rwn0lÒÊcý
-²Ú°ÔË+å7²üÙåd¶Ôu¡¼Ñɶ¢æ8{&ü^Õ.ÎM¢íÊ_cNvB*Í)*É-#ÍÙÊ©TäNHQ` ZOqwb£lÔÓT¢ÉÖÝÎíQZF-Ài½-kID+ö.:&B)ÝxàX¸`üRÖ· ~v=O°ÜüµVúëÞqÓI4qT;gá.7Ö¡0t»Id²@aÞéZ"ìéÀp°s
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/rsiena -r 98
More information about the Rsiena-commits
mailing list