[Rsiena-commits] r40 - in pkg/RSiena: . R src src/win32 tests

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Jan 15 16:45:34 CET 2010


Author: ripleyrm
Date: 2010-01-15 16:45:33 +0100 (Fri, 15 Jan 2010)
New Revision: 40

Modified:
   pkg/RSiena/R/print07Report.r
   pkg/RSiena/R/sienaprint.r
   pkg/RSiena/changeLog
   pkg/RSiena/src/Makefile.win
   pkg/RSiena/src/win32/Makefile
   pkg/RSiena/tests/parallel.R
   pkg/RSiena/tests/parallel.Rout.save
Log:
Reverting a bug fix in revision 32. (sqrt of standard error of rate for conditioning variable.) Changes to Makefiles for 64 bit Windows.

Modified: pkg/RSiena/R/print07Report.r
===================================================================
--- pkg/RSiena/R/print07Report.r	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/R/print07Report.r	2010-01-15 15:45:33 UTC (rev 40)
@@ -44,9 +44,9 @@
                    }
                    Report(format(round(z$rate[1], digits = 4), width = 9), outf)
                    Report(format(round(z$rate[1], digits = 4), width = 9), bof)
-                   Report(c('  (', format(round(sqrt(z$vrate[1]), digits = 4),
+                   Report(c('  (', format(round(z$vrate[1], digits = 4),
                                         width = 9), ')\n'), sep = '', outf)
-                   Report(c('  (', format(round(sqrt(z$vrate[1]), digits = 4),
+                   Report(c('  (', format(round(z$vrate[1], digits = 4),
                                         width = 9), ')\n'), sep = '', bof)
                }
                else ## observations > 2
@@ -58,14 +58,14 @@
                        tmp <- paste(' 0.', nnstr, ' Rate parameter period ',
                                     1:nn, '              ',
                                     format(round(z$rate,4),width=9),
-                                    '  (',format(round(sqrt(z$vrate),4),width=9),
+                                    '  (',format(round(z$vrate,4),width=9),
                                     ')\n', sep = '')
                    }                   else{
                        tmp <- paste(' 0.', nnstr,
                                     'Rate parameter cond. variable period ',
                                     1:nn, '              ',
                                     format(round(z$rate,4),width=9),
-                                    '  (',format(round(sqrt(z$vrate),4),width=9),
+                                    '  (',format(round(z$vrate,4),width=9),
                                     ')\n',   sep='')
                    }
                    Report(tmp, outf, sep='')

Modified: pkg/RSiena/R/sienaprint.r
===================================================================
--- pkg/RSiena/R/sienaprint.r	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/R/sienaprint.r	2010-01-15 15:45:33 UTC (rev 40)
@@ -210,7 +210,7 @@
                 mydf[1, 'text'] <- 'Rate parameter of conditioning variable'
             }
             mydf[1, 'value'] <- x$rate[1]
-            mydf[1, 'se'] <- sqrt(x$vrate[1])
+            mydf[1, 'se'] <- x$vrate[1]
         }
         else ## observations > 2
         {
@@ -303,14 +303,36 @@
     tmp <- sienaFitThetaTable(x)
     mydf <- tmp$mydf
     addtorow <- tmp$addtorow
+    ## find out whether the type is html or latex
+    dots <- substitute(list(...))[-1] ##first entry is the word 'list'
+    if (!is.null(dots[["type"]]))
+    {
+        type <- dots[["type"]]
+    }
+    else
+    {
+        type <- "latex"
+    }
     if (!is.null(addtorow$command))
     {
+        if (type =="latex")
+        {
         use <- addtorow$command != 'Network Dynamics'
         addtorow$command <- paste('\\multicolumn{4}{l}{', addtorow$command,
                                   '} \\\\ \n')
         use[1] <- FALSE
         addtorow$command[use] <- paste('\\\\ ', addtorow$command[use])
     }
+        else ##html
+        {
+           # use <- addtorow$command != 'Network Dynamics'
+            addtorow$command <- paste("<TR> <TD colspan=9 align=left>",
+                                      addtorow$command,
+                                      "</TD> </TR> <TR> </TR> \n")
+          #  use[1] <- FALSE
+          #  addtorow$command[use] <- paste('\\\\ ', addtorow$command[use])
+        }
+    }
     else
     {
         addtorow <- NULL
@@ -320,7 +342,7 @@
     mydf[mydf[,'row'] >= 1, 'row'] <- paste(format(mydf[mydf$row >= 1,
              'row']), '.', sep='')
     tmp <- list(xtable(mydf, caption=caption, label=label, align=align,
-                       digits=digits, display=display), addtorow=addtorow,
+                       digits=digits, display=display), add.to.row=addtorow,
                 include.colnames=FALSE, include.rownames=FALSE, ...)
     class(tmp) <- c("xtable.sienaFit", "xtable")
     tmp
@@ -328,9 +350,10 @@
 ##@print.xtable.sienaFit Methods
 print.xtable.sienaFit <- function(x, ...)
 {
-    addtorow <- x[["addtorow"]]
+    addtorow <- x[["add.to.row"]]
     if (!is.null(addtorow))
     {
+        x$add.to.row$pos <- lapply(x$add.to.row$pos, function(x)x-2)
         do.call("print", x)
     }
     else

Modified: pkg/RSiena/changeLog
===================================================================
--- pkg/RSiena/changeLog	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/changeLog	2010-01-15 15:45:33 UTC (rev 40)
@@ -1,3 +1,16 @@
+2010-01-15 R-forge revision 40
+
+	* R/print01report.r, R/sienaprint.r: remove extra sqrt roots in
+	standard error of rates for conditional estimation (see revision 32)
+	* src/Makefile.win, src/win32/Makefile: Changes to makefile for 64 bit
+	windows
+	* tests/parallel.R, tests/parallel.R.save: remove timers from
+	tests to reduce differences with output.
+
+2010-01-12 R-forge revision 39
+
+	* tests/parallel.r: fix bug: use library RSiena not RSienaTest
+
 2010-01-12 R-forge revision 38
 
 	* man/RSiena-package.Rd, man/siena07.Rd, man/sienaFit.Rd,
@@ -2,3 +15,3 @@
 	man/simstats0c.Rd: reduce time for examples
-	* tests/parallel.R, tests/patallel.Rout.save: reduce tests
+	* tests/parallel.R, tests/parallel.Rout.save: reduce tests
 

Modified: pkg/RSiena/src/Makefile.win
===================================================================
--- pkg/RSiena/src/Makefile.win	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/src/Makefile.win	2010-01-15 15:45:33 UTC (rev 40)
@@ -1,6 +1,8 @@
 #-*- Makefile -*-
 #
 
+include $(R_HOME)/etc/Makeconf
+
 #RHOME = d:/R/R-2.9.0/
 #RHOME = c:/progra~1/R/R-2.9.0/
 #RHOME = c:/R/R-2.9.0/
@@ -39,12 +41,12 @@
 CXXFLAGS = -O2 -Wall -pedantic
 DLLLIBS = $(PKG_LIBS) -L$(R_HOME)/bin -lR
 
-.cpp.o:
-	$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@
+#.cpp.o:
+#	$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@
 
 ECHO = echo
-NM = nm
-DLL = g++
+#NM = nm
+DLL = $(CXX)
 SED = sed
 
 %.dll:

Modified: pkg/RSiena/src/win32/Makefile
===================================================================
--- pkg/RSiena/src/win32/Makefile	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/src/win32/Makefile	2010-01-15 15:45:33 UTC (rev 40)
@@ -1,5 +1,7 @@
+include $(R_HOME)/etc/Makeconf
+
 %.o: %.rc
-	windres -i $< -o $@
+	$(RESCOMP) -i $< -o $@
 
 all: siena.exe sienaC.exe
 
@@ -7,10 +9,10 @@
 	cp siena.exe sienaC.exe ../../inst
 
 siena.exe: siena.o siena_rc.o
-	gcc -s -mwindows -o $@ siena.o siena_rc.o
+	$(CC) -s -mwindows -o $@ siena.o siena_rc.o
 
 sienaC.exe: siena.o siena_rc.o
-	gcc -s -o $@ siena.o siena_rc.o
+	$(CC) -s -o $@ siena.o siena_rc.o
 
 clean:
 	@rm -f *.exe *.o ../../inst/*.exe

Modified: pkg/RSiena/tests/parallel.R
===================================================================
--- pkg/RSiena/tests/parallel.R	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/tests/parallel.R	2010-01-15 15:45:33 UTC (rev 40)
@@ -8,13 +8,13 @@
 mymodel<- model.create(findiff=TRUE, fn = simstats0c, projname='test3',
                        cond=FALSE, nsub=2, n3=100)
 print('test3')
-system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 ##test4
 mymodel$projname <- 'test4'
 mymodel$cconditional <- TRUE
 mymodel$condvarno<- 1
 print('test4')
-system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 ##test7
 mynet1 <- sienaNet(array(c(tmp3,tmp4),dim=c(32,32,2)))
 mydata <- sienaDataCreate(mynet1)
@@ -22,32 +22,33 @@
 mymodel<- model.create(fn = simstats0c, projname='test7', nsub=2, n3=100,
                        cond=FALSE)
 print('test7')
-system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 ##test8
 mymodel$projname <- 'test8'
 mymodel$cconditional <- TRUE
 mymodel$condvarno<- 1
 print('test8')
-system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
+##test9
 
 mynet1 <- sienaNet(array(c(s501, s502, s503), dim=c(50, 50, 3)))
 mynet2 <- sienaNet(s50a,type='behavior')
 mydata <- sienaDataCreate(mynet1, mynet2)
 myeff <- getEffects(mydata)
-myeff$initialValue[94] <- 0.34699930338 ## siena3 starting values differ
+myeff$initialValue[96] <- 0.34699930338 ## siena3 starting values differ
 ##test10
 print('test10')
 mymodel$projname <- 'test10'
 mymodel$cconditional <- TRUE
 mymodel$condvarno<- 1
-system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))
+ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)
 ##test11
 print('test11')
-system.time(data501 <- sienaDataCreateFromSession("s50.csv", modelName="s50"))
-system.time(data501e <- sienaDataCreateFromSession("s50e.csv", modelName="s50e"))
-system.time(data501paj <- sienaDataCreateFromSession("s50paj.csv", modelName="s50paj"))
+data501 <- sienaDataCreateFromSession("s50.csv", modelName="s50")
+data501e <- sienaDataCreateFromSession("s50e.csv", modelName="s50e")
+data501paj <- sienaDataCreateFromSession("s50paj.csv", modelName="s50paj")
 
 model501e <- model.create( projname="s50e", cond=FALSE, nsub=2, n3=100 )
-system.time(ans501e <- siena07(model501e, data=data501e$mydata, effects=data501e$myeff,
-                   parallelTesting=TRUE, batch=TRUE, verbose=TRUE))
+ans501e <- siena07(model501e, data=data501e$mydata, effects=data501e$myeff,
+                   parallelTesting=TRUE, batch=TRUE, verbose=TRUE)
 ## compare with outputs in parallelchecked/

Modified: pkg/RSiena/tests/parallel.Rout.save
===================================================================
--- pkg/RSiena/tests/parallel.Rout.save	2010-01-12 18:56:12 UTC (rev 39)
+++ pkg/RSiena/tests/parallel.Rout.save	2010-01-15 15:45:33 UTC (rev 40)
@@ -15,9 +15,9 @@
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.
 
-> library(RSienaTest)
+> library(RSiena)
 Loading required package: xtable
-> print(packageDescription("RSienaTest",fields="Repository/R-Forge/Revision"))
+> print(packageDescription("RSiena",fields="Repository/R-Forge/Revision"))
 [1] NA
 > 
 > ##test3
@@ -28,7 +28,7 @@
 +                        cond=FALSE, nsub=2, n3=100)
 > print('test3')
 [1] "test3"
-> system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+> ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -58,7 +58,7 @@
 Phase 1 Iteration 14 Progress: 6%
 Phase 1 Iteration 15 Progress: 6%
 Phase 1 Iteration 16 Progress: 7%
-Time per iteration in phase 1  = 0.0200 
+Time per iteration in phase 1  = 0.01933 
 Average deviations NR generated statistics and targets
 after phase 1:
       32.437500
@@ -117,7 +117,7 @@
 0.1117977
 0.1982289
 
-Time per iteration in phase 2.1 = 0.004089
+Time per iteration in phase 2.1 = 0.004533
 theta  3.10 -1.09  1.67 
 ac 0.121 0.112 0.198 
 Phase 2.1 ended after 225 iterations.
@@ -137,7 +137,7 @@
 Phase 2 Subphase 2 Iteration 8 Progress: 31%
 Phase 2 Subphase 2 Iteration 9 Progress: 31%
 Phase 2 Subphase 2 Iteration 10 Progress: 31%
-Time per iteration in phase 2.2 = 0.004030
+Time per iteration in phase 2.2 = 0.003802
 theta  3.03 -1.13  1.79 
 ac  0.0471 -0.0488  0.0117 
 Phase 2.2 ended after 263 iterations.
@@ -147,7 +147,7 @@
 
 Start phase 3 
 Simulated values, phase 3.
-Time per iteration in phase 3   =  0.0152 
+Time per iteration in phase 3   =  0.0147 
 dfrac :
 12.246820 11.600000  5.800000
  3.555528 44.000000 10.800000
@@ -193,15 +193,13 @@
      0.229      0.574     31.507
 
 
-   user  system elapsed 
-   3.96    0.02    4.00 
 > ##test4
 > mymodel$projname <- 'test4'
 > mymodel$cconditional <- TRUE
 > mymodel$condvarno<- 1
 > print('test4')
 [1] "test4"
-> system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+> ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -228,7 +226,7 @@
 Phase 1 Iteration 11 Progress: 4%
 Phase 1 Iteration 12 Progress: 4%
 Phase 1 Iteration 13 Progress: 5%
-Time per iteration in phase 1  = 0.01167 
+Time per iteration in phase 1  = 0.01083 
 Average deviations NR generated statistics and targets
 after phase 1:
        2.461538
@@ -312,7 +310,7 @@
 
 Start phase 3 
 Simulated values, phase 3.
-Time per iteration in phase 3   =  0.0114 
+Time per iteration in phase 3   =  0.0109 
 dfrac :
 41.0 14.0
 22.2 22.8
@@ -339,7 +337,7 @@
 Estimates and standard errors
                              
 Rate parameters:
- 0. Rate parameter                            3.0428  (   0.7235)
+ 0. Rate parameter                            3.0428  (   0.5235)
  1. eval:  outdegree (density)                          -1.0952  (   0.1923)
  2. eval:  reciprocity                                   1.7007  (   0.3089)
 
@@ -353,8 +351,6 @@
      0.571     32.750
 
 
-   user  system elapsed 
-   2.53    0.00    2.55 
 > ##test7
 > mynet1 <- sienaNet(array(c(tmp3,tmp4),dim=c(32,32,2)))
 > mydata <- sienaDataCreate(mynet1)
@@ -363,7 +359,7 @@
 +                        cond=FALSE)
 > print('test7')
 [1] "test7"
-> system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+> ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -384,7 +380,7 @@
 Phase 1 Iteration 5 Progress: 1%
 Phase 1 Iteration 10 Progress: 2%
 Phase 1 Iteration 15 Progress: 2%
-Time per iteration in phase 1  = 0.005333 
+Time per iteration in phase 1  = 0.006667 
 Average deviations NR generated statistics and targets
 after phase 1:
       32.437500
@@ -443,7 +439,7 @@
  0.03195180
 -0.00410509
 
-Time per iteration in phase 2.1 = 0.004044
+Time per iteration in phase 2.1 = 0.003867
 theta  3.12 -1.11  1.73 
 ac  0.14682  0.03195 -0.00411 
 Phase 2.1 ended after 225 iterations.
@@ -463,7 +459,7 @@
 Phase 2 Subphase 2 Iteration 8 Progress: 46%
 Phase 2 Subphase 2 Iteration 9 Progress: 46%
 Phase 2 Subphase 2 Iteration 10 Progress: 46%
-Time per iteration in phase 2.2 = 0.003968
+Time per iteration in phase 2.2 = 0.003651
 theta  3.11 -1.13  1.75 
 ac -0.112 -0.219 -0.157 
 Phase 2.2 ended after 63 iterations.
@@ -473,7 +469,7 @@
 
 Start phase 3 
 Simulated values, phase 3.
-Time per iteration in phase 3   =  0.0043 
+Time per iteration in phase 3   =  0.0041 
 dfrac :
 18.4056484  3.7142613 -0.3794248
  2.1526407 49.1035790 18.8351756
@@ -519,15 +515,13 @@
      0.101      0.660     35.489
 
 
-   user  system elapsed 
-   1.81    0.01    1.83 
 > ##test8
 > mymodel$projname <- 'test8'
 > mymodel$cconditional <- TRUE
 > mymodel$condvarno<- 1
 > print('test8')
 [1] "test8"
-> system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))#,dll='../siena/src/RSiena.dll')
+> ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)#,dll='../siena/src/RSiena.dll')
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -596,7 +590,7 @@
 Phase 2 Subphase 1 Iteration 10 Progress: 8%
 theta -0.922  1.368 
 ac 0.109 0.535 
-Time per iteration in phase 2.1 = 0.004043
+Time per iteration in phase 2.1 = 0.00383
 theta -1.11  1.66 
 ac -0.0414  0.0000 
 Phase 2.1 ended after 94 iterations.
@@ -625,7 +619,7 @@
 
 Start phase 3 
 Simulated values, phase 3.
-Time per iteration in phase 3   =  0.0040 
+Time per iteration in phase 3   =  0.0039 
 dfrac :
 33.189028  8.787036
 15.949957 19.294151
@@ -652,7 +646,7 @@
 Estimates and standard errors
                              
 Rate parameters:
- 0. Rate parameter                            3.1368  (   0.6976)
+ 0. Rate parameter                            3.1368  (   0.4867)
  1. eval:  outdegree (density)                          -1.1224  (   0.2040)
  2. eval:  reciprocity                                   1.7395  (   0.2947)
 
@@ -666,21 +660,20 @@
      0.586     30.010
 
 
-   user  system elapsed 
-   1.24    0.00    1.25 
+> ##test9
 > 
 > mynet1 <- sienaNet(array(c(s501, s502, s503), dim=c(50, 50, 3)))
 > mynet2 <- sienaNet(s50a,type='behavior')
 > mydata <- sienaDataCreate(mynet1, mynet2)
 > myeff <- getEffects(mydata)
-> myeff$initialValue[94] <- 0.34699930338 ## siena3 starting values differ
+> myeff$initialValue[96] <- 0.34699930338 ## siena3 starting values differ
 > ##test10
 > print('test10')
 [1] "test10"
 > mymodel$projname <- 'test10'
 > mymodel$cconditional <- TRUE
 > mymodel$condvarno<- 1
-> system.time(ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE))
+> ans<- siena07(mymodel, data=mydata, effects=myeff,  batch=TRUE, parallelTesting=TRUE, verbose=TRUE)
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -704,7 +697,7 @@
 Phase 1 Iteration 15 Progress: 2%
 Phase 1 Iteration 20 Progress: 3%
 Phase 1 Iteration 25 Progress: 3%
-Time per iteration in phase 1  = 0.01083 
+Time per iteration in phase 1  = 0.01125 
 Average deviations NR generated statistics and targets
 after phase 1:
       11.760000
@@ -769,7 +762,7 @@
 Phase 2 Subphase 1 Iteration 10 Progress: 24%
 theta -1.964  1.965  0.230  0.412  0.665 -0.217 
 ac  1.298  0.971  0.332  0.228 -0.775  0.825 
-Time per iteration in phase 2.1 = 0.01440
+Time per iteration in phase 2.1 = 0.01434
 theta -2.312  2.722  0.202  0.350  0.407 -0.212 
 ac -0.0102 -0.0819 -0.1969 -0.1784 -0.3442 -0.3264 
 Phase 2.1 ended after 166 iterations.
@@ -788,7 +781,7 @@
 Phase 2 Subphase 2 Iteration 8 Progress: 53%
 Phase 2 Subphase 2 Iteration 9 Progress: 53%
 Phase 2 Subphase 2 Iteration 10 Progress: 53%
-Time per iteration in phase 2.2 = 0.01475
+Time per iteration in phase 2.2 = 0.01488
 theta -2.355  2.815  0.200  0.367  0.356 -0.200 
 ac -0.1972 -0.3500 -0.0972 -0.3752 -0.3719 -0.1077 
 Phase 2.2 ended after 80 iterations.
@@ -799,7 +792,7 @@
 Start phase 3 
 Simulated values, phase 3.
 Phase 3 Iteration 100 Progress 100%
-Time per iteration in phase 3   =  0.0169 
+Time per iteration in phase 3   =  0.0157 
 dfrac :
 198.7730468  87.7900813 -28.0652717  -6.5802604  11.4180195  12.2382586
 145.6055398 103.8763360  -0.4775313  -6.5941940  13.6390143   8.8744044
@@ -842,8 +835,8 @@
 Estimates and standard errors
                              
 Rate parameters:
- 0.1  Rate parameter period 1                 5.7677  (   0.9338)
- 0.2  Rate parameter period 2                 4.5201  (   0.7804)
+ 0.1  Rate parameter period 1                 5.7677  (   0.8719)
+ 0.2  Rate parameter period 2                 4.5201  (   0.6091)
 
 Other parameters:
  1. eval:  outdegree (density)                          -2.3554  (   0.1091)
@@ -871,21 +864,15 @@
     -0.006      0.035     -0.145     -0.062      0.155    257.690
 
 
-   user  system elapsed 
-   5.95    0.00    5.97 
 > ##test11
 > print('test11')
 [1] "test11"
-> system.time(data501 <- sienaDataCreateFromSession("s50.csv", modelName="s50"))
-   user  system elapsed 
-   0.54    0.00    0.56 
-> system.time(data501e <- sienaDataCreateFromSession("s50e.csv", modelName="s50e"))
+> data501 <- sienaDataCreateFromSession("s50.csv", modelName="s50")
+> data501e <- sienaDataCreateFromSession("s50e.csv", modelName="s50e")
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
-   user  system elapsed 
-   0.81    0.02    0.83 
-> system.time(data501paj <- sienaDataCreateFromSession("s50paj.csv", modelName="s50paj"))
+> data501paj <- sienaDataCreateFromSession("s50paj.csv", modelName="s50paj")
 Loading required package: network
 Classes for Relational Data
 Version 1.4-1 created on July 26, 2008.
@@ -898,12 +885,10 @@
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
 <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient
-   user  system elapsed 
-   0.72    0.00    0.73 
 > 
 > model501e <- model.create( projname="s50e", cond=FALSE, nsub=2, n3=100 )
-> system.time(ans501e <- siena07(model501e, data=data501e$mydata, effects=data501e$myeff,
-+                    parallelTesting=TRUE, batch=TRUE, verbose=TRUE))
+> ans501e <- siena07(model501e, data=data501e$mydata, effects=data501e$myeff,
++                    parallelTesting=TRUE, batch=TRUE, verbose=TRUE)
 
 Stochastic approximation algorithm.
 Initial value for gain parameter = 0.2.
@@ -992,7 +977,7 @@
 0.1923869
 0.2436313
 
-Time per iteration in phase 2.1 = 0.01326
+Time per iteration in phase 2.1 = 0.01282
 theta  5.55  4.35 -2.27  2.65 
 ac 0.0352 0.1297 0.1924 0.2436 
 Phase 2.1 ended after 227 iterations.
@@ -1015,7 +1000,7 @@
 Phase 2 Subphase 2 Iteration 200 Progress: 77%
 theta  5.54  4.51 -2.36  2.69 
 ac -0.1015  0.0533 -0.1115  0.0278 
-Time per iteration in phase 2.2 = 0.01366
+Time per iteration in phase 2.2 = 0.01299
 theta  5.77  4.53 -2.33  2.75 
 ac -0.0641  0.0195 -0.1176 -0.0246 
 Phase 2.2 ended after 268 iterations.
@@ -1026,7 +1011,7 @@
 Start phase 3 
 Simulated values, phase 3.
 Phase 3 Iteration 100 Progress 100%
-Time per iteration in phase 3   =  0.0142 
+Time per iteration in phase 3   =  0.0140 
 dfrac :
   8.1662885   0.0000000  38.2604466   5.4507366
   0.0000000   7.5602624  25.5047375   0.3465663
@@ -1079,7 +1064,5 @@
      0.258      0.114      0.861    194.886
 
 
-   user  system elapsed 
-   8.64    0.05    8.71 
 > ## compare with outputs in parallelchecked/
 > 



More information about the Rsiena-commits mailing list