[Rsiena-commits] r113 - in pkg: RSiena RSiena/R RSiena/inst/doc RSiena/man RSiena/src RSiena/src/model RSiena/src/model/ml RSiena/src/model/variables RSienaTest RSienaTest/R RSienaTest/doc RSienaTest/inst/doc RSienaTest/man RSienaTest/src RSienaTest/src/model RSienaTest/src/model/ml RSienaTest/src/model/variables

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Jul 10 17:11:47 CEST 2010


Author: ripleyrm
Date: 2010-07-10 17:11:46 +0200 (Sat, 10 Jul 2010)
New Revision: 113

Modified:
   pkg/RSiena/DESCRIPTION
   pkg/RSiena/R/sienaDataCreate.r
   pkg/RSiena/R/sienaModelCreate.r
   pkg/RSiena/R/simstatsc.r
   pkg/RSiena/changeLog
   pkg/RSiena/inst/doc/s_man400.pdf
   pkg/RSiena/man/RSiena-package.Rd
   pkg/RSiena/man/sienaModelCreate.Rd
   pkg/RSiena/src/model/Model.cpp
   pkg/RSiena/src/model/Model.h
   pkg/RSiena/src/model/ml/Chain.cpp
   pkg/RSiena/src/model/ml/MLSimulation.cpp
   pkg/RSiena/src/model/ml/MLSimulation.h
   pkg/RSiena/src/model/ml/NetworkChange.cpp
   pkg/RSiena/src/model/variables/NetworkVariable.cpp
   pkg/RSiena/src/siena07.cpp
   pkg/RSienaTest/DESCRIPTION
   pkg/RSienaTest/R/sienaDataCreate.r
   pkg/RSienaTest/R/sienaModelCreate.r
   pkg/RSienaTest/R/simstatsc.r
   pkg/RSienaTest/changeLog
   pkg/RSienaTest/doc/s_man400.tex
   pkg/RSienaTest/inst/doc/s_man400.pdf
   pkg/RSienaTest/man/RSiena-package.Rd
   pkg/RSienaTest/man/sienaModelCreate.Rd
   pkg/RSienaTest/src/model/Model.cpp
   pkg/RSienaTest/src/model/Model.h
   pkg/RSienaTest/src/model/ml/Chain.cpp
   pkg/RSienaTest/src/model/ml/MLSimulation.cpp
   pkg/RSienaTest/src/model/ml/MLSimulation.h
   pkg/RSienaTest/src/model/ml/NetworkChange.cpp
   pkg/RSienaTest/src/model/variables/NetworkVariable.cpp
   pkg/RSienaTest/src/siena07.cpp
Log:
Fix for bipartite networks returning simulations, endowment effects scores, more ML code

Modified: pkg/RSiena/DESCRIPTION
===================================================================
--- pkg/RSiena/DESCRIPTION	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/DESCRIPTION	2010-07-10 15:11:46 UTC (rev 113)
@@ -1,8 +1,8 @@
 Package: RSiena
 Type: Package
 Title: Siena - Simulation Investigation for Empirical Network Analysis
-Version: 1.0.11.111
-Date: 2010-07-03
+Version: 1.0.11.113
+Date: 2010-07-10
 Author: Various
 Depends: R (>= 2.9.0), xtable
 Imports: Matrix

Modified: pkg/RSiena/R/sienaDataCreate.r
===================================================================
--- pkg/RSiena/R/sienaDataCreate.r	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/sienaDataCreate.r	2010-07-10 15:11:46 UTC (rev 113)
@@ -561,6 +561,8 @@
         attr(depvars[[i]], 'vals') <- vector("list", observations)
         attr(depvars[[i]], 'nval') <- rep(NA, observations)
         attr(depvars[[i]], 'noMissing') <- rep(0, observations)
+        attr(depvars[[i]], 'noMissingEither') <- rep(0, observations -1)
+        attr(depvars[[i]], 'nonMissingEither') <- rep(0, observations -1)
         if (type == 'behavior')
         {
             attr(depvars[[i]], 'noMissing') <- FALSE
@@ -580,6 +582,10 @@
                 attr(depvars[[i]], "nval")[j + 1] <-  sum(!is.na(myvector2))
                 attr(depvars[[i]], 'noMissing')[j] <- sum(is.na(myvector1))
                 attr(depvars[[i]], 'noMissing')[j+1] <- sum(is.na(myvector2))
+                attr(depvars[[i]], 'noMissingEither')[j] <-
+                    sum(is.na(myvector2) | is.na(myvector1))
+                attr(depvars[[i]], 'nonMissingEither')[j] <-
+                    sum(!(is.na(myvector2) | is.na(myvector1)))
             if (all(mydiff >= 0, na.rm=TRUE))
                 attr(depvars[[i]], 'downonly')[j] <- TRUE
             if (all(mydiff <= 0, na.rm=TRUE))
@@ -618,6 +624,16 @@
                 {
                     mymat1 <- myarray[[j]]
                     mymat2 <- myarray[[j + 1]]
+                    ## remove diagonals if not bipartite
+                    if (attr(depvars[[i]], "type") != "bipartite")
+                    {
+                        diag(mymat1) <- NA
+                        diag(mymat2) <- NA
+                    }
+                    attr(depvars[[i]], 'noMissingEither')[j] <-
+                        sum(is.na(mymat1) | is.na(mymat2))
+                    attr(depvars[[i]], 'nonMissingEither')[j] <-
+                        sum(!(is.na(mymat1) | is.na(mymat2)))
                     ##remove structural values
                     x1 <- mymat1 at x
                     x2 <- mymat2 at x
@@ -625,12 +641,6 @@
                     x2[x2 %in% c(10, 11)] <- NA
                     mymat1 at x <- x1
                     mymat2 at x <- x2
-                    ## remove diagonals if not bipartite
-                    if (attr(depvars[[i]], "type") != "bipartite")
-                    {
-                        diag(mymat1) <- NA
-                        diag(mymat2) <- NA
-                    }
                     mydiff <- mymat2 - mymat1
                     attr(depvars[[i]], 'distance')[j] <- sum(mydiff != 0,
                                                              na.rm = TRUE)
@@ -643,15 +653,19 @@
                 {
                     mymat1 <- myarray[, , j]
                     mymat2 <- myarray[, , j + 1]
-                    ##remove structural values
-                    mymat1[mymat1 %in% c(10,11)] <- NA
-                    mymat2[mymat2 %in% c(10,11)] <- NA
                     ## remove diagonals if not bipartite
                     if (attr(depvars[[i]], "type") != "bipartite")
                     {
                         diag(mymat1) <- NA
                         diag(mymat2) <- NA
                     }
+                    attr(depvars[[i]], 'noMissingEither')[j] <-
+                        sum(is.na(mymat1) | is.na(mymat2))
+                    attr(depvars[[i]], 'nonMissingEither')[j] <-
+                        sum(!(is.na(mymat1) | is.na(mymat2)))
+                    ##remove structural values
+                    mymat1[mymat1 %in% c(10,11)] <- NA
+                    mymat2[mymat2 %in% c(10,11)] <- NA
                     mydiff <- mymat2 - mymat1
                     attr(depvars[[i]], 'distance')[j] <- sum(mydiff != 0,
                                                              na.rm = TRUE)
@@ -1358,14 +1372,26 @@
     cvnodeSets <- namedVector(NA, vCovars)
     dycnodeSets <- namedVector(NA, dycCovars, listType=TRUE)
     dyvnodeSets <- namedVector(NA, dyvCovars, listType=TRUE)
-    totalMissings <- namedVector(0, netnames)
+  #  totalMissings <- namedVector(0, netnames, listType=TRUE)
+  #  nonMissingCount <- namedVector(0, netnames, listType=TRUE)
     observations <- 0
     periodNos <- rep(NA, 2)
+    numberMissingNetwork <- rep(0, 2)
+    numberMissingBehavior <- rep(0, 2)
+    numberNonMissingNetwork <- rep(0, 2)
+    numberNonMissingBehavior <- rep(0, 2)
     groupPeriods <- namedVector(NA, names(objlist))
     for (i in 1:length(objlist))
     {
+        newobs <- objlist[[i]]$observations
+        periodNos[observations + (1 : (newobs - 1))] <-
+            observations + i - 1 + (1 : (newobs - 1))
         for (j in 1:length(objlist[[i]]$depvars))
         {
+            numberMissingBehavior[observations + (1 : (newobs - 1))] <- 0
+            numberNonMissingBehavior[observations + (1 : (newobs - 1))] <- 0
+            numberMissingNetwork[observations + (1 : (newobs - 1))] <- 0
+            numberNonMissingNetwork[observations + (1 : (newobs - 1))] <- 0
             varname <- names(objlist[[i]]$depvars)[j]
             netnamesub <- match(varname, netnames)
             if (is.na(netnamesub))
@@ -1418,8 +1444,25 @@
             {
                 structural[netnamesub] <- TRUE
             }
-            totalMissings[netnamesub] <- totalMissings[netnamesub] +
-                sum(attribs[["noMissing"]])
+            if (attribs[["type"]] == "behavior")
+            {
+                numberMissingBehavior[observations + (1 : (newobs - 1))] <-
+                    numberMissingBehavior[observations + (1 : (newobs - 1))] +
+                        attribs[["noMissingEither"]]
+                numberNonMissingBehavior[observations + (1 : (newobs - 1))] <-
+                    numberNonMissingBehavior[observations +
+                                             (1 : (newobs - 1))] +
+                                                 attribs[["nonMissingEither"]]
+            }
+            else
+            {
+                numberMissingNetwork[observations + (1 : (newobs - 1))] <-
+                    numberMissingNetwork[observations + (1 : (newobs - 1))] +
+                        attribs[["noMissingEither"]]
+                numberNonMissingNetwork[observations + (1 : (newobs - 1))] <-
+                    numberNonMissingNetwork[observations + (1 : (newobs - 1))] +
+                        attribs[["nonMissingEither"]]
+            }
         }
         thisHigher <- attr(objlist[[i]], "higher")
         thisDisjoint <- attr(objlist[[i]], "disjoint")
@@ -1504,9 +1547,6 @@
                 stop('Inconsistent node Sets')
             }
         }
-        newobs <- objlist[[i]]$observations
-        periodNos[observations + (1 : (newobs - 1))] <-
-                  observations + i - 1 + (1 : (newobs - 1))
         observations <- observations + objlist[[i]]$observations - 1
         groupPeriods[i] <- newobs
     }
@@ -1578,7 +1618,11 @@
     attr(group, 'netnames') <- netnames
     attr(group, 'symmetric') <- symmetric
     attr(group, 'structural') <- structural
-    attr(group, "totalMissings") <- totalMissings
+ #   attr(group, "totalMissings") <- totalMissings
+    attr(group, "numberNonMissingNetwork") <- numberNonMissingNetwork
+    attr(group, "numberMissingNetwork") <- numberMissingNetwork
+    attr(group, "numberNonMissingBehavior") <- numberNonMissingBehavior
+    attr(group, "numberMissingBehavior") <- numberMissingBehavior
     attr(group, 'allUpOnly') <- allUpOnly
     attr(group, 'allDownOnly') <- allDownOnly
     attr(group, 'anyUpOnly') <- anyUpOnly

Modified: pkg/RSiena/R/sienaModelCreate.r
===================================================================
--- pkg/RSiena/R/sienaModelCreate.r	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/sienaModelCreate.r	2010-07-10 15:11:46 UTC (rev 113)
@@ -17,7 +17,8 @@
              condvarno=0, condname='',
              firstg=0.2, cond=NA, findiff=FALSE,  seed=NULL,
              pridg=0.1, prcdg=0.1, prper=0.3, pripr=0.25, prdpr=0.25,
-             prirms=0.0, prdrms=0.0)
+             prirms=0.0, prdrms=0.0, maximumPermutationLength=40,
+             minimumPermutationLength=2, initialPermutationLength=20)
 {
     model <- NULL
     model$projname <- projname
@@ -81,6 +82,9 @@
     model$prdpr <- prdpr
     model$prirms <- prirms
     model$prdrms <- prdrms
+    model$maximumPermutationLength <- maximumPermutationLength
+    model$minimumPermutationLength <- minimumPermutationLength
+    model$initialPermutationLength <- initialPermutationLength
     class(model) <- "sienaModel"
     model
 }

Modified: pkg/RSiena/R/simstatsc.r
===================================================================
--- pkg/RSiena/R/simstatsc.r	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/R/simstatsc.r	2010-07-10 15:11:46 UTC (rev 113)
@@ -1620,7 +1620,7 @@
         attr(f, "compositionChange") <- attr(data, "compositionChange")
         attr(f, "exooptions") <- attr(data, "exooptions")
         attr(f, "groupPeriods") <- attr(data, "groupPeriods")
-        attr(f, "totalMissings") <- attr(data, "totalMissings")
+      #  attr(f, "totalMissings") <- attr(data, "totalMissings")
 
         if (x$maxlike && x$FinDiff.method)
         {
@@ -1846,35 +1846,21 @@
         ## set up chains and do initial steps
         simpleRates <- TRUE
 
-        ## sum the missings to calculate the relevant probabilities
-        totalMissings <- attr(f, "totalMissings")
         types <- attr(f, "types")
-        use <- types != "behavior"
-        ## use arbitrary n for now
-        n <- length(f[[1]]$nodeSets[[1]])
-        if (sum(use) > 0)
-        {
-            netMissings <- sum(totalMissings[use])
-            prmin <- netMissings / (netMissings + sum(use) * n * (n - 1))
-        }
-        else
-        {
-            prmin <- 0.0
-        }
-        use <- types == "behavior"
-        if (sum(use) > 0)
-        {
-            behMissings <- sum(totalMissings[types == "behavior"])
-            prmib <- behMissings / (behMissings + sum(use) * n)
-        }
-        else
-        {
-            prmib <- 0.0
-        }
+        nbrNonMissNet <- attr(f, "numberMissingNetwork")
+        nbrMissNet <- attr(f, "numberMissingNetwork")
+        nbrNonMissBeh <- attr(f, "numberMissingBehavior")
+        nbrMissBeh <- attr(f, "numberMissingBehavior")
+
+        prmin <-   nbrMissNet/ (nbrMissNet + nbrNonMissNet)
+        prmib <-   nbrMissBeh/ (nbrMissBeh + nbrNonMissBeh)
+        cat (prmin, prmib, '\n')
         z$probs <- c(x$pridg, x$prcdg, x$prper, x$pripr, x$prdpr, x$prirms,
                      x$prdrms, prmin, prmib)
         ans <- .Call("mlMakeChains", PACKAGE=pkgname, pData, pModel,
-                     simpleRates, z$probs)
+                     simpleRates, z$probs, x$minimumPermutationLength,
+                     x$maximumPermutationLength,
+                     x$initialPermutationLength)
         f$chain <- ans[[2]]
         ##store address of simulation object
         f$pMLSimulation <- ans[[1]][[1]]

Modified: pkg/RSiena/changeLog
===================================================================
--- pkg/RSiena/changeLog	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/changeLog	2010-07-10 15:11:46 UTC (rev 113)
@@ -1,3 +1,17 @@
+2010-07-10 R-forge revision 113
+
+	* src/model/variables/NetworkVariable.cpp: bug fix for endowment
+	effects, since a recent change
+	* src/model/ml/NetworkChange: bug fix, could not return bipartite
+	simulations. 
+	* src/siena07.cpp, src/model/Model.h, src/model/Model.cpp,
+	src/model/ml/MLSimulation.cpp, src/model/ml/MLSimulation.h,
+	R/simstatsc.r, R/sienaDataCreate.r, R/sienaModelCreate.r: adaptive
+	permutation length and probabilities for missings for ML 
+	(in progress still!)
+	* src/model/ml/Chain.cpp: removed structural links from initial
+	chain (ML)
+
 2010-07-04 R-forge revision 112
 
 	* R/sienautils.r: fix bug with groups and constant dyadic

Modified: pkg/RSiena/inst/doc/s_man400.pdf
===================================================================
--- pkg/RSiena/inst/doc/s_man400.pdf	2010-07-04 12:33:21 UTC (rev 112)
+++ pkg/RSiena/inst/doc/s_man400.pdf	2010-07-10 15:11:46 UTC (rev 113)
@@ -499,21 +499,20 @@
 (References)
 endobj
 342 0 obj <<
-/Length 1128      
+/Length 1131      
 /Filter /FlateDecode
 >>
 stream
-xÚ•VYsÛ6~ׯà#5cÂ8ˆƒí““Øm2c·µÕ§¤4Ilx¨$eWÿ¾,¨ˆ
-ÝNG3"ŽÝo|» ¶~ZÐ7¾ïV‹ë;¦"žm4‹V›ˆ	ND–Fše„3­ÖÑçø>o–\Ň¼Z&‚òxÓvË?VŸ@WOt™"Še íµž>Þ>ܹ‰
-͉R'±m»¾lDO	
-Z&ÊH¦¸rJ‰Ä°4J8#ÙèدÝR²¸})¶÷NšøŁ-a¹q0§`¯ï„ŽXJDª¸L‰
-ð1G¼Çðp螸¯ŽË}e ñ%†H®Á"¬–†ÇmÊ7äA¸§¦üs
-~Í¡g–”裐HÁ¢D¢¤Däß›R¥}ª78"t»Áï/ñ¬X&©ñ»Ï»¡¶Îuü4äƒËO¿L챸,úqëáð…2e«5j¼o«ÊníÄiÏ™e>q2a:TÁô
-¡8et6ÚÛÕ‚Á€F,bZEu$¨& ‹zñ×BøMü÷£tX¸¾«Yô¡]ü¿KìQ4‘“3hÏv‘E8¥R—hnLD at tÂŒÂPnžû¡Ë‹á£Jé@”†r10 {P
-—ÄfbŽ(Ž¼ÿB%=Ò•¦‘§2*ëC'†å‘Å›ÛåöliÓ.¹‰;œÜÖû²+¬Õ,~°@–,~u­u_qã
-æØ—ýœ£Œ“ôÜQ†* ì¿9|‹¶Þ€?ƒípaßµÛ.¯QhØå>‡@iHêÃ(p<CÔ"ïºÒ:@¥zpU”,®ôŽ¤&Æ.æzŒÙ©lP£n—ÀÄxm«€år:Ų/>øê ÚànƒÛ –@åh©9ÏX÷5ÀæEåU6[3 †:˜„ÁúØäuYàÈÔvIá6x°k\¯Ñ2¸ŽsðhRiŸýêlë{ŽCëPx”]®]Í)ƒ ¼gíœnÖÿꍟÙ!W丧ç¬B£L¥ŒW;däe†=õ´	֐<w'™p'Á|ãºÙl9iA(c3·Ò”ópß™óKÉ०}g3.XGgÈYÙõŒI£IjF¬Ç'8ø|Τ"ò[?è¯;×›g‡v1tí«¦EëºòÈ&Xßç^éëR:QomÈXû-sXŽpM™†ü†›tZo<ûc?Øz.ð@à'¯gâ’$Ó§|„[ùsãÏ-ç>:XÎ{	,ù‡ï0êؼ«\V|ŸùCÆo´Ñ^p×Óÿìʆ}wîø~ðèÂßhÆW„÷ËÀ§RPH¡Ò­Å2ÏËbãZ™ëAãòkWô?ñmË
-|ßô£ó0Ýüفq|Ÿ»>îF?Ê$¯\Ìâû©ã`½Ôlá`v§¦fKûì»í¶¶Ê¡æ/kïý®sÔÈ]>Rï»­‚rñÄ:±1#	¼¢$“ðÒ
-<›¶&xüØ‹Ÿ™
+xÚ•VYsÛ6~ׯÀ#4cÂ8ˆƒí““Øm2c·µÕ§¤4Ilx¨$eWÿ¾‹ƒŠ¨Ðít4#âØýöÀ·P´Eý´ o|ß­×wL!žm4C«
+b‚‘¥H³ŒpfÐj>ãû¼Yr…yµLåxÓvË?VŸ@WOt™"Še íµž>Þ>ÜD¹‰
+͉R'±m»¾l›€žµÊH¦¸rJ‰Ä°%œ‘ltì×n)n_J§í½“¿8°%,7æìõÐˆ¥D¤Š{À”¡ Ï“ñ€÷xv Ý÷Õø±ÜWö8¿(1Dr
+”.Âji8në |CÞ‘ ÷Ô”®Á¯Y à„%eðŒQH¤`(†()òïM	©Ò>Uƒt»	ß_þ†cYÿ°LR!ñ»Ï»¡¶Î5~òÁå§_&ö.‹þÇ°õpøB™²Õ:h¼o«ÊníÄiÄxF”æ>q2‹a:TÑF¯§ŒÎ†{»Z0PÄÓ’(ª‘ šð,CE½øk!üfø÷£t\¸¾«úÐ.~ƒß%ö(šŒÈÉ´§»ÈR©ÔešF˜N˜Q!–›ç~èòbxã¬Rz0¥¡^À”Ã%󅙘ƒÌ¥#ñ¿PIO•4Ae€iä©ŽÊúPÁ‘…úÈðÇæÅöC¹=[Ú´Knp&·õ¾ìÊ"k†,°%ïN¢u£îkظŠ9öe?ç(ã$=w”öß>Œâ¢­÷ Ð`»°°ïÚm—×AhØå>‡ÀiH
+g Ä’gµÈ»®´PA­I%VzÇR3Ä.æzŒÙ©l‚FÝ.Šxm«ˆår:Ų/>øê Úàn¶ Xr .ÊÑRsž±îk„Í‹ê«l¶>&:
+f !t4	ƒõ±Éë² SÛ%-„Û8àÁ®Ãz,ƒëaMJí³_íqÏqèb
+²Ëµ«9e”—‚ñ¬ÓÍú_½ñ3;DáŠü÷ôœU蔩”xµŒ¼Ì°§ž61Ã’ç.%/%˜o\;›-'-elæZšr.<s~+™p+E€éÔu6ã‚u”q6œ•]Ϙ4š¤fÄz|‚ƒÏçL*"¿õƒˆþºs͹pöwÁn]ûªƒiÑúÀ‡®|ÁC`¬ïs¯ôu)(Ã[3Ö~Ë\(G¸§…Lc~ãU:­7žâþضžK'¼øÉëÇ™¸$Éô)ß$À­ü¹qÎ-‹ç>:XÎ{	,ù‡ï0êؼ«\V|ŸùCâ7ÚhO¸ìéveþ;÷ð€ðèÂßhÆW„÷ËÀ§RPH¡Ò­
+ež—
+ÄƵ:?2׃Æå×®è	~âÛ–ø¾éGçaºù³9†ñ}îú¸ý|({¼rm0Ã÷e Žc€õzP³…ƒÙšš-=î³ï>¶ÛÚ.*Çš¿¬½÷»ÎQ#wùH9< 춊fÈÅëüÉÆŒ$ð
+ at I&á©y6mMðøÏ$ŸÄ
 endstream
 endobj
 341 0 obj <<
@@ -701,7 +700,7 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 411 0 obj <<
-/Length 2098      
+/Length 2097      
 /Filter /FlateDecode
 >>
 stream
@@ -713,16 +712,18 @@
 ‰67wéӂݍ[ÎÐ_ ,´ÿ&}ˆ#áºÃ3ëhx×øxpÞYçŸñÆÏlÜAÑDó §Ì㺪uøÚsØÿT¥6šuÿ¾ˆÀÎØ|"ǾýVÖq–W֍”÷Õ;‹82&;ì­¹¨ïöð6QR¯]`?{ÔÁî€EÍú)AÄñö(?4|,4‹‰¼pÇ‹IêÍ:·Ñ¶Éz>²õAÃ,ýÓ‚Fð…‡‰>€³ ‚‰ˆ½ls˜É(„¡ÐË`þy9q8)â!‹¦¥DÚb)zÒ)Ñ	ôǸ^b ãÜ3Þj1±àÝœS¯	êUY¹€ÿmUÚs±rgª<[®ZÍ]$º×YžÅj›	M¡³o̧qC±Óœÿ_}Û9ñè(àÃAV,ZµwŒ‹û&·£ )[ÕöÕð U·Gõqh¤-IL# „F?—Ñ
 9¢‡9‚,Ò~Œ
 9ÂŽ£+—ýʇx½ÉåÞ„l[3ú8â+Eˆ¿ JT¶©ÑùK_Î1†çÊ9}mDÙ³fA[ŠÖð† 4,!=!Ž‚_›:Ï
-¹Ÿ;ï$íùÒ>LJ"ÓFÉAÆ,ðËÎÐÔ
-BúN5jÝÖŽò:36лªä §¦è"䁧&jY"nk¹©¼†±‹?7ðó üâýFìâ‚’•fªúe¾ 4
-®dÒÔ㉌D!v2×£¡ ;©Y¿ˆEÏ_YãEGr2Äô`KÏûì«7%勒E24	é%Ÿý‘°áTs!Žm4EÁJæ—âš|©ó]Ÿs¹VÆ›/›3€4 ÎsôÁ0ôÝ°ß*©þRÙfØ:n»aMœ	%
-0šÒsí=lÛa]m²m‡mtúTõ{$¤Ü'º½[˜Vžý}¯ÕFìÜ7Ŧ©íÌ©)%Ÿè“0b=E@|ŸìmÖv%ìM}=ðß ’|èOˆ.…ªò'xÜŸ BAäxé|[«&©ç Ne-ÕZ祩åìë\Ü8o†dñ—`br(~Ž"Û5=ß~7ê6N3×±LÚÖ­ÅReq=D“0~iýP†s¢!Í;n°oݧ:¹I›>éizb&È£⍅xB\/5NŒðuªÀo¦H{¶T«¸¨ün—^ïÉ0ijK”44žO‘³‰XRߐ۴J©´°:!•l»žÏ#!XPüÜä£Ö©tÑYµ-1“+
+¹Ÿ;ï$íùÒ>LJ"ÓFÉAÆ,ðËÎÐÔÌBúN5jÝÖŽò:36лªä §¦è"ä15U†Èq[ËMå5Œ]ü¹Ÿåï7b”¬4SÕ/ó¡Qpý “¦Oô`$±“¹
+ØIÍúEì(zþÊò/:’Ӑ!> [zÞg_½¡(y/•,’¡I0H/ù쏄
+§šq|l£)
+V2߸×äKïúœËõ°0Þx	Üœü už‹ð †¡ï†ýVIõ—Ê6ÃÖqÛ
+kâ|àH(‰P€Ñ”v˜kïaÛëj“m;l£Ó§ªßØ#!å>ÑíÝ´òìï{­6bç¾)6MmgNM)éèÄøDŸ„ë)âûdo³¶+a×hêëÿäC‚Dt)Tý?ÁãþÁ
+: ÇKçÛZ5Iݨ8ïq*k©Ö:/M-g_ç:àÆy3$‹¿„“CñsÙ®éùö»Q·qš¹ŽeÒ¶n-–*‹ë!š„ñKcèG2|¢!Í;n°oݧ:¹I›>éizb&È£⍅xB\/5NŒðuªÀo¦H{¶T«¸¨ün—^ïÉ0ijK”44žO‘³‰XRߐ۴J©´°:!•l»žÏ#!XPüÜä£Ö©tÑYµ-1“+
 °¸øŽGèL&&ò½¹µ5²Ê¶¶YÅÅR¬M¾¼óìMäÂ÷Iåîö™¾bðÅݏñºwO‰zÙ»«©ÕŒL3Íè·ã´Ú´Ç2ÉŒ˜KF·žîIq¾¤Û
 —õª:Þ
-l•W0®€®ŸËdÞî©ÝíHࠐu»Òd¥¾@}éŒ"^gIõ‹y¾QÉTr±¶ÅÉTŽL¦¾«Å\VãY€3¤õRëO];ãÎ] „^¼Öyµ;ÏZ Þ»¶Ä×ýnC —±9Ê]Ö\U–ÔÄH‰´_sõbã lä‚=å¨@ФÀM½T{£ÊªZÒX‘y÷oÁ²³ÙCZò{öµrm¬ײ²xXÏOZ°<Q:¾:»¼ô³Uq«¸]aY‡¢üÚ®Ö¼ÛBÆ1¿¤£fU“I!ê5ÛUšffó¶Æ´‹Ù~M¢¿¾ûÈst	áy:½­á÷eè»hm´ïMv6–ô<Ä~¨n«Ï=ê±³¢^'wﲵ캅Ør)™µï»_áíçZ/|»íÁ¦öúÔ&6'˜Ã¼%b?q5ù ÚGu’ëÛ1«“®lñí©!¡†œÇb^
+l•W0®€®ŸËdÞî©ÝíHࠐu»Òd¥¾@}éŒ"^gIõ‹y¾QÉTr±¶ÅÉTŽL¦¾«Å\VãY€3¤õRëO];ãÎ] „^¼Öyµ;ÏZ Þ»¶Ä×ýnC —±9Ê]Ö\U–ÔÄH‰´_sõbã lä‚=å¨@ФÀM½T{£ÊªZÒX‘y÷oÁ²³ÙCZò{öµrm¬ײ²xXÏOZ°<Q:¾:»¼ô³Uq«¸]aY‡¢üÚ®Ö¼ÛBÆ1¿¤£fU“I!ê5ÛUšffó¶Æ´‹Ù~M¢¿¾ûÈst	áy:½­á÷eè»hm´ïMv6–ô<Ä~¨n«Ï=êѳ¢^'wﲵ캅Ør)™µï»_áíçZ/|»íÁ¦öúÔ&6'˜Ã¼%b?q5™°óu’ëÛ1«“®lñí©!¡†œÇb^
 ]åËR™9Ô«Á¿(a—Äò±ödZ‰ƒyYòkSoš6ML‡/üÏÌ—O@š«íâìÁï9j½ß¨ëãT\¶~
 0§`ªiø]ÂWM]™lw<ø¢y×Ê9Ìeàço£k·±÷MY¤mm»Ëb]
-M‘ô“{‡ë«,ÀŸ«87âpû(ÿÛdªÓ÷Û–@Õÿ£ì ĺ<ï(¸SJƒ\ÜS8)•Á4ï—|#›ÊÜÖzÅ*µ_©T©ŽoBêÝòõ;>úNˆµwB€„$3¡„í>+ûçÿÝ×w¯~ 0{k
+M‘ô“{‡ë«,ÀŸ«87âpû(ÿÛdªÓ÷Û–@Õÿ£ì ĺ<ï(¸SJƒ\ÜS8)•Á4ï—|#›ÊÜÖzÅ*µ_©T©ŽoBêÝòõ;>úNˆµwB€„$3¡„í>+ûçÿÝ×w¯~j{y
 endstream
 endobj
 410 0 obj <<
@@ -1116,8 +1117,8 @@
 óÕ²«çhJãXúÖ~Tõ_ž3È‘ß›|`'†¹Ö(ÅSÙ-àwÐCº͉Q\¹)³.]:;ŽùCÏ
 û*€>æGÓfñc~uí‘߁¢Ú4`¢a¡ õÉ…æ(êäñQÈ|¾‹´‚Pë4NãCýÉ]ò™Ò)é#Z°¨…ŸŒ«o|ÇȽÍzŽ²«bÛæÀÙC᥉|Q'GQv:ÕÇCãtêäÓ½Òþ¾y„DY±õªØë56c™òœípÖxfêav¹È¶X¾å.&T:ÝŒ—q:Þ?9’ÊÃñfSn].+‡ûÚ8ÝØúËû<;¥âtr>b>qµfš/$“ÿù_ʈÇ{;(«7æ&s5O^Õ]sɸf·Ë¦#xcúRýÆë•Ci—C½MÔ=›Ð‘ºŸh”NOÜ^óÜáJ'pu®åpNðsßYH¬Gh—Ç í¸{?š»-œŸ
 Õÿé~IÆD‚‰z¸IA¸/É~·µØ½mc-즳;èõ¦†ºy\d§)A’Ýá]ö¡*Wy»]æegnÛA‡ ZšbØ#éKùuX—쀜¡î¬±ë
-¯B§÷ïðÎDÞ"`¨1…YÜ^mvUߙГ«}–uÔxèó]™@9/¡ÞÛ»÷ÆqV˜ŸÚ‹R>šä^ì\£yÓú“ëúÁÑ5¢BV	]¨<ìÅ}®—¦~8úí7³³”S‘Ô“ro"½ßdåÊ„ÉÕz“Õîe%˜Òí²ØþWVy7¹oU׍[a^AS‰4žœ÷þ¼’苹îÞ ˜êªiÑ#s5Ó .M¸ó„K
-'R$‡7öÀÛùÙ?’ÍIn
+¯B§÷ïðÎDÞ"`¨1…YÜ^mvUߙГ«}–uÔxèó]™@9/¡ÞÛ»÷ÆqV˜ŸÚ‹R>šä^ì\£yÓú“ëúÁÑ5¢BV	]¨<ìÅ}®—¦~8úí7³³”S‘Ô“ro"½ßdåÊ„ÉÕz“Õîe%˜Òí²ØþWVy7¹oU׍[a^AS‰4žœ÷þ¼’苹îÞ ˜êªiÞ#s5Ó .M¸ó„K
+'R$‡7öÀÛùÙ?’‰Im
 endstream
 endobj
 450 0 obj <<
@@ -3396,36 +3397,34 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 747 0 obj <<
-/Length 3050      
+/Length 3051      
 /Filter /FlateDecode
 >>
 stream
-xÚµZYÛÈ~÷¯Pö‰¬6oz$>^ÄÞ`<Á"Ø
-ŽÔ#qM‘
-õïSWS$EÍx²›'u‹ÕÝu~Õ”»Ø.ÜÅÏ\ù}uóìê] Z«4½ÅÍÝ"I•ë&‹8Òʍôâf³øÅñ”ö—+­½Ðù!ÿ’—ÛåʏC§6w¦6åÚ4ËÝüxõ.Y¤*¼Ÿ‹•N”Ÿ¤,áç)á¥4vºß'þP^#¸¼GüŸÞ¿ýøò\ªÃ>µezÎó'oxžµYçYk6ü Ýe-?:.½Ä©:&Óö™ÞV–Ó
-Ùg%òvYÁO²r3f­JĪf¾ª…R›Â|Y†¡Ã2Z<Çb•ÊCPê:â4¸
-Pèþ¦°Ľiw° HÙK¾?fÚô`/xB"–ü+ï¥Îa©ºÚÖÙ^-Wià:7Vb¿¤¬TÙ7sY€NóÉQ«•qå!á®*Š
-yvU=G Ò `Žëv|\&>,r®»v# |PbCV/P>•ùoS7Âzƒ¯U{|8/Õ+Å\ž«]†Àñah(`º#{ $r!¢}AšW%å2Ó¯nèjÚÿ—Ÿ[1òÊjîÈÈû’Èù±EG˜„‘1¤Ý`
-;L´ëüôö´y±\EIâü£ÌûÝ´8 wC¶<ü2³HcYÝ’±ÑFŒŸÚ¬Í›6_7߃"tä|ì~uudŠ
-?
-v1[£fBmrœ]Û^\]Ýßß«„6ŠÔñUekÕ}¾jrSfWç¡(YÕxÎmÖäk¼
-§l£úï” ?j‡”qOñYf¦Í±Ìöp@ží%LÁóœ²NŸÊ¿ÕúÏÜ34ö„¶rõ”†¶ã5`»ÌáÜàA¬W¤.ʽRææ/ŠX‡^²‘2Ô>@AziFJ]Ý›Ùeìî,'rÖÕʐOVE×Rˆ ¬6Óó!ó >½8/4Ûvoï„D¡L¬L–-ÄŽÉɏq1Û¼ãoe4Zkâ¡”_0œïÓ&¦Öñƒév‘s˜päEbý;EiV7 3Iþ…-iwÞÎhÜ‘m%ÿàšZklœuQ`ôÄÉÈôÈ4c$? hL4[sîÅ ü)'àå9zc)O(£YÓ´³â\v°¶E®-»¥8gi9º'o@­4MkÏ8µÜlP|ÑW'e;ðÒ‹1‹LOs/”FšÀ\±ÎŠuWd?ø„ò4üBJ-7Y½a6S×UÝ9lчS±ç'VƇj¶Ù€šó B5Øg-ÈÇÄhçÝ
-ÙžfM`ì†Sòs€-µýax´3­aJc+ˆÃ0ñ‚Óë ¶"£àBW î8]c hMê™9ɺ*›ÌCú³¡hñ# ”™ü[Õò²j*ÊÖ)bÎyçNñHÌRùáþýƒ{KK¿3™„§ê+µ¸@N8DÏTÉsX°J“áßW{×s$JòG9ôɌӤx@û‰m  	lbÚ¶ïAv¦8ðè>'T	# t·€‘ïJÞc|Á–û¶ ';(Júã4&føãYÉL«»²œïet U÷ÍÌõ'ÄP3ÝL¢bí
-º™ ŒðÀ¬‘Uk“mxÔîêªÛîxœ0€:ÂÞ²û¼Ï	ô^ů4F^ÉåÈŒš<<Ãð#vU˜Dc·‚ÕðÀšu­Ʀ¬9 •úGà‡¼oŒÃOC©WäXH1û,/xHÛ‚ßšÐå
-ÿµ 4Û¨z¹`k½BX¾Tý¤
-4Y‡2/¼Êõ²jZžæ²È….EܼÄwØOxŒ¤Î…*<b;…÷ÆÕQøõ
-5p„‡À±¤âRÓ1WiN‰’u¿’¦xkÓj³­ Ø0y¦d4f¢z
-¯YuLÄ(”$õºjò[ìUä¥ó£¯ÒXEˆòmÎ+ ÖâãÄC²N™,‹EEÝžÊ	¨kå1õž¥èbM™	ÈìRH"WjxL'•U ño¤(þÉ"l åïKf=¢ðª«­2›&ÛÙ‚;:ƒ)
-Ž9åÈ—º†áý³`ììxZ	‚Ã"FÙ	hͬ·ç±äQ~+±o[Sx>kÂ>z—<7F¤?^‹«Úÿ´bš*>žr}ßrnWpyB¶ ž.|¸j!P òÆú|G±Fqç?©s»0ÉØÑ+l²ÑÂ..nq¼gä£`ã+=nEȼB“X¹aòäë&”';•Dkjpº–€2hÿäIÀÀ†.j˜¹*üv–M²Ö4=&¡?¾íO¯?¾½9ßmªÔOín¯fBés½§Ù­wgLÑjTǯÞEÞpÇI¤¼K7lX',âõά—Pƒ>ó•ËÇ„tϳÓÕŒÁ\ÚW^x¾óÁ>FG ãê>Þ€y8[Èõ‰U…[  f7”¤€8³vÊKåE¥ŸÉœ‘Âaα²trÈÝNvÆC·òÁ^ïWrÿ"ù*Š“É ”•Ðule¤	”G[¯®¯þ²|pøw¾ùsé4£Ó@…ºw¼Csårн©<¾SÅߍ½§a¯§.•ªR¨A”³iœ
-ÙŸpÈ	Pƒá%¹¨~ÈæÎz£¶Š=P+W¥ã6_ü{ªŸøNgý²§úIå!g`[[QxB+^òP+)”g^¦ò³´¬ExÍÖàRx‚RòºÅ¢ ½Æzb˜M˜
-ǶÜ\‚ Ô„À fhWi/&·Ø¶…±\Ç'áCcÆ}q8dëÏPGߘf]çL„h³ï8J¿#cÍÜÂö¡ôe7œœ£" `šÆcdÂWõxÍ•Õ<b»à : \ÔúD8¾sn¸‹Â u ê…<õŠ= hY-eÇESñh“7‡"c#¡_o„¾>„'‰`åºåálº›¸Å…êÔ‹{V]{ Eý¤
-*¢Ò\b¡9_&öUôiò€û®ó²uõµÄH¤vo¸€‘{ç¢r+m¬/ñœ	aÀq¶UéUïøw€#‚Ž€Vc (Nqê Ô»áXoÛ.WÖý.V,šM=h^øÿªX¥d­ q±œü¡,Hàу$æO0@Êø§4÷LÿB^&[A5GI2pv¢ÎmZrDñ£hÀ‡PïÛœ–ÅßçE!¢Kúø‘ôa$ñê*N'æ°Å4ÓHúøpΓ¬k«=€ª5¤Ã#“È;Îøj‘b›q˜D'H—ãTݑŬå³Ï÷÷—è`>N·Ñ…	d‚½¢oãŠEaÚ2Ê=•L¾RéñbúL‚_LphIRä‚‘(Kì4iXº"†B›ÕG$j2>ÆÚ]Ñ­XYTÙ†Ô„<ü ÝfhRœÐgø½ÍK‘æɝþi½ˆ»ºÚÏU2üä*}÷vxõÐöWRƒ¢jÚÖHu´y¤ãÞqCŠƒ„0×­kLEÞ7[ãÑt S8E¤Ì·Ø%
-H0ɘÐäxófš‡‚ÒMèöÐïgt	:dèÈgNH|½aBmór¿‘éö~¹ðÃÐÏ)EO»•z)q^_¿üȲr…j†J©vKǨ ž´Ì=ÈN¦ý' ›àGTžd˜.àŽx¾Ä ld˜ä@&G$îñ}%æKIº¯
-t˜} öŽUŠÎÖÈ
-”Sà”ó5x`ù8=yº_oăo»í
-+ÛWÓŒºal¡>SÒ¦¬Öû¼ZàSfõ	~֍­˜cxûĪ&éåý0…\vÑŽ6ðPþãF¤û²¹R߁6vÈ#?%¸e³ÏÙÅô(b­ü49]ŸáÎð3¶SÌâÿtѯ
-°]á3¹ÂÖn(òÉcÈA%ïèdãþy+WžŸ
-š4\7|jDìtÃcd©1ú•ßQ;2ì<‚Ù.aÜF/tâAÔ¡½b¥}ùœîmüöæÙà¦T
+xÚµZëÛÆÿî¿BÍ'
+°ö¸|ÓAÑú8¨â|EP$EÁ“ö$Æ©òá³þûÎk)’¢î|MúIËáìììÌìÌo–rÛ…»øá™+¿¯nž]½ôBk•†¡·¸¹[$©rÝdGZ¹‘^Ül¿8žÒþr¥µ:?ä_òr»\ùqèÔæÎÔ¦\›fù¯›¯Þ%‹T¥‘¡w±Ò‰ò“”%ü¼3%LJc§kp>ñ‡z0!ŒTà0ø?½ûñå¹T/=µezÎó'oø9;j³Î³ÖløE»ËZ~u\z‰SuL&õ™ÞV–Ó
+Ùg%òvYÁo²r3f­JĪf¾ª…R›Â|Y†¡Ã2ZÜÇb•ÊC0Ú:â,¸
+Pèþ¦ ‡aÂÞ´;X¤l„%ß
+³kz %ÿʼÔ9,µSWÛ:Û«å*
+\çÆJì—”•*;3—hç1ï<³ZÙ¸W¶ò¨p›÷àWÕs*
+æ¸ÎAãã2ñÙa‘sݵ;ჲyò©ÌÛ˜ºÖœVíñ]à¼T¯sy®vaLJ¡£€éŽü’(„ˆö9 at h^•L”ËL¿º¡{¨Iÿ/9¾·bdÊjnËÈúAìüØGy£]!¡n Vƒ~±NœŸ¾‚F›Ë„°ó2ïuiÑÊ2™ü¿Ì,‚Þ˜CV·äj"`{ÆOmÖæM›¯›ï»ÎÇîWWG¦Øðû×à³5jæ M6³kÛË««ûû{Õ€ÐF‘1¾ªl­ºÏWMnÊìêü ŠG~Fcžs›5ùš‡ƒXÃGv
+(LýÀwJSjØFÎú33mŽe¶‡
+òÓ^N)ø9§œÓ'²Å/DµÑ3÷]=¡ƒ¯\=¥¡ïx
+P÷Y#œ[C¡ã´óŠÌE¢7êÀ=ÃáEÛЋB¶!R†–Á"H/ÍȨ«[b3»ŒƒåDκZŠÉªèZ: ($«ÍtÈ<8^œBšmÚÃ읐è +“E…Ø19Å1j³ÏkpþVF£µ&zÁ¨ñÇù>)1õŽLÕEÎaº‘‰Äúw:¥YÝ€AÎ$ùTÒѹ#ßJöÿÀ¬ÖØ9ëNq€§'NF®G¦Ÿ ùCc¢Ùšó(áOÙ/ϧ7–â„2š5m@;+Š´ãÁú¹¶–œ¥idž¬€ZhšÖîqê¹ÙCñ
+[†,(E;ðÒ‹g™ž^(,.· cë®ÈøüàÎÓàØtÈê
+³™º®êfÈaK6>œJ=¿±2>T³UÈ´œiªÁ>kA>&–@;ï–PÆÈgð6kð #7|¤8‡x°RÛ¿ †G;Ó@¦49{Åá1êÒO±9à†½pÇé€Dk2ÏÌNÖUÙäಟ=ŠÁaŒ2sÿV5‡¼¬šÊe1ç¼ó xäÌNùÇýûuKK¿3™„§ê+µ„@N(DÏTÉsX¨Jÿ¯:Ž®ç,HŒärè’§ýGàë'¶}€$°
+ˆiÛ¾Ù™âÀ£ûœ0%Œ ÎÝB~¼'yçTî›|ØAQÊ0†§11ÃÏJfZÝ•å|'£­’¸oe®?!†šéekoÐËaì@f¬Z›lãvWWÝvÇZp êy‹öyŸh^ÅS#SrÙ2cæ#?@žaø»*L¢qXÁj¸aͶ†Ô%)[He…ñø!ëçßð›ÆPêÕRÌ>Ë’Zð[º\¡à¿€fU¯ ·l­WÊWaäüiCMÖ¡ÌS¹^VMˏ¹,r¡G‘0èñv#©sçE¡ŠÀøÎG὇qu~½BÜAá&p,©øŸÔÅtÌUšS¢d[௤)V-cZm¶`À &ïÁƒŒÆLTOáå5›Ž‰x
+%IG½­šü›™t¾õU«hQ¾-x$ÀZ¼Øa(@þÁG&ËÆb1Q·§rêZy]rOäÙöhkÊL@æB…RÃcÚ©¬m#EñOa(_2ë…W]mÙ4ÙÖˆ
+öÜÑLQð‰]Žb©k8Þï0ÆÎŽ+ApXÄ(;­9‚÷ö<–<ʳ;kܘúÁ¼ct
+zô!yîŒH~0¼VµÿiÅ4U:|üxÊõ}Ëuº[Áå	Ù‚xºî᪅@@ÈÛó
+tŠ›8ÿéLÞ…‡ŒDb$\Ü0âxÏÈ FÁÇ)=nEȼA“X¹aòäË&”'šJ¢55]KÀ´Š$``C×4ÌÜ	•üv–M²Öô8z<„þú¶?½þøöæ\Û T©ŸZm¯fBés½§ùZΘ¢Õ¨Ž_½‹¼¡ÆI¤¼K7(¬ñzgÖK¨AŸùÂåˆc>„tËO§‹ÿ‚»´¯¼ð\ó£-€suÞ€{8[„’,¡ªpÀ솒ÇG#Äl…òGy‘Aég2g¤p˜³C¬,9än'Ú…ñ0¬|p„×Ç•Ü¿È	‰|ÅÉä
+ ÊJè:¶2Ò”G[¯®¯þ²|pøw¾ùsé,£Ó@…º¼Asåjн©<¾QÅߍ½§á¨§.•ªR¨Á
+|…ãl(Èöø„D¦H€“ä. ø!ʝõþFmG V®JÇm¾ø÷T	>ñ?õËžê'•‡`PœmmEá­xÉC­¤Pžy™R(ÎNвá4[ƒ+á	JÉKè‹‚ìë‰7b24a6Ûrs	‚zPÿš¡]¥½d˜ÜbÛÆrw<œ„8ŒU÷Åᐭ?C}cšu0¢Ï¾ãSú9kæöÔ‡aЗÃp²q> Ó4#¾¨Çk®¬æûÕá¢Ö'Ò pιã.
+ԁ¨òÔ+Ž  eµ”!MÅ£MÞŠŒ„q½úöž$‚—ë–‡³énª@P/îXuíPõ“:(¨ˆJs‰…æ|™ØWqЧÉê]çeëêk#ˆ‘HíÞp#÷ÁEåVÚY_ÎGpþ„Ç™ªÒ«Þñï G'­Æ PœâÔ¨=vñݶ]®lø]¬X4›.FмðÿU±JÉZAãb9ù3Y&À­IÌ`€”ñOiî™þ…¢LTA5GI2v¢Î)-¹
+¢øQ4àÃQïÛœ–ÅßçE!¢Kúú‘ôÇHΫ¨8¸ÃÓpPL#éàWÀ9?d][íT­!™DÑqÆW‹ÛŒÃCt‰t9NÕYÌZ>šñó>ãþ’ <Ómt¡G™à¯è[Á¸bQxm™aÅžJ&ß©ôx1}&Á/&8´$)
+rÁH”%vš4,
+]C¡Íê#’N5_cí®èV¬,ªlCfBþ€ Žn3t)>Ðgø½ÍK‘æɝþI^Ä]]íç*~p•>„{;¼zhû+©AQ5mk¤:Ú<Òq︡ÅAB˜ëÖ5¦"ñh:Ð)ì"Òæƒ[ì
+$˜äLhr¼y3ÍC‡ÒMèöÐïg	ÚdèÈgNH|½aBmór¿‘éö~¹ðÃÐÏ)EO»•z)q^_¿üȲr…j†J©vKǨ ž´Ì=ÈN¦ý' ›@€ü´aº€;âþo€²‘a’™‘¸Çw0ô˜/%é:¼6ÐaöY Ø;6)[#+PNWPÎ×u€mäÓôüå5ÚFb½‘¾í¶+¬l_M3ꆱ…úLI›²Zó>þew™Õ'øY7¶bŽáí«š¤—÷Ãr9D#ØÚ Bùo‘îËnäJ}Ú8 ü–à¼eŸsˆéÑ1ˆµòÓät}†š§0æpŽºŠè×؉¡ð™BakÊ°lòrPɝ|Üo!oåJÂóS at A“†ë†wˆnxŒ,5Fÿ£ò;jG†G0Û%ŒÛè…N<8uè¯Xi_>§ûc¿½yö_þéÜ
 endstream
 endobj
 746 0 obj <<
@@ -8545,27 +8544,28 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 1440 0 obj <<
-/Length 2227      
+/Length 2022      
 /Filter /FlateDecode
 >>
 stream
-xÚÍY[Û6~ϯð[d vHY×¼m“M±‹Ý´˜ÌÚ}ÐX›¨$z))ÓAÿüžeÙãfgÚÌ`_lŠ¤¨sùΕj±[¨Åw¯”ü{ýê͇D/t²Þ$Y¼¸¾]åZ©b‘gz­2½¸®?Eß.WZÇiôn_u;Ó/W›<¶®=TÞÔü48þ7•o¬ñüðy¹Ñ‘ñ½u]¿ü÷õßß|(åºÌâ¿¤«X¯‹X>r½·ròÍr‘ÙÙŽ&’¨äðN¾öývp²Ëó–X©òYTñ®$r]sÏûk3T¶	„/á½9'w{ËsüXý¬ôÆlå›ÃÞðicù¥ŽÖËUš•ÑÏ*U?x·óUÛ—È!2¥õºLSfªß»±Ar6X׏
-»IäXœ¨ù‡Ûñ|?iïsϽ»úËG9Ï+VV¦“®V·Îïä=o Ÿ<r=m‡tß/‹M´²5Ò:¡à͝Ìô`(“ø $Ä	ó$ågïÌU‰£
-ÌÓÞXiµRùJ%HJ>§+º>[Ä>e êír•¤1ñü+o¹Ô™É<Úy7zßÙaÏ#”èPu(Ágjâø®jÐ)}c‹p¸çó2tx[
-FŽb¨À€ rA1‹öŽŽä3t=  IBÀß:\¼#y×ã–Lb¦ 9Ë›H«°þ’V,OÔ@’§B è4Äs
-à’Ö4a7Ìy°ƒá…ÎÈêþ8ÿK/³Ž'éa?“ÏTü‰Î­¶(‚5O¹Ã0}ÍÿM%fwAð­íl? ˆ	ó·,ÒÞ¶øÆØTxÚãeø‡Qœ­âô¢u¨T«·Œ‡ñ@N©„‰Ñ·ˆ>†èX5<w¨ØõÀð6Xs}[jÑYbÓ€Ø@Ìã¸UåÛ³c!rÌ܇^Ç@NHùíthµÎUy"‡ä(‡ËM¢–°wÏ$M@Ì#ñ…­í{Û‰?e)6cºXý&êñ½	Öz‡I)m5¬¿ÄäJ¨^étåS¹¼2­;’¨q­Po»êpðî@óT}âÕ.àƒ§Ä.‘’ÀëĸññܸÏë“Yý´u^¾
-Ê“èçÆa’öäRp¡:jÛ6ÕM#o~¶•8€±m+~—Â{A¦ìÁPò¬Ú{ç¼›c\¯-ú#¶ïÂÃ`Ûj˜,fÒB‰Âà¶_P'!C¬­ÿwn!^`4ÈRÏŽÌlíí½¬Pšƒ	s¬ÙK“ ø1üÛ[ù—¯Qš7?æû°Úq¦˜ê3›¸X§Y`¦·¦«þéØÕšfEñc%{N¢È;oÀ4&´|Ɂn -¾B¸Ðp ÅWw :Ð1s IžEàBBzgE€¾½È×9—Â%0CšilgzžêMc({"¨ŸlrØ=Ïí¬äD¼d¼w2ñTkÀÕOV~7¶fN‰íV—Âþ¶kó=çíäY€Ü(öV‰ gÌá&¡œòµYF^%x F<ž1‚	óËü- ôñú[¡~’>TÍ{VÁvÉÌWp¦²p‚S«GA™ºSÛš÷à§@ˆÑ²Ûî±Oåࣹž¨dµûj'­šÁH6sDá3ÉòÌsÄ–Ør+¡(Ù€éû*£•õ±kì/ÄB@ÛàŽ²Ï½œÃ®PtF¨zól>ãëá>ЂÅÜpâ%3ì!ÔŽT4ÁNI$ˆÎ*ÆÝh¿éê³XUð§ÓÊç™TúÁþØîªÖœg0P~ËjmHA¡ÌzPòaþDBlnѲOsñG‰.
-([w<¸Ûò70ü„‘êìô+oN`º«µÄ!nçrFW«~”IvxœÍ~«8æ
-ç¯N]t—üêË	Š†ú+ԏ	‡¹TOWk(¸ƒ¸’è˜-B<-ÞX,ù'§}=¹Â›Iô"Å’F‰Ësð0cËk•å1ÇBÜ n3ì)#.‰öê!À¢¼¤×j
-jÔ*å­l¦0 …ø¸pF@–‚äê.¡`²rÞ2%µ)¦¤oÞpÃè%Êl”e\dGYÆE:“%.³(–X«Ã-¥¿-o"+ÄXaÇ[OAgÇsÔÊCρI)-ì
-¦Ð…-æ°É»›‹ÙJcÚQ[¼—D+4„6§
-!jË¡Ö:y¡_³Šiø׃N¦LÊÞ€ët;Ó;̪ì~ëíá<ê†\û¤«â¾$žû’O¨à3 K[˜|ìLçµx}=¿’üIF•ž1ªâ9£°¤•~+½½sSVZ8܇ÀpRx¤„Rn­°«ä5+ÿ³žn(S”¹h
-S¦
-Q7´µ~¯}låŽýL³þ¿PhåqÛØc¦EÎ☔¾qÉ{ŸöþÆí^ŒQôr¿ëLÓ¨,ù°!^R<£8Ðô²“…KH5o5áüÃ>2În)·¹ ¢©B{ØÓ{Ý0)îп~13ü2\ÊâÙ
-yR̼*9^‹Ì uvò˜>²ž\¢$Z¥·JŸ/g>Þ"jéi¨f¼©Ž\¡:þOÀøÔ½ÔñR9åÂTáhövytMÕ
-yènM`p:Uc¼ïå8+¤ôƒm^»šJY˜­äB§>/c^Ü!
-èO71E7†yh«ÁˆoG±D¡‰"Ü*æ‘t@á
-ÔúS¸…¢þ_wòr¸RAKz}zøtf¸;Á&Í3(*¥U6ߏÏUsɃ¿éŠWè}=œü?ïÉ™«MðD›ì†M5¦*$ûT¡ñ‡lÏ‘ sÒºýÀÿ•*žøÁK`²òiã_ºEªOv”åÇA–1‚ò“@—åÂ,ËÕ2&8¿åxÐèÏ[±·Èüdù©d2¹½ÌN.=á©ÌøÕcÒˆß»ÀÀÆ©g/T<¼<\èÌ«Œ«¸„ª­à7Ku²é¯×¯þÝ6f
+xÚÍY[Û6~ϯð[e RHY²¤¼m“M±‹Ý´˜xm4m•Dƒ’2ôÏï9<‡ºxœtfÓì‹E‘y®ß¹X¬Ž+±úþ•àçw»W¯ß'r%“h“lãÕî°Ê‹Hˆ|•me$¶rµ«V?ß­C)ã4x{*Û£êÖá&Kƒ½iÎ¥U½õ†žª´µV–^>­72P¶Ó¦íÖ¿îþùú}¾*¢boñ&±
+cå1_²;i>ùvÆy ŽºuIPö|xË·ý°ï
+ï²´%¢ø†ù6(iW˜¶¾§ý•êK]{Â×ðÝœ“»“¦9z-r£ö|gRtÚÐÁ@v-ƒh¦Û"øE¤âGkŽ¶là9D¦¤ŒŠ4%¦º“j$g³µÝPã±›„ÅÙ‘š™#MÁýI­hŸiiîíÍß>ÐÈXZѼ2žtŒ=òwVA>Y`:$Z÷é¾_ç› ²%Ò:ZÁë÷2™éŒ¡HࣈÒbK| IÙÅ7sUâhóno,¤EJq•®O큖¤Ü¼Y‡I’8ž§-·Ã±[ÜÇË<seÞ$e´Üòs˜
+bPžwj×À}OרI£ð6´µê:ºkèt;“z«{f¥Ý7Vµ{Å{`B`î‹kQÝi”e,¦ø*UûÉZÓ{9ôƒe)Üjp¤~¼ºÓ
+ò0ÔeïçsªB‘È”%ó¿kJ$xs6×T¶ÐÔ4£¦ÒxÒTš£:Ò˜Ì1ŽÖçŽÆwº?Ñm¿/[䫧™ÊÙ#訬ÀûÜ{4U§¿OëüØê²W|95œSÏ=Í‹ž„w玤3ºÈÛW*þA6aóŒjØ;ðš¹Ò…qŠ]%ú¢Hž_­€
+P	äŽ
+Hâ¹pIJ	
+Ø.ÍZÕ;“Çcëx–ü€^N3ÐLIW´&Ü£LþД9÷㝈»øT%ãã¹7ºÕ]hãÀé@]Úðó‹pÆé#ÐF0Úg<*°/vÌmt(kš;—"`xð¨[Ýão³êl¯©·×Ç3+Ÿ—[Q¼¹8"üæeC _òÇè"ÊDá	y·C2Éaá·IÐ8Ó»'’F;ÌƺFw“ëÁ}¾SÞWÏC?*¥)ûèKL†Lõ¥ÏåjÌD²§Æ4L½nËóÙš³c˜ãÆÓ®ØÇ2"ùÐBæõ \úöxMŸÊëǽ±|-hÃ”úQÜ#¤àB9©[×åmÍ_~Ò%ÀÐ4¥½GØuù¡›&ïÁHò¬ê{k¬!«)«4â9xÑ¡×Mُ.3ª¡»‡Œ®·Þ¸¿B
+O¦ùÃ(eˆµ•¡'¥
+8PŽõ¼Ô”©½>ÜóŠKa0Z©göÑ(	zõO}à'ßæòù‰¨1ÛùÕ–rúTΘÙÄy¡™é´jË[U‡.€„¼g‘(¿µ
+œc4—/A芆üëã…|‚æ9‚JOÇ’l †øì(ª¬ïÄb£uJ¥p	ÜÐÍÔºUMuªV.yr¦¾Ød °[š;jN‰hIYk,”L©”`Vw4YÚãàrç‘݆×
+›}=Tê*°&’ ]T0û[É‚œ1‡›˜r—®ÍJ/D@œ'ø0}Lwap—Wî…òiNøP7ïHûQ&3° LÓ瀂c«6'çnˆ§ºQï ÇPˆñ²šöÙ8ø î<Ô•¤w[YºeÝ+Îg&3|,)éI¹ a
+Ú]
+Ñ9!€Ò¬ôî¨cŦs<x{ëÍB ÿ<ñ9„…¬4gW¯ŸMÄ|]ظõ´`ÝÝ_Dy΍{}öe¾«š`'çFgÅýqÐß²´ÕE´ÊiÁ…§eéó\¼¿×¿{¾Û²Q—YÌÐùÕJ9
+ùBëAч9”“XçÞ•»Ñ³¢':ϱÅ@ƒ»“rÏ«và©;ì’PÓø­vâv*hatÑê'ž$Ì«ùl‚®|J.?;>W*ª§–.Ê—	ˆP7m\ti%Á”/BDà-Vi¬ùGaØލX˜a?*	^¤^’è#q1c^fÌa-¶Žò˜¢!n`Üô{Š€êCGû­k"À"$#¥Hi+¹)ÜB<-Àœ£ 9Îè®Å×ÑËiËÌ&]ŸbÌúzê5õö^J–q¾dçéL–¸Ì¢Xb靷8sòûAÓ&ç„8 'liKoï]ÅÙÞÐœëº"p`VêNŠcìÂHóGØdÍíÕ|¥VÍ•°Íàc9Õò¡Í²#ä:¨¨µ–Œ<—/#gîŸþçA³ó	"å¤ 9ÍQµJ÷³B»Û[}¾Œ:ΆLó¤‹üXϱä#*øÂйƒï0v¦ór<þ:\ùJ>…œñ)â9Ÿ°$…|ÃͽKO’Ü8_¢ðH00tɵÀ2¬äÏ4?gM?ÜÀ1Æ^‹0c¦
+1×7¶>×Àñ®rG0S¿˜XÿÌ||/ºÆó,SJ¶üâv/Û¿Ó_1µ9F/å'ˆqŸ…Ò4(
+z‚i0F2.2|¦×AŒ®˜;{ó^Î?ì#ã,ýwqPÇ
+íaSH1çî›ÿ´)òg+äbæ5Éô¯ÈÌ´.þÿxL#™ýŽÿCIôJ·Ô+½øËIn¸"^…qiaN4b±éï»Wÿ·e{£
 endstream
 endobj
 1439 0 obj <<
@@ -8581,471 +8581,490 @@
 326 0 obj <<
 /D [1439 0 R /XYZ 89.008 771.024 null]
 >> endobj
+1442 0 obj <<
+/D [1439 0 R /XYZ 89.008 699.856 null]
+>> endobj
+1443 0 obj <<
+/D [1439 0 R /XYZ 89.008 684.08 null]
+>> endobj
 1438 0 obj <<
 /Font << /F41 414 0 R /F8 352 0 R /F14 782 0 R /F62 598 0 R /F51 482 0 R >>
 /ProcSet [ /PDF /Text ]
 >> endobj
-1444 0 obj <<
-/Length 2059      
+1446 0 obj <<
+/Length 2204      
 /Filter /FlateDecode
 >>
 stream
-xÚ½YYsÛ6~ϯÐ#51oö-NœN:mšIԙδ}€EXFÃkH*Ž›?ß= 2ã#Žý"ÀX,ß~»òVû•·úù™wô<Ù>{ñF„«ÌÍb?^mÏWÂÜ,òWI,\/«m¾úËùÛÉúŸí/Ãw/Þ¤“oð-€~’õ=ám¼xã…ëM$·ÍyÝî6b§UŸu§ëŠ[YbD>jUIîÓÕ®8äj«KõúP–k?q®x¤ª{W_šõúë¶W9wuõ‘Œ\û©óyÅŽÔ…<+w÷5nTÝÛŒXåþ‚†çЩÖ=ÚèÌ:ÞêFdnêû5N05N83Nàd±aã̈ýé‘	×÷Ò¹R_oÐHxnâeV¥³Ãž‚}„_TǺȎ;µÑÆêf†3ÿ¹Ñ2poRmcÖÚˆÈMƒä¾º½ºÕ^Ud•óâKx´4Ú¡¹Ð}¶ë4tpT8=‹¨~çš¹Ì>·8iô5Íž?xc‘øæÎŒ›¿­zÕÊ]OKÃÇsc¤ž›Æ¡ý¤ªÑ§/YñK]Æg«·<×h«ovc!|7	çqäÀžVä±3ÃÉÀatæTꪸ‚1qgws#au}§.Í©ûºÕýEiNÿüP‘éGý~Œ~ßÈBÐ'B’½úi½	Ãh€C}‘eSØË“ëv-…ž·ëë–vwû5÷»%ÃöÞ·õ¾U]g­É:”ò‹.Ña%ú6U¡/Œ‹ÐoΣ;ÓR§ç	^[ß÷íµ[iæ4-X–îyP•Mo@Ÿš ¨]ßq³>[oà$þ…  ?„}êNz_a$@	žÞ% x£ûÎHîZÙ]°žß(œ¢0–¶§VÁ‹<¥¥ù»¥°q	®d½…n`>ø*0\ìÇ3i§e‡‡Þ Þ­,IkP€õ™ Gàt‡…$ŒË”uûˆÇþ2ÓëÒ DN¡=åÐÎ@®Š|@0BÂ9zú¡ëGñ°qÕŸžq
-7ÃÀÙ µ&n È—5žÌgº¦ó¼­Ë…õRߍüð­oX2J\/ó­üÍÖDâ&©¸gì÷Á	sí3áFIð@å-½»ZÐ<ãD‹šÃ©[”kíl_8‚±žn
-Ž,’ûç†ÕXW.~7r 	ì%Ö‘[جÔ-78KÜ0‹¾ózüÑé
-q1‰ ƒKCl;Ía‰z¸Í¨ƒogº‘hzÝ›±Jõl.bÇŸ4{à8¾×ìûÜ’àD-šGJ@iüʏLüQ¡AQw6 ´-\•?²|T°Ù›ƒ¾PEÃgˆhRX(7êœ[™ÒC"!†È6EmBÆÂàÄkqÎט½Ä7b at 4ï¾Íø{âæ@w¯×Æo[%ûràjœ ;v-ìÌe/§ÄîØ®SƒqJi>'§bB±Ñ£Rò¨Ç;ÍWÆǧ\^µ­=·Á%içö>úÕL
-_#h°¬"écq5]%À@Yê
-éfÎ7%Ôþ”ÙO²‘2cc ŒŸ‘„0aH!Ùb™%ã&)b»øbR`¼ï­´ëÈ‚h¾Ô
-r¢Ð
-?£uÈÏpj
-	SÙ¥+oIÙÈyî‹ÑÈPŒN<‹;öm}hìöŸ 6~{“ôcú‚­ÔˆÌ¬²õ±´>¶ÈúÔÝôÃhE|îj¾¨m]¡¶¿¨÷uö?IòKˆŠ³xÞµÄÁ)É$@ ³g/\c-ÔË1Äh¾× ¯Dâ.ߝ° e>Ó‰Á0&|@¬àÚôê¹ÖÞŽsÀ¥èÛG*p¤é­išÞ1#¥o·†µÄZµMòÎÁQÙÁCçØïOEÓ›òèî›Ü¾×ä>{=»kF0¦9€Ó‘/>ÉnLäâ	p†ÓŠ¢‰ysï"TB™Ý€–¡=ú‚A^	ô`²oR?†¤Š`¤‡"ÂâÕ=*f"Yx
-KAÄ¢Iˆ	bï›!ÓˆŸd·îÈK â%‘	tý¡Á.eÌ,à¹ì¤‚ɘAŒVW¹Þ,–c5"¢¥kTÆø]B>AXá\ál#oêiÙÔÓ`(üäpfcá$†D»,e{ÅRº(¥rÝsW©zSˆÉ;£x‰C¦Ž¯ÓúˆLêÝSâ6€ñ~tmz „£Ÿ!1eh‚M€Ø‚CØ6×uPf¬Èؼ œZp^EžeOOËuå¤&ÒÊ樀Ý׍͡àŠLo\$]J[²)8#Ç,=	䬔vÜD˜xûîÕ�ÿõt{j€Å( úÑQõFn¨>ú6/‡—ɉ4½ÓDýp¾m³|]©%ìàD@µšˆ+ÎF‚>˜±Mì¤÷	Iî‹ƒ!„;.dX©‡EèöÆ”
-˜R™qÔ…ûL"¢ª|ÈÉp>þ#ªÕüGJÒ
-ôF6C¡aï©ÙûÂöJ[¦-nçS?&_	7"¸’ÌTÕå¼²NõòðzÒý$(.0oŠ¦|!šñh%)>“!úC¤‚ŒÃ1BNÇoº²_›L³å²rÙLQØÎdØ8VæTk?n=¿µ€§%nz]è~`LJ>\¾¡Qì†úEt3›ØÃ]ór-›BN*®\%˜W®¯a¥ý›ã¨8.=ñ3d×ê~¼þ§y›^ãº,5币ór^
-ã¬naâøÑb܇ѣæ'ãÍÊ8ÇUµÙô+Ô™¿‚|î|Ê3góÔN·Ïþ²âÏ
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/rsiena -r 113


More information about the Rsiena-commits mailing list