[Rsiena-commits] r113 - in pkg: RSiena RSiena/R RSiena/inst/doc RSiena/man RSiena/src RSiena/src/model RSiena/src/model/ml RSiena/src/model/variables RSienaTest RSienaTest/R RSienaTest/doc RSienaTest/inst/doc RSienaTest/man RSienaTest/src RSienaTest/src/model RSienaTest/src/model/ml RSienaTest/src/model/variables
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sat Jul 10 17:11:47 CEST 2010
Author: ripleyrm
Date: 2010-07-10 17:11:46 +0200 (Sat, 10 Jul 2010)
New Revision: 113
Modified:
pkg/RSiena/DESCRIPTION
pkg/RSiena/R/sienaDataCreate.r
pkg/RSiena/R/sienaModelCreate.r
pkg/RSiena/R/simstatsc.r
pkg/RSiena/changeLog
pkg/RSiena/inst/doc/s_man400.pdf
pkg/RSiena/man/RSiena-package.Rd
pkg/RSiena/man/sienaModelCreate.Rd
pkg/RSiena/src/model/Model.cpp
pkg/RSiena/src/model/Model.h
pkg/RSiena/src/model/ml/Chain.cpp
pkg/RSiena/src/model/ml/MLSimulation.cpp
pkg/RSiena/src/model/ml/MLSimulation.h
pkg/RSiena/src/model/ml/NetworkChange.cpp
pkg/RSiena/src/model/variables/NetworkVariable.cpp
pkg/RSiena/src/siena07.cpp
pkg/RSienaTest/DESCRIPTION
pkg/RSienaTest/R/sienaDataCreate.r
pkg/RSienaTest/R/sienaModelCreate.r
pkg/RSienaTest/R/simstatsc.r
pkg/RSienaTest/changeLog
pkg/RSienaTest/doc/s_man400.tex
pkg/RSienaTest/inst/doc/s_man400.pdf
pkg/RSienaTest/man/RSiena-package.Rd
pkg/RSienaTest/man/sienaModelCreate.Rd
pkg/RSienaTest/src/model/Model.cpp
pkg/RSienaTest/src/model/Model.h
pkg/RSienaTest/src/model/ml/Chain.cpp
pkg/RSienaTest/src/model/ml/MLSimulation.cpp
pkg/RSienaTest/src/model/ml/MLSimulation.h
pkg/RSienaTest/src/model/ml/NetworkChange.cpp
pkg/RSienaTest/src/model/variables/NetworkVariable.cpp
pkg/RSienaTest/src/siena07.cpp
Log:
Fix for bipartite networks returning simulations, endowment effects scores, more ML code
Modified: pkg/RSiena/DESCRIPTION
===================================================================
--- pkg/RSiena/DESCRIPTION 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/DESCRIPTION 2010-07-10 15:11:46 UTC (rev 113)
@@ -1,8 +1,8 @@
Package: RSiena
Type: Package
Title: Siena - Simulation Investigation for Empirical Network Analysis
-Version: 1.0.11.111
-Date: 2010-07-03
+Version: 1.0.11.113
+Date: 2010-07-10
Author: Various
Depends: R (>= 2.9.0), xtable
Imports: Matrix
Modified: pkg/RSiena/R/sienaDataCreate.r
===================================================================
--- pkg/RSiena/R/sienaDataCreate.r 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/sienaDataCreate.r 2010-07-10 15:11:46 UTC (rev 113)
@@ -561,6 +561,8 @@
attr(depvars[[i]], 'vals') <- vector("list", observations)
attr(depvars[[i]], 'nval') <- rep(NA, observations)
attr(depvars[[i]], 'noMissing') <- rep(0, observations)
+ attr(depvars[[i]], 'noMissingEither') <- rep(0, observations -1)
+ attr(depvars[[i]], 'nonMissingEither') <- rep(0, observations -1)
if (type == 'behavior')
{
attr(depvars[[i]], 'noMissing') <- FALSE
@@ -580,6 +582,10 @@
attr(depvars[[i]], "nval")[j + 1] <- sum(!is.na(myvector2))
attr(depvars[[i]], 'noMissing')[j] <- sum(is.na(myvector1))
attr(depvars[[i]], 'noMissing')[j+1] <- sum(is.na(myvector2))
+ attr(depvars[[i]], 'noMissingEither')[j] <-
+ sum(is.na(myvector2) | is.na(myvector1))
+ attr(depvars[[i]], 'nonMissingEither')[j] <-
+ sum(!(is.na(myvector2) | is.na(myvector1)))
if (all(mydiff >= 0, na.rm=TRUE))
attr(depvars[[i]], 'downonly')[j] <- TRUE
if (all(mydiff <= 0, na.rm=TRUE))
@@ -618,6 +624,16 @@
{
mymat1 <- myarray[[j]]
mymat2 <- myarray[[j + 1]]
+ ## remove diagonals if not bipartite
+ if (attr(depvars[[i]], "type") != "bipartite")
+ {
+ diag(mymat1) <- NA
+ diag(mymat2) <- NA
+ }
+ attr(depvars[[i]], 'noMissingEither')[j] <-
+ sum(is.na(mymat1) | is.na(mymat2))
+ attr(depvars[[i]], 'nonMissingEither')[j] <-
+ sum(!(is.na(mymat1) | is.na(mymat2)))
##remove structural values
x1 <- mymat1 at x
x2 <- mymat2 at x
@@ -625,12 +641,6 @@
x2[x2 %in% c(10, 11)] <- NA
mymat1 at x <- x1
mymat2 at x <- x2
- ## remove diagonals if not bipartite
- if (attr(depvars[[i]], "type") != "bipartite")
- {
- diag(mymat1) <- NA
- diag(mymat2) <- NA
- }
mydiff <- mymat2 - mymat1
attr(depvars[[i]], 'distance')[j] <- sum(mydiff != 0,
na.rm = TRUE)
@@ -643,15 +653,19 @@
{
mymat1 <- myarray[, , j]
mymat2 <- myarray[, , j + 1]
- ##remove structural values
- mymat1[mymat1 %in% c(10,11)] <- NA
- mymat2[mymat2 %in% c(10,11)] <- NA
## remove diagonals if not bipartite
if (attr(depvars[[i]], "type") != "bipartite")
{
diag(mymat1) <- NA
diag(mymat2) <- NA
}
+ attr(depvars[[i]], 'noMissingEither')[j] <-
+ sum(is.na(mymat1) | is.na(mymat2))
+ attr(depvars[[i]], 'nonMissingEither')[j] <-
+ sum(!(is.na(mymat1) | is.na(mymat2)))
+ ##remove structural values
+ mymat1[mymat1 %in% c(10,11)] <- NA
+ mymat2[mymat2 %in% c(10,11)] <- NA
mydiff <- mymat2 - mymat1
attr(depvars[[i]], 'distance')[j] <- sum(mydiff != 0,
na.rm = TRUE)
@@ -1358,14 +1372,26 @@
cvnodeSets <- namedVector(NA, vCovars)
dycnodeSets <- namedVector(NA, dycCovars, listType=TRUE)
dyvnodeSets <- namedVector(NA, dyvCovars, listType=TRUE)
- totalMissings <- namedVector(0, netnames)
+ # totalMissings <- namedVector(0, netnames, listType=TRUE)
+ # nonMissingCount <- namedVector(0, netnames, listType=TRUE)
observations <- 0
periodNos <- rep(NA, 2)
+ numberMissingNetwork <- rep(0, 2)
+ numberMissingBehavior <- rep(0, 2)
+ numberNonMissingNetwork <- rep(0, 2)
+ numberNonMissingBehavior <- rep(0, 2)
groupPeriods <- namedVector(NA, names(objlist))
for (i in 1:length(objlist))
{
+ newobs <- objlist[[i]]$observations
+ periodNos[observations + (1 : (newobs - 1))] <-
+ observations + i - 1 + (1 : (newobs - 1))
for (j in 1:length(objlist[[i]]$depvars))
{
+ numberMissingBehavior[observations + (1 : (newobs - 1))] <- 0
+ numberNonMissingBehavior[observations + (1 : (newobs - 1))] <- 0
+ numberMissingNetwork[observations + (1 : (newobs - 1))] <- 0
+ numberNonMissingNetwork[observations + (1 : (newobs - 1))] <- 0
varname <- names(objlist[[i]]$depvars)[j]
netnamesub <- match(varname, netnames)
if (is.na(netnamesub))
@@ -1418,8 +1444,25 @@
{
structural[netnamesub] <- TRUE
}
- totalMissings[netnamesub] <- totalMissings[netnamesub] +
- sum(attribs[["noMissing"]])
+ if (attribs[["type"]] == "behavior")
+ {
+ numberMissingBehavior[observations + (1 : (newobs - 1))] <-
+ numberMissingBehavior[observations + (1 : (newobs - 1))] +
+ attribs[["noMissingEither"]]
+ numberNonMissingBehavior[observations + (1 : (newobs - 1))] <-
+ numberNonMissingBehavior[observations +
+ (1 : (newobs - 1))] +
+ attribs[["nonMissingEither"]]
+ }
+ else
+ {
+ numberMissingNetwork[observations + (1 : (newobs - 1))] <-
+ numberMissingNetwork[observations + (1 : (newobs - 1))] +
+ attribs[["noMissingEither"]]
+ numberNonMissingNetwork[observations + (1 : (newobs - 1))] <-
+ numberNonMissingNetwork[observations + (1 : (newobs - 1))] +
+ attribs[["nonMissingEither"]]
+ }
}
thisHigher <- attr(objlist[[i]], "higher")
thisDisjoint <- attr(objlist[[i]], "disjoint")
@@ -1504,9 +1547,6 @@
stop('Inconsistent node Sets')
}
}
- newobs <- objlist[[i]]$observations
- periodNos[observations + (1 : (newobs - 1))] <-
- observations + i - 1 + (1 : (newobs - 1))
observations <- observations + objlist[[i]]$observations - 1
groupPeriods[i] <- newobs
}
@@ -1578,7 +1618,11 @@
attr(group, 'netnames') <- netnames
attr(group, 'symmetric') <- symmetric
attr(group, 'structural') <- structural
- attr(group, "totalMissings") <- totalMissings
+ # attr(group, "totalMissings") <- totalMissings
+ attr(group, "numberNonMissingNetwork") <- numberNonMissingNetwork
+ attr(group, "numberMissingNetwork") <- numberMissingNetwork
+ attr(group, "numberNonMissingBehavior") <- numberNonMissingBehavior
+ attr(group, "numberMissingBehavior") <- numberMissingBehavior
attr(group, 'allUpOnly') <- allUpOnly
attr(group, 'allDownOnly') <- allDownOnly
attr(group, 'anyUpOnly') <- anyUpOnly
Modified: pkg/RSiena/R/sienaModelCreate.r
===================================================================
--- pkg/RSiena/R/sienaModelCreate.r 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/sienaModelCreate.r 2010-07-10 15:11:46 UTC (rev 113)
@@ -17,7 +17,8 @@
condvarno=0, condname='',
firstg=0.2, cond=NA, findiff=FALSE, seed=NULL,
pridg=0.1, prcdg=0.1, prper=0.3, pripr=0.25, prdpr=0.25,
- prirms=0.0, prdrms=0.0)
+ prirms=0.0, prdrms=0.0, maximumPermutationLength=40,
+ minimumPermutationLength=2, initialPermutationLength=20)
{
model <- NULL
model$projname <- projname
@@ -81,6 +82,9 @@
model$prdpr <- prdpr
model$prirms <- prirms
model$prdrms <- prdrms
+ model$maximumPermutationLength <- maximumPermutationLength
+ model$minimumPermutationLength <- minimumPermutationLength
+ model$initialPermutationLength <- initialPermutationLength
class(model) <- "sienaModel"
model
}
Modified: pkg/RSiena/R/simstatsc.r
===================================================================
--- pkg/RSiena/R/simstatsc.r 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/simstatsc.r 2010-07-10 15:11:46 UTC (rev 113)
@@ -1620,7 +1620,7 @@
attr(f, "compositionChange") <- attr(data, "compositionChange")
attr(f, "exooptions") <- attr(data, "exooptions")
attr(f, "groupPeriods") <- attr(data, "groupPeriods")
- attr(f, "totalMissings") <- attr(data, "totalMissings")
+ # attr(f, "totalMissings") <- attr(data, "totalMissings")
if (x$maxlike && x$FinDiff.method)
{
@@ -1846,35 +1846,21 @@
## set up chains and do initial steps
simpleRates <- TRUE
- ## sum the missings to calculate the relevant probabilities
- totalMissings <- attr(f, "totalMissings")
types <- attr(f, "types")
- use <- types != "behavior"
- ## use arbitrary n for now
- n <- length(f[[1]]$nodeSets[[1]])
- if (sum(use) > 0)
- {
- netMissings <- sum(totalMissings[use])
- prmin <- netMissings / (netMissings + sum(use) * n * (n - 1))
- }
- else
- {
- prmin <- 0.0
- }
- use <- types == "behavior"
- if (sum(use) > 0)
- {
- behMissings <- sum(totalMissings[types == "behavior"])
- prmib <- behMissings / (behMissings + sum(use) * n)
- }
- else
- {
- prmib <- 0.0
- }
+ nbrNonMissNet <- attr(f, "numberMissingNetwork")
+ nbrMissNet <- attr(f, "numberMissingNetwork")
+ nbrNonMissBeh <- attr(f, "numberMissingBehavior")
+ nbrMissBeh <- attr(f, "numberMissingBehavior")
+
+ prmin <- nbrMissNet/ (nbrMissNet + nbrNonMissNet)
+ prmib <- nbrMissBeh/ (nbrMissBeh + nbrNonMissBeh)
+ cat (prmin, prmib, '\n')
z$probs <- c(x$pridg, x$prcdg, x$prper, x$pripr, x$prdpr, x$prirms,
x$prdrms, prmin, prmib)
ans <- .Call("mlMakeChains", PACKAGE=pkgname, pData, pModel,
- simpleRates, z$probs)
+ simpleRates, z$probs, x$minimumPermutationLength,
+ x$maximumPermutationLength,
+ x$initialPermutationLength)
f$chain <- ans[[2]]
##store address of simulation object
f$pMLSimulation <- ans[[1]][[1]]
Modified: pkg/RSiena/changeLog
===================================================================
--- pkg/RSiena/changeLog 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/changeLog 2010-07-10 15:11:46 UTC (rev 113)
@@ -1,3 +1,17 @@
+2010-07-10 R-forge revision 113
+
+ * src/model/variables/NetworkVariable.cpp: bug fix for endowment
+ effects, since a recent change
+ * src/model/ml/NetworkChange: bug fix, could not return bipartite
+ simulations.
+ * src/siena07.cpp, src/model/Model.h, src/model/Model.cpp,
+ src/model/ml/MLSimulation.cpp, src/model/ml/MLSimulation.h,
+ R/simstatsc.r, R/sienaDataCreate.r, R/sienaModelCreate.r: adaptive
+ permutation length and probabilities for missings for ML
+ (in progress still!)
+ * src/model/ml/Chain.cpp: removed structural links from initial
+ chain (ML)
+
2010-07-04 R-forge revision 112
* R/sienautils.r: fix bug with groups and constant dyadic
Modified: pkg/RSiena/inst/doc/s_man400.pdf
===================================================================
--- pkg/RSiena/inst/doc/s_man400.pdf 2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/inst/doc/s_man400.pdf 2010-07-10 15:11:46 UTC (rev 113)
@@ -499,21 +499,20 @@
(References)
endobj
342 0 obj <<
-/Length 1128
+/Length 1131
/Filter /FlateDecode
>>
stream
-xÚVYsÛ6~ׯà#5cÂ8íØm2c·µÕ§¤4Ilx¨$eWÿ¾,¨
-ÝNG3"Ýo|» ¶~ZÐ7¾ïVë;¦"m4V NDFe3ÖÑçø>o\żZ&òxÓvË?V@WOt"e íµ>Þ>ܹ
-ÍR'±m»¾lDO
-Z&ÊH¦¸rJÄ°4J8#ÙèدÝR²¸})¶÷NøÅ-a¹q0§`¯ïXJDª¸L
-ð1G¼Çðp踯Ë}e ñ%H®Á"¬ÇmÊ7äA¸§¦üs
-~Í¡gè£HÁ¢D¢¤DäßR¥}ª78"t»Áï/ñ¬X&©ñ»Ï»¡¶Îuü4äËO¿L챸,úqëáð
2e«5j¼o«ÊníÄiÏe>q2a:TÁô
-¡8et6ÚÛÕÁF,bZEu$¨& zñ×BøMü÷£tX¸¾«Yô¡]ü¿KìQ43hÏvE8¥RhnLD at tÂÂPnû¡Ëá£Jé@Âr10 {P
-Äfb(¼ÿB%=Ò¦§2*ëC'åÅÛåöliÓ.¹;ÜÖû²+¬Õ,~°@,~uu_qã
-æØý£ôÜQ* ì¿9|¶Þ?ípaßµÛ.¯QhØå>@iHêÃ(p<CÔ"ïºÒ:@¥zpU,®ô¤&Æ.æzÙ©lP£nÀÄxm«år:Ų/>øê ÚànÛ @åh©9ÏX÷5ÀæEåU6[3 :ÁúØäuYàÈÔvIá6x°k\¯Ñ2¸sðhRiýêlë{CëPx]®]Í) ¼gínÖÿêÙ!W丧ç¬B£L¥W;däe=õ´ Ö<w'p'Á|ãºÙl9iA(c3·ÒópßóKÉ०}g3.XGgÈYÙõI£IjF¬Ç'8ø|Τ"ò[?è¯;×gv1tí«¦EëºòÈ&Xßç^éëR:QomÈXû-sXpMütZo<ûc?Øz.ð@à'¯gâ$Ó§|[ùsãÏ-ç>:XÎ{ ,ùï0êؼ«\V|ùCÆo´Ñ^p×ÓÿìÊ}wîø~ðèÂßhÆW÷ËÀ§RPH¡ÒÅ2ÏËbãZëAãòkWô?ñmË
-|ßô£ó0ÝüÙq|»>îF?Ê$¯\Ìâû©ã`½Ôlá`v§¦fKûì»í¶¶Ê¡æ/kïý®sÔÈ]>Rï»rñÄ:±1# ¼¢$ðÒ
-<¶&xüØ
+xÚVYsÛ6~ׯÀ#4cÂ8íØm2c·µÕ§¤4Ilx¨$eWÿ¾¨Ðít4#âØýöÀ·P´Eý´ o|ß×wL!m4C«
+b¥H³pfÐj>ãû¼Yr
yµLåxÓvË?V@WOt"e íµ>Þ>ÜD¹
+ÍR'±m»¾lµÊH¦¸rJÄ°%ltì×n)n_J§í½¿8°%,7æìõÐ¥D¤{À¡ Ïñ÷xv Ý÷Õø±ÜWö8¿(1Dr
+.Âji8në |CÞ ÷Ô®Á¯Y à%eðQH¤`(()òïM ©Ò>Ut» ß_þcYÿ°LR!ñ»Ï»¡¶Î5~òÁå§_&ö.þÇ°õpøB²Õ:h¼o«ÊníÄiÄxFæ>q2a:TÑF¯§Î{»Z0PÄÓ(ª ð,CE½øk!üfø÷£t\¸¾«úÐ.~ß%ö(ÈÉ´§»ÈR©ÔeFNQ!ç~èòbxã¬Rz0¥¡^ÀÃ%ó
Ì¥#ñ¿PIO4Aeiä©ÊúPÁ
úÈðÇæÅöC¹=[Ú´Knp&·õ¾ìÊ"k,°%ïN¢u£îkظ9öe?ç(ã$=wöß>â¢÷ Ð`»°°ïÚm×AhØå>ÀiH
+g ÄgµÈ»®´PAI%VzÇR3Ä.æzÙ©lFÝ.xm«år:Ų/>øê Úàn¶ Xr .ÊÑRs±îkÍê«l¶>&:
+f !t4 õ±Éë² SÛ%-Û8àÁ®Ãz,ëaMJí³_íqÏqèb
+²Ëµ«9eñ¬ÓÍú_½ñ3;Dáü÷ôUè©xµ¼Ì°§61Ãç.%/%o\;-'-elæZr.<s~+p+EÂéÔu6ãuq6]Ï4¤fÄz|ÏçL*"¿õþºs͹pöwÁn]ûªiÑúÀ®|ÁC`¬ïs¯ôu)(Ã[3Ö~Ë\(G¸§
Lc~ãU:7âþضK'¼øÉëǸ$Éô)ß$Àü¹qÎ-ç>:XÎ{ ,ùï0êؼ«\V|ùCâ7ÚhO¸ìéveþ;÷ððèÂßhÆW÷ËÀ§RPH¡Ò
+e
+ÄƵ:?2×Æå×®è ~âÛø¾éGçaºù³9ñ}îú¸ý|({¼rm0Ã÷e cõzP³
Ù-=î³ï>¶ÛÚ.*Ç¿¬½÷»ÎQ#wùH9< ì¶fÈÅëüÉÆ$ð
+ at I&á©y6mMðøÏ$Ä
endstream
endobj
341 0 obj <<
@@ -701,7 +700,7 @@
/ProcSet [ /PDF /Text ]
>> endobj
411 0 obj <<
-/Length 2098
+/Length 2097
/Filter /FlateDecode
>>
stream
@@ -713,16 +712,18 @@
67wéÓÝ[ÎÐ_ ,´ÿ&}#áºÃ3ëhx×øxpÞYçñÆÏlÜAÑDó §Ì㺪uøÚsØÿT¥6uÿ¾ÀÎØ|"ØÌýVÖqWÖ÷Õ;82&;침ïöð6QR¯]`?{ÔÁîEÍú)AÄñö(?4|,4¼pÇIêÍ:·Ñ¶Éz>²õAÃ,ýÓFð
>³ ½lsÉ(¡ÐË`þy9q8)â!¦¥DÚb)zÒ)Ñ ôǸ^b ãÜ3Þj1±àÝS¯ êUY¹ÿmUÚs±rgª<[®ZÍ]$º×YÅj M¡³o̧qC±Óÿ_}Û9ñè(àÃAV,Zµwû&·£ )[ÕöÕð U·Gõqh¤-IL# F?Ñ
9¢9,Ò~
9£+ýÊx½ÉåÞl[3ú8â+E¿ JT¶©ÑùK_Î1çÊ9}mDÙ³fA[Öð 4,!=!_:Ï
-¹;ï$íùÒ>LJ"ÓFÉAÆ,ðËÎÐÔ
-BúN5jÝÖò:36лªä §¦è"ä§&jY"nk¹©¼±?7ðó üâýFìâfªúe¾ 4
-®dÒÔãD!v2×£¡ ;©Y¿EÏ_YãEGr2Äô`KÏûì«7%ï¥E24 é%ý°áTs!m4EÁJæâ|©ó]s¹VÆ/34 ÎsôÁ0ôÝ°ß*©þRÙfØ:n»aM %
-0Òsí=lÛa]m²mmtúTõ{$¤Ü'º½[Vý}¯ÕFìÜ7Ŧ©íÌ©)%è0b=E@|ìmÖv%ìM}=ðß |èO.
ªò'xÜ BAäxé|[«&©ç Ne-ÕZ祩åìë\Ü8odñ`br(~"Û5=ß~7ê6N3×±LÚÖÅReq=D0~iýPs¢!Í;n°oݧ:¹I>éizb&È£â
xB\/5NðuªÀo¦H{¶T«¸¨ün^ïÉ0ijK44O³XRßÛ´J©´°:!l»Ï#!XPüÜä£Ö©tÑYµ-1+
+¹;ï$íùÒ>LJ"ÓFÉAÆ,ðËÎÐÔÌBúN5jÝÖò:36лªä §¦è"ä15UÈq[ËMå5]ü¹åï7b¬4SÕ/ó¡Qpý ¦Oô`$±¹
+ØIÍúEì(zþÊò/:Ó!> [zÞg_½¡(y/,¡I0H/ùì
+§q|l£)
+V2߸×äKïúËõ°0Þx Üü uð ¡ïýVIõÊ6ÃÖqÛ
+kâ|àH(PÑvkïaÛëjm;l£Ó§ªßØ#!å>ÑíÝ´òìï{6bç¾)6MmgNM)éèÄøDë)âûdo³¶+a×hêëÿäCDt)Tý?ÁãþÁ
+: ÇKçÛZ5Iݨ8ïq*k©Ö:/M-g_ç:àÆy3$¿CñsÙ®éùö»Q·q¹eÒ¶n-*ë!ñKcèG2|¢!Í;n°oݧ:¹I>éizb&È£â
xB\/5NðuªÀo¦H{¶T«¸¨ün^ïÉ0ijK44O³XRßÛ´J©´°:!l»Ï#!XPüÜä£Ö©tÑYµ-1+
°¸øGèL&&ò½¹µ5²Ê¶¶YÅÅR¬M¾¼óìMäÂ÷Iåîö¾bðÅÝñºwOzÙ»«©ÕL3Íè·ã´Ú´Ç2ÉKF·îIq¾¤Û
õª:Þ
-lW0®®ËdÞî©ÝíHà u»Òd¥¾@}é"^gIõy¾QÉTr±¶ÅÉTL¦¾«Å\VãY3¤õRëO];ãÎ] ^¼Öyµ;ÏZ Þ»¶Ä×ýnC ±9Ê]Ö\UÔÄH´_sõbã lä=å¨@ФÀM½T{£ÊªZÒXy÷oÁ²³ÙCZò{öµrm¬×²²xXÏOZ°<Q:¾:»¼ô³Uq«¸]aY¢üÚ®Ö¼ÛBÆ1¿¤£fUI!ê5ÛUffó¶Æ´Ù~M¢¿¾ûÈst áy:½á÷eè»hm´ïMv6ô<Ä~¨n«Ï=ê±³¢^'wï²µìº
Ør)µï»_áíçZ/|»íÁ¦öúÔ&6'ü%b?q5ù ÚGuëÛ1«®lñí©!¡Çb^
+lW0®®ËdÞî©ÝíHà u»Òd¥¾@}é"^gIõy¾QÉTr±¶ÅÉTL¦¾«Å\VãY3¤õRëO];ãÎ] ^¼Öyµ;ÏZ Þ»¶Ä×ýnC ±9Ê]Ö\UÔÄH´_sõbã lä=å¨@ФÀM½T{£ÊªZÒXy÷oÁ²³ÙCZò{öµrm¬×²²xXÏOZ°<Q:¾:»¼ô³Uq«¸]aY¢üÚ®Ö¼ÛBÆ1¿¤£fUI!ê5ÛUffó¶Æ´Ù~M¢¿¾ûÈst áy:½á÷eè»hm´ïMv6ô<Ä~¨n«Ï=êѳ¢^'wï²µìº
Ør)µï»_áíçZ/|»íÁ¦öúÔ&6'ü%b?q5°óuëÛ1«®lñí©!¡Çb^
]åËR9Ô«Á¿(aÄò±ödZyYòkSo6ML/üÏÌO@«íâìÁï9j½ß¨ëãT\¶~
0§`ªiø]ÂWM]lw<ø¢y×Ê9Ìeàço£k·±÷MY¤mm»Ëb]
-Mô{ë«,À«87âpû(ÿÛdªÓ÷Û@Õÿ£ì ĺ<ï(¸SJ\ÜS8)Á4ï|#ÊÜÖzÅ*µ_©T©oBêÝòõ;>úNµwB$3¡í>+ûçÿÝ×w¯~ 0{k
+Mô{ë«,À«87âpû(ÿÛdªÓ÷Û@Õÿ£ì ĺ<ï(¸SJ\ÜS8)Á4ï|#ÊÜÖzÅ*µ_©T©oBêÝòõ;>úNµwB$3¡í>+ûçÿÝ×w¯~j{y
endstream
endobj
410 0 obj <<
@@ -1116,8 +1117,8 @@
óÕ²«çhJãXúÖ~Tõ_3Èß|`'¹Ö(ÅSÙ-àwÐCºÍQ\¹)³.]ï:;ùCÏ
û*>æGÓfñc~uíߢÚ4`¢a¡ õÉ
æ(êäñQÈ|¾´Pë4NãCýÉ]òÒ)é#Z°¨
«o|ÇȽÍz²«bÛæÀÙCá¥|Q'GQv:ÕÇCãtêäÓ½Òþ¾yDY±õªØë56còípÖxfêav¹È¶X¾å.&T:Ýq:Þ?9ÊÃñfSn].+ûÚ8ÝØúËû<;¥âtr>b>qµf/$ÿù_ÊÇ{;(«7æ&s5O^Õ]sɸf·Ë¦#xcúRýÆëCiC½MÔ=кhNOÜ^óÜáJ'pu®åpNðsßYH¬GhÇ í¸{?»-
Õÿé~IÆDz¸IA¸/É~·µØ½mc-즳;èõ¦ºy\d§)AÝá]ö¡*Wy»]æegnÛA ZbØ#éKùuXì¡î¬±ë
-¯B§÷ïðÎDÞ"`¨1
YÜ^mvUßЫ}uÔxèó]@9/¡ÞÛ»÷ÆqVÚR>ä^ì\£yÓúëúÁÑ5¢BV ]¨<ìÅ}®¦~8úí7³³SÔro"½ßdåÊÉÕzÕîe%Òí²ØþWVy7¹oU×[a^AS4÷þ¼è¹îÞ êªiÑ#s5Ó .M¸óK
-'R$7öÀÛùÙ?ÍIn
+¯B§÷ïðÎDÞ"`¨1
YÜ^mvUßЫ}uÔxèó]@9/¡ÞÛ»÷ÆqVÚR>ä^ì\£yÓúëúÁÑ5¢BV ]¨<ìÅ}®¦~8úí7³³SÔro"½ßdåÊÉÕzÕîe%Òí²ØþWVy7¹oU×[a^AS4÷þ¼è¹îÞ êªiÞ#s5Ó .M¸óK
+'R$7öÀÛùÙ?Im
endstream
endobj
450 0 obj <<
@@ -3396,36 +3397,34 @@
/ProcSet [ /PDF /Text ]
>> endobj
747 0 obj <<
-/Length 3050
+/Length 3051
/Filter /FlateDecode
>>
stream
-xÚµZYÛÈ~÷¯Pö¬6oz$>^ÄÞ`<Á"Ø
-Ô#qM
-õïSWS$EÍx²'uÕÝu~Õ»Ø.ÜÅÏ\ù}uóìê] Z«4½ÅÍÝ"Ië&8ÒÊôâf³øÅñö+½Ðù!ÿÛåÊC§6w¦6åÚ4ËÝüxõ.Y¤*¼Å¸N¤,áç)á¥4vºß'þP^#¸¼GüÞ¿ýøò\ªÃ>µezÎó'oxµYçYk6ü Ýe-?:.½Ä©:&ÓöÞVÓ
-Ùg%òvYÁO²r3fJêf¾ª
RÂ|Y¡Ã2Z<ÇbÊCPê:â4¸
-Pèþ¦°Ã½iw° HÙK¾?fÚô`/xB"ü+ï¥Îa©ºÚÖÙ^-Wià:7Vb¿¤¬TÙ7sYNóÉQ«qå!á®*
-yvU=G Ò `ëv|\&>,r®»v# |PbCV/P>ùoS7Âz¯U{|8/Õ+Å\«]Àñah(`º#{ $r!¢}AW%å2Ó¯nèjÚÿ[1òÊjîÈÈûÈù±EG1¤Ý`
-;L´ëüôö´y±\EIâü£ÌûÝ´8 wC¶<ü2³HcYݱÑFÚ¬Í6_7ß"tä|ì~uud
-?
-v1[£fBmr]Û^\]Ýßß«6ÔñUekÕ}¾jrSfWç¡(YÕxÎmÖäk¼
-§l£úï ?jqOñYf¦Í±Ìöp@í%LÁó²NÊ¿ÕúÏÜ34ö¶rõ¶ã5`»ÌáÜàA¬W¤.ʽRææ/X^²2Ô>@AziFJ]ÝÙeìî,'rÖÕÊOVE×R ¬6Óó!ó >½8/4ÛvoïD¡L¬L-ÄÉÉq1Û¼ãoe4Zkâ¡_0ïÓ&¦ÖñévspäEbý;EiV7 3Iþ
-iwÞÎhÜm%ÿàZkluQ`ôÄÉÈôÈ4c$? hL4[sîÅ ü)'àå9zc)O(£YÓ´³â\v°¶E®-»¥8gi9º'o@4MkÏ8µÜlP|ÃW'e;ðÒ1LOs/FÀ\±ÎuWd?øò4üBJ-7Y½a6S×UÝ9lÑÂS±ç'VÆj¶ÙÂó B5Øg-ÈÇÄhçÝ
-ÙfM`ìSòs-µýax´3aJc+Ã0ñÓë ¶"£àBW î8]c hMê9ɺ*ÌCú³¡hñ# ü[Õò²j*ÊÖ)bÎyçNñHÌRùáþý{KK¿3§ê+µ¸@N8DÏTÉsX°JáßW{×s$JòG9ôÉÓ¤x@ûm lbÚ¶ïAv¦8ðè>'T # t·ïJÞc|Áû¶ ';(Júã4&føãYÉL«»²ïet U÷ÍÌõ'ÄP3ÝL¢bí
-º ðÀ¬UkmxÔîêªÛîx0:ÂÞ²û¼Ï ô^ů4F^ÉåÈ<<Ãð#vUDc·ÕðÀuƦ¬9 úGà¼oÃOC©WäXH1û,/xHÛßÐå
-ÿµ 4Û¨z¹`k½BX¾Tý¤
-4Y2/¼Êõ²jZæ²È
.EܼÄwØOx¤Î
*<b;
÷ÆÕQøõ
-5pÀ±¤âRÓ1WiNu¿¦xkÓj³ Ø0y¦d4f¢z
-¯YuLÄ($õºjò[ìUä¥ó£¯ÒXEòmÎ+ ÖâãÄC²N,EEÝÊ ¨kå1õ¥èbM ÈìRH"WjxL'U ño¤(þÉ"l åïKf=¢ðª«2&ÛÙ;:)
-9åȺáý³`ììxZ Ã"FÙ hͬ·ç±äQ~+±o[Sx>kÂ>z<7F¤?^«Úÿ´b*>r}ßrnWpyB¶ .|¸j!P òÆú|G±Fqç?©s»0ÉØÑ+l²ÑÂ..nq¼gä£`ã+=nEȼBX¹aòäë&';Dkjpº2hÿäIÀÀ.j¹*üvM²Ö4=&¡?¾íO¯?¾½9ßmªÔOín¯fBés½§ÙwgLÑjTǯÞEÞpÇI¤¼K7lX',âõάP>óËÇtϳÓÕÁ\ÚW^x¾óÁ>FG ãê>Þy8[ÈõU
[ f7¤8³vÊKåE¥ÉÂaα²trÈÝNvÆC·òÁ^ïWrÿ"ù*É Ðule¤ G[¯®¯þ²|pøw¾ùsé4£Ó@
ºw¼Csårн©<¾SÅß½§a¯§.ªR¨A³i
-ÙpÈ Pá%¹¨~ÈæÎz£¶=P+W¥ã6_ü{ªøNgý²§úIå!g`[[QxB+^òP+)g^¦ò³´¬ExÍÖàRxRòºÅ¢ ½ÆzbM
-ǶÜ\ ÔÀ fhWi/&·Ø¶
±\Ç'áCcÆ}q8dëÏPGßf]çLh³ï8J¿#cÍÜÂö¡ôe7£" `ÆcdÂWõxÍÕ<b»à : \ÔúD8¾sn¸Â u ê
<õ= hY-eÇESñh7"c#¡_o¾>'`åºåálº¸Å
êÔ{V]{ Eý¤
-*¢Ò\b¡9_&öUôiòû®ó²uõµÄH¤vo¸{ç¢r+m¬/ñ aÀq¶UéUïøw#Vc (Nqê Ô»áXoÛ.WÖý.V,M=h^øÿªX¥d q±ü¡,HàÑ$æO0@Êø§4÷LÿB^&[A5GI2pv¢ÎmZrDñ£hÀPïÛÅßçE!¢Kúøôa$ñê*N'æ°Å4ÓHúøpάk«=ª5¤Ã#È;ÎøjbqD'HãTÝŬå³Ï÷÷è`>N·Ñ
d½¢oãEaÚ2Ã=L¾RéñbúL_LphIRä(Kì4iXº"BÕG$j2>ÆÚ]ÑXYTÙÔ<ü ÝfhRÐgø½ÍKæÉþi½»ºÚÏU2üä*}÷vxõÐöWR¢jÚÖHu´y¤ãÞqC0×kLEÞ7[ãÑt S8E¤Ì·Ø%
-H0ÉÐäxófÒMèöÐïgt :dèÈgNH|½aBmór¿éö~¹ðÃÐÏ)EO»z)q^_¿üȲr
jJ©vKǨ ´Ì=ÈN¦ý' àGTd.àx¾Ä ldä@&G$îñ}%æKIº¯
-t} öUÎÖÈ
-Sàó5x`ù8=yº_oÄo»í
-+ÛWÓºal¡>SÒ¦¬Öû¼ZàSfõ ~ÖcxûĪ&éåý0
\vÑ6ðPþãF¤û²¹Rß6vÈ#?%¸e³ÏÙÅô(bü49]áÎð3¶SÌâÿtѯ
-°]á3¹ÂÖn(òÉcÈA%ïèdãþy+W
-4\7|jDìtÃcd©1úßQ;2ì<Ù.aÜF/tâAÔ¡½b¥}ùîmüöæÙà¦T
+xÚµZëÛÆÿî¿BÍ'
+°ö¸|ÓAÑú8¨â|EP$EÁö$Æ©òá³þûÎk)¢î|MúIËáìììÌìÌorÛ
»øá+¿¯n]½ôBk¡·¸¹[$©rÝdGZ¹^Ül¿8Òþr¥µ:?ä_òr»\ùqèÔæÎÔ¦\fù¯¯Þ%T¥¡w±Òò%ü¼3%LJc§kp>ñz0!Tà0ø?½ûñå¹T/=µezÎó'oø9;j³Î³ÖløE»ËZ~u\zSuL&õÞVÓ
+Ùg%òvYÁo²r3fJêf¾ª
RÂ|Y¡Ã2ZÜÇbÊC0Ú:â,¸
+Pèþ¦ aÂÞ´;X¤l%ß
+³kz î%ÿʼÔ9,µSWÛ:Û«å*
+\çÆJì*;3hç1ï<³ZÙ¸W¶ò¨p÷àWÕs*
+æ¸ÎAãã2ñÙasݵ;á²yò©ÌÛºÖVíñ]à¼T¯sy®vaÇ¡£éü(ö9 at h^LËL¿º¡{¨Iÿ/9¾·bdÊjnËÈúAìüØGy£]!¡n V~±N¾FË°ó2ïuiÑÊ2ü¿Ì,ÞCV·äj"`{ÆOmÖæM¯ï»ÎÇîWWG¦Øðû×à³5jæ M6³kÛë«ûû{ÕÐF1¾ªlºÏWMnÊìêü G~Fcs5ùXÃGv
+(LýÀwJSjØFÎú33me¶
+òÓ^N)ø9§Ó'²Å/DµÑ3÷]=¡¯\=¥¡ïx
+P÷Y#[C¡ã´óÌE¢7êÀ=ÃáEÛÐB¶!RÁ"H/ÍȨ«[b3»åDκZɪèZ: ($«ÍtÈ<8^BmÚÃìè +E
Ø19Å1j³ÏkpþVF£µ&zÁ¨ñÇù>)1õLÕEÎaºÄúw:¥YÝAÎ$ùTÒî¼Ñ¹#ßJöÿÀ¬ÖØ9ëNq§'NF®G¦ ùCc¢Ùó(áOÙ/ϧ7â25m@;+´ãÁú¹¶¥id¬ZhÖîqê¹ÙCñ
+[,(E;ðÒg^(,.· cë®ÈøüàÎÓàØtÈê
+³º®êfÈaK6>J=¿±2>T³UÈ´iªÁ>kA>&@;ïPÆÈgð6kð #7|¤8x°RÛ¿ G;Ó@¦49{Åá1êÒO±9à½pÇéDk2ÏÌNÖUÙäà²=Áa2sÿV5¼¬Êe1ç¼ó xäÌNùÇýûuKK¿3§ê+µ@N(DÏTÉsX¨Jÿ¯:®ç,Härè§ýGàë'¶}$°
+iÛ¾ÙâÀ£û0% ÎÝB~¼'yçTî|ØAQÊ0§11ÃÏJfZÝå|'£¸oe®?!éekoÐËaì@f¬ZlãvWWÝvÇZp êyöyh^ÅS#SrÙ2cæ#?@aø»*L¢qXÁj¸aͶÔ%)[He
ñø!ëçßðÆPêÕRÌ>ËZð[º\¡à¿fU¯ ·lWÊWaäüiCMÖ¡ÌS¹^VM˹,r¡G0èñv#©sçE¡ÀøÎGá½qu~½BÜAá&p,©øÔÅtÌUS¢d[௤)V-cZm¶`À &ïÁÆLTOáå5x
+%IG½üt¾õU«hQ¾-x$ÀZ¼Øa(@þÁG&ËÆb1Q·§rêZy]rOäÙöhkÊL@æB
RÃcÚ©¬m#EñOa(_2ë
W]mÙ4ÙÖ
+öÜÑLQð]b©k8Þï0ÆÎ+ApXÄ(;9÷ö<<ʳ;kÜúÁ¼ct
+zô!yîH~0¼VµÿiÅ4U:|üxÊõ}Ëuº[Áå Ùxºîáª
@@ÈÛó
+t8ÿéLÞ
Db$\Ü0âxÏÈ FÁÇ)=nEȼAX¹aòäË&'J¢55]KÀ´$``C×4ÌÜ üvM²Öô8z<þú¶?½þøöæ\Û T©Zm¯fBés½§ùZ΢ը_½¼¡ÆI¤¼K7(¬ñzgÖK¨AùÂåc>tËO§ÿ»´¯¼ð\ó£-suÞ{8[,¡ªpÀìÇG#Äl
òGyAég2g¤p³C¬,9än'Ú
ñ0¬|p×ÇÜ¿È |ÅÉä
+ ÊJè:¶2ÒG[¯®¯þ²|pøw¾ùsé,£Ó@
º¼Asåjн©<¾QÅß½§á¨§.ªR¨Á
+|
ãl(ÈöøD¦Hä. ø!ÊõþFmG V®JÇm¾ø÷T >ñ?õËê'`PmmEáxÉC¤PyR(ÎNвá4[+á JÉKèìë7b24a6Ûrs zPÿ¡]¥½dÜbÛÆrw<8U÷Åá?C}cu0¢Ï¾ãSú9kæöÔaÐÃp²q> Ó4#¾¨Çk®¬æûÕá¢Ö'Ò pιã.
+Ô¨òÔ+ eµ!MÅ£MÞq½úö$ë³énª@P/îXuíPõ:(¨Js
æ|ØWqЧÉê]çeëêk#HíÞp#÷ÁEåVÚY_ÎGpþǪҫÞñï G'Æ PâÔ¨=vñݶ]®lø]¬X4.FмðÿU±JÉZAãb9ù3Y&ÀIÌ`ñOiîþ
¢LTA5GI2v¢Î)-¹
+¢øQ4àÃQïÛÅßçE!¢KúúôÇHΫ¨8¸ÃÓpPL#éàWÀ9?d][íT!DÑqÆWÛÃCtt9NÕYÌZ>ñó>ãþ <Ómt¡Gà¯è[Á¸bQxmaÅJ&ß©ôx1}&Á/&8´$)
+rÁH%v4,
+]C¡Íê#N5_cí®èV¬,ªlCfBþ n3t)>Ðgø½ÍKæÉþI^Ä]]íç*~p>{;¼zhû+©AQ5mk¤:Ú<Òq︡ÅABëÖ5¦"ï½ñh:Ð)ì"Òæ[ì
+$äLhr¼y3ÍCÒMèöÐïg ÚdèÈgNH|½aBmór¿éö~¹ðÃÐÏ)EO»z)q^_¿üȲr
jJ©vKǨ ´Ì=ÈN¦ý' @ü´aº;âþo²a¸Çw0ô/%é:¼6ÐaöY Ø;6)[#+PNWPÎ×umäÓôüå5ÚFb½¾í¶+¬l_M3ê±
úLI²Zó>þewÕ'øY7¶báí«¤÷Ãr9D#ØÚ BùoîËnäJ}Ú8 üà¼eséÑ1µòÓät}§0æpºè×Ø¡ðBakÊ°lòrPÉ|Üo!oåJÂóS at Aëwnx,5Fÿ£ò;jGG0Û%Ûè
N<8uè¯Xi_>§ûc¿½yö_þéÜ
endstream
endobj
746 0 obj <<
@@ -8545,27 +8544,28 @@
/ProcSet [ /PDF /Text ]
>> endobj
1440 0 obj <<
-/Length 2227
+/Length 2022
/Filter /FlateDecode
>>
stream
-xÚÍY[Û6~ϯð[d vHY×¼mM±Ý´ÌÚ}ÐX¨$z))ÓAÿüeÙãfgÚÌ`_l¤¨sùÎj±[¨Åw¯ü{ýêÍD/t²Þ$Y¼¸¾]åZ©bgz2½¸®?Eß.WZÇiôn_u;Ó/W<¶®=TÞÔü48þ7o¬ñüðy¹Ññ½u]¿ü÷õßß|(åºÌ⿤«X¯X>r½·ròÍrÙÙ&¨äðN¾öývp²ËóX©òYTñ®$r]sÏûk3T¶ /á½9'w{ËsüXý¬ôÆlåÃÞðicù¥ÖËUÑÏ*U?x·óUÛÈ!2¥õºLSfªß»±Ar6X×
-»IäX¨ùÛñ|?iïsϽ»úËG9Ï+VV¦®V·Îïä=o <r=mtß/M´²5Ò:¡àÍÌô`(ø $Ä ó$ågïÌU£
-ÌÓÞXiµRùJ%HJ>§+º>[Ä>e êír¤1ñü+o¹ÔÉ<Úy7zßÙaÏ#èPu(Ágjâø®jÐ)}cp¸çó2tx[
-Fb¨À rA1öä3t= IBÀß:\¼#y×ãLb¦ 9ËH«°þV,OÔ@§B è4Äs
-àÖ4a7Ìy°á
ÎÈêþ8ÿK/³'éa?ÏTüζ(5O¹Ã0}ÍÿM%fwAðíl? ó·,ÒÞ¶øÆØTxÚãeøQâô¢u¨T«·ñ@N©Ñ·>èX5<w¨ØõÀð6Xs}[jÑYbÓØ@Ìã¸UåÛ³c!rÌÜ^Ç@NHùíthµÎUy"ä(ËM¢°wÏ$M@Ì#ñ
í{Û?e)6cºXý&êñ½ ÖzI)m5¬¿ÄäJ¨^étåS¹¼2;¨qPo»êpðî@óT}âÕ.à§Ä.ÀëĸññܸÏëYý´u^¾
-ÊèçÆaöäRp¡:jÛ6ÕM#o~¶8±m+~Â{A¦ìÁPò¬Ú{ç¼c\¯-ú#¶ïÂÃ`Ûj,fÒBÂà¶_P'!C¬ÿwn!^`4ÈRÏÌlíí½¬P s¬ÙK ø1üÛ[ù¯Q7?æû°Úq¦ê3¸X§Y`¦·¦«þéØÕfEñc%{N¢È;oÀ4&´|Én -¾B¸Ðp ÅWw :Ð1s IEàBBzgE¾½È×9Â%0CilgzêMc({"¨lrØ=Ïí¬äD¼d¼w2ñTkÀÕOV~7¶fNíVÂþ¶kó=çíäYÜ(öV gÌá&¡òµYF^%x F<1 óËü- ôñú[¡~>TÍ{VÁvÉÌWp¦²pS«GAºSÛ÷à§@ѲÛî±Oåࣹ¨dµûj'ÂÁH6sDá3ÉòÌsÄØr+¡(Ùéû*£õ±kì/ÄB@Ûà²Ï½Ã®PtF¨zól>ãëá>ÐÅÜpâ%3ì!ÔT4ÁNI$Î*ÆÝh¿éê³XUð§ÓÊçTúÁþØîªÖg0P~ËjmHA¡ÌzPòaþDBlnѲOsñG.
-([w<¸Ûò70üêìô+oN`º«µÄ!nçrFW«~IvxÍ~«8æ
-ç¯N]tüêË ú+Ô ¹TOWk(¸¸è-B<-ÞX,ù'§}=¹ÂIô"ÅFËsð0cËkå1ÇBÜ n3ì)#.öê!À¢¼¤×j
-jÔ*ål¦0
ø¸pF@äê.¡`²rÞ2%µ)¦¤oÞpÃè%Êle\dGYÆE:%.³(X«Ã-¥¿-o"+ÄXaÇ[OAgÇsÔÊCÏI)-ì
-¦Ð
-æ°É»ÙJcÚQ[¼D+46§
-!jË¡Ö:y¡_³iø×N¦LÊÞët;Ó;̪ì~ëíá<ê\û¤«â¾$ûO¨à3 K[|ìLçµx}=¿üIF1ªâ9£°¤~+½½sSVZ8ÜÀpRx¤Rn°«ä5+ÿ³n(S¹h
-S¦
-Q7´µ~¯}låýL³þ¿PhåqÛØc¦EÎâ¾qÉ{öþÆí^Qôr¿ëLÓ¨,ù°!^R<£8Ðô²
KH5o5áüÃ>2În)·¹ ¢©B{ØÓ{Ý0)îп~13ü2\ÊâÙ
-yR̼*9^Ì uvò>²\¢$Z¥·J/g>Þ"jéi¨f¼©\¡:þOÀøÔ½ÔñR9åÂTáhövytMÕ
-yènM`p:Uc¼ïå8+¤ôm^»JYäB§>/c^Ü!
-èO71E7yh«ÁoG±D¡"Ü*æt@á
-ÔúS¸
¢þ_wòr¸RAKz}zøtf¸;Á&Í3(*¥U6ßÏUsÉ¿éWè}=ü?ïÉ«MðDìM5¦*$ûT¡ñlÏ sÒºýÀÿ*øÁK`²òiã_ºEªOvåÇA1ò@åÂ,ËÕ2&8¿åxÐèÏ[±·Èüdù©d2¹½ÌN.=á©ÌøÕcÒß»ÀÀÆ©g/T<¼<\èÌ««¸ªà7Ku²é¯×¯þÝ6f
+xÚÍY[Û6~ϯð[e RHY²¤¼mM±Ý´xm4mD2ôÏï9<ºxtfÓìEy®ß¹X¬+±úþàçw»W¯ß'r%hlãÕî°ÊH|me$¶rµ«V?ßC)ã4x{*Û£êÖá&K½iÎ¥U½õª´µV^>72P¶Ó¦íÖ¿îþùú}¾*¢boñ&±
+cå1_²;i>ùvÆy ºuIPö|xË·ý°ï
+ï²´%¢øù6(iW¶¾§ýêK]{Â×ðÝ»¦9z-r£ö|gRtÚÐÁ@v-h¦Û"øE¤âGk¶là9D¦¤4%¦ºj$g³µÝPã±ÅÙ#MÁýIhiiîíÍß>ÐÈXZѼ2t=òwVA>Y`:$Z÷é¾_ç ²%Ò:ZÁë÷2é¡Hà£ÒbK| IÙÅ7sUâhóno,¤EJq®Oí¤Ü¼YI8§-·Ã±[ÜÇË<seÞ$e´Üòs
+bPwj×À}OרI£ð6´µê:ºkèt;z«{f¥Ý7Vµ{Å{`B`îkQÝie,¦ø*UûÉZÓ{9ôe)Üjp¤~¼ºÓ
+ò0ÔeïçsªBÈ%ó¿kJ$xs6×T¶ÐÔ4£¦ÒxÒT£:ÒÌ1ÖçÆwº?Ñm¿/[䫧ÊÙ#訬ÀûÜ{4U§¿OëüØê²W|95SÏ=Íwç¤3ºÈÛW*þA6aójØ;ð¹Ò
q]%ú¢H_
+P ä
+Hâ¹pIJ
+Ø.ÍZÕ;Çcëxü^N3ÐLIW´&Ü£LþÐ9÷ã»øT%ãã¹7ºÕ]hãÀé@]ÚðópÆé#ÐF0Úg<*°/vÌmt(k;"`xð¨[Ýão³êl¯©·×Ç3+[Q¼¹8"üæeC _òÇè"ÊDá y·C2Éaá·IÐ8Ó»'F;ÌƺFwëÁ}¾SÞWÏC?*¥)ûèKLLõ¥ÏåjÌD²§Æ4L½nËóÙ³cãÆÓ®ØÇ2"ùÐBæõ \úöxMÊëǽ±|-hÃúQÜ#¤àB9©[×åmÍ_~Ò%ÀÐ4¥½GØuù¡&ïÁHò¬ê{k¬!«)«4â9xÑ¡×MÙ.3ª¡»®·Þ¸¿B
+O¦ùÃ(eµ¡'¥
+8Põ¼Ô©½>ÜóKa0Z©göÑ( zõO}à'ßæòù¨1ÛùÕrúTÎÙÄy¡é´jË[U.¼g(¿µ
+c4/Aèüëã
|æ9JOÇl øì(ª¬ïÄb£uJ¥p ÜÐÍÔºUMuªV.yr¦¾Ød °[;jNhIYk,L©`Vw4YÚãàrçÝ×
+}=Tê*°& ]T0û[É1r®ÍJ/D@'ø0}LwapWî
òiNøP7ïHûQ&3° LÓçc«6'çn§ºQï ÇPñ²öÙ8ø î<Ô¤w[YºeÝ+Îg&3|,)éI¹ a
+Ú]
+Ñ9!Ò¬ôî¨cŦs<x{ëÍB ÿ<ñ9
¬4gW¯MÄ|]ظõ´`ÝÝ_DyÎ{}öe¾«`'çFgÅýqÐß²´ÕE´ÊiÁ
§eéó\¼¿×¿{¾Û²QYÌÐùÕJ9
+ùBëAÑ9Xç޻ѳ¢':ϱÅ@»rëvà©;ìPÓøvâv*hatÑê'$Ì«ùl®|J.?;>W*ª§.Ê P7m\ti%Á/BDà-Vi¬ùGaØÞXa?* ^¤^è#q1c^fÌa-¶ò¢!n`Üô{êCGûk"À"$#¥Hi+¹)ÜB<-À£ 9Îè®Å×ÑËiËÌ&]bÌúzê5õö^Jq¾dçéL¸Ì¢Xbé·8sòûAÓ&ç8 'liKoï]ÅÙÞÐëº"p`VêNcìÂHóGØdÍíÕ|¥VÍ°Íàc9Õò¡Í²#ä:¨¨µ</#gîþçA³ó "å¤ 9ÍQµJ÷³B»Û[}¾:ÎLó¤üXϱä#*øÂйï0v¦ór<þ:\ùJ>
ñ)â9°$
|ÃͽKOÜ8_¢ðH00tɵÀ2¬äÏ4?gM?ÜÀ1Æ^0c¦
+1×7¶>×Àñ®rG0S¿XÿÌ||/ºÆó,SJ¶üâv/Û¿Ó_1µ9F/å'q
Ò4(
+zi0F2.2|¦×A®;{ó^Î?ì#ã,ýwqPÇ
+íaSïH1çîÿ´)òg+äbæ5Éô¯ÈÌ´.þÿxL#ýÿCIôJ·Ô+½øËIn¸"^
qiaN4b±éï»Wÿ·e{£
endstream
endobj
1439 0 obj <<
@@ -8581,471 +8581,490 @@
326 0 obj <<
/D [1439 0 R /XYZ 89.008 771.024 null]
>> endobj
+1442 0 obj <<
+/D [1439 0 R /XYZ 89.008 699.856 null]
+>> endobj
+1443 0 obj <<
+/D [1439 0 R /XYZ 89.008 684.08 null]
+>> endobj
1438 0 obj <<
/Font << /F41 414 0 R /F8 352 0 R /F14 782 0 R /F62 598 0 R /F51 482 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
-1444 0 obj <<
-/Length 2059
+1446 0 obj <<
+/Length 2204
/Filter /FlateDecode
>>
stream
-xÚ½YYsÛ6~ϯÐ#51oö-NN:mIÔδ}EXFÃkH*?ß= 2ã#ý"ÀX,ß~»òVû·úùwô<Ù>{ñF«ÌÍb?^mÏWÂÜ,òWI,\/«m¾úËùÛÉúí/Ãw/Þ¤oð-~õ=ám¼xã
ëM$ÎÍyÝî6b§Uu§ë[YbD>jUIîÓÕ®8äj«KõúPk?q®x¤ª{W_õúë¶W9wuõ\û©óyÅÔ
<+w÷5nTÝÛXåþçЩÖ=ÚèÌ:ÞêFdnêû5N05N83Nàd±aãÌýé ×÷Ò¹R_oÐHxnâeV¥³Ã}_TǺÈ;µÑÆêf3ÿ¹Ñ2poRmcÖÚÈM侺½ºÕ^UdóâKx´4Ú¡¹Ð}¶ë4tpT8=¨~ç¹Ì>·8iô5Í?xcøæοzÕÊ]OKÃÇsc¤Æ¡ý¤ªÑ§/YñK]Æg«·<×h«ovc!|7 çqäÀVä±3ÃÉÀatæTꪸ1qgws#au}§.Í©ûºÕýEiNÿüPéGý~~ßÈBÐ'B½úi½ ÃhC}eSØËëv-
·ëëvwû5÷»%ÃöÞ·õ¾U]gÉ:ò.Ña%ú6U¡/ÐoΣ;ÓR§ç ^[ß÷íµ[iæ4-XîyPMo@ ¨]ßq³>[oà$þ
?}êNz_a$@ Þ% x£ûÎHîZÙ]°ß(¢0¶§VÁ<¥¥ù»¥°q ®d½
n`>ø*0\ìÇ3i§eÞ Þ,IkPõ Gàt
$ËuûÇþ2ÓëÒ DN¡=åÐÎ@®|@0BÂ9zú¡ëGñ°qÕq
-7ÃÀÙ µ&n È5Ìgº¦ó¼Ë
õRßüðoX2J\/óüÍÖDâ&©¸gì÷Á sí3áFIð@å-½»ZÐ<ãDé[kíl_8±n
-,ûçÕXW.~7r ì%Ö[جÔ-78KÜ0¾ózüÑé
-q1 KCl;Íaz¸Í¨ogºhzݱJõl.bÇ4{à8¾×ìûÜàD-GJ@iüÊLüQ¡AQw6 ´-\?²|T°Ù¾PEÃghRX(7ê[ÒC"!È6EmBÆÂàÄkqÎ×½Ä7b at 4ï¾Íø{âæ@w¯×Æo[%ûràj ;v-ìÌe/§ÄîØ®SqJi>'§bB±Ñ£Rò¨Ç;ÍWÆǧ\^µ=·Á%içö>úÕL
-_#h°¬"écq5]%À@Yê
-éfÎ7%ÔþÙO²2cc 0aH!Ùb%ã&)b»øbR`¼ï´ëÈh¾Ô
-r¢Ð
-?£uÈÏpj
- SÙ¥+oIÙÈyîÑÈPN<;öm}hìö 6~{ôcúÔ̬²õ±´>¶ÈúÔÝôÃhE|îj¾¨m]¡¶¿¨÷uö?IòK³xÞµÄÁ)É$@ ³g/\c-ÔË1Äh¾× ¯Dâ.ß° e>ÓÁ0&|@¬àÚôê¹ÖÞsÀ¥èÛG*p¤éiÞ1#¥o·µÄZµMòÎÁQÙÁCçØïOEÓòèîܾ×ä>{=»kF0¦9Ó/>ÉnLäâ pÓ¢ysï"TBÝ¡=úA^ ô`²oR?¤`¤"ÂâÕ=*f"Yx
-KAÄ¢I bï!Ód·îÈK â% tý¡Á.eÌ,à¹ì¤ÉAVW¹Þ,c5"¢¥kTÆø]B>AXá\ál#oêiÙÔÓ`(üäpfcá$D»,e{ÅRº(¥rÝsW©zSÉ;£xC¦¯ÓúLêÝSâ6ñ~tmz £!1ehMØCØ6×uPf¬Èؼ Zp^EeOOËuå¤&ÒÊæ¨Ý×Í¡àLo\$]J[²)8#Ç,= ä¬vÜDxûîÕ�ÿõt{jÅ( úÑQõFn¨>ú6/É4½ÓDýp¾m³|]©%ìàD@µ+ÎF>±Mì¤÷ Iî!;.dX©EèöÆ
-RqÔ
ûL"¢ª|ÈÉp>þ#ªÕüGJÒ
-ôF6C¡aï©ÙûÂöJ[¦-nçS?&_ 7"¸ÌTÕå¼²NõòðzÒý$(.0o¦|!ñh%)>!úC¤Ã1BNÇoº²_L³å²rÙLQØÎdØ8VæTk?n=¿µ§%nz]è~`Ç>\¾¡QìúEt3ØÃ]ór-BN*®\%W®¯a¥ýã¨8.=ñ3d×ê~¼þ§y^ãº,5å¸ór^
-ã¬naâøÑbÜÑ£æ'ãÍÊ8ÇUµÙô+ÿ|î|Ê3góÔN·Ïþ²âÏ
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/rsiena -r 113
More information about the Rsiena-commits
mailing list