[Roxygen-devel] need usage advice for documentation of methods for print and summary
Hadley Wickham
hadley at rice.edu
Tue Jan 3 21:10:30 CET 2012
Hi Paul,
You should just export the method, i.e.:
#' @S3method summary mcreg
and don't document use any other roxygen tags, unless you want to
fully document the method (which is not usually necessary)
Exporting the method means that summary(mymcregobject) will work, but
summary.mcreg(mymcregobject) will not (and that's what you want)
Hadley
On Tue, Jan 3, 2012 at 1:31 PM, Paul Johnson <pauljohn32 at gmail.com> wrote:
> Following the nice post on stackoverflow
>
> Roxygen2 - how to properly document S3 methods
>
> http://stackoverflow.com/questions/7198758/roxygen2-how-to-properly-document-s3-methods
>
> I'm pretty sure I'm doing the right roxygen2 markup for methods when I
> create the generic function.
>
> But I'm confused about writing methods for generics that are in base
> R, such as print and summary. Should I export? Do those methods
> belong in different Rd files? What @params do they inherit from R's
> declaration of the generic. I've fiddle around, trying this a lot of
> ways, all of them generate warnings in R CMD check. Either I get
> redundant declarations of parameters from the R base's generic method
> or, well, miscellaneous errors about incorrect use of method names in
> usage files.
>
> Can I show you my example and ask for advice? meanCenter is a generic
> function, meanCenter.default is the implementation. I think that
> part's OK.
>
> After that are summary.mcres and print.mcres. There I have trouble.
>
>
> ##' meanCenter selectively centers or standarizes variables in a
> regression model.
> ##'
> ##' The defaults will cause a regression's numeric interactive
> ##' variables to be mean centered. If one wants all predictors to be
> ##' centered, the option centerOnlyInteractors should be set to FALSE.
> The dependent
> ##' variable will not be centered, unless the user explicitly requests it by
> ##' setting centerDV = TRUE.
> ##' @title meanCenter
> ##' @param model a fitted regression model (presumably from lm)
> ##' @param centerOnlyInteractors If false, all predictors in the
> ##' regression data frame are centered before the regression is
> ##' conducted.
> ##' @param centerDV Should the dependent variable be centered?
> ##' @param standardize Instead of simply mean-centering the variables,
> should they also be "standardized" by first mean-centering and then
> dividing by the estimated standard deviation.
> ##' @param centerContrasts This function was originally intended only
> to center numeric variables. However, this option will ask centering
> of the numeric contrasts that are created in the fitting process.
> ##' @export meanCenter
> ##' @rdname meanCenter
> ##' @author Paul E. Johnson <pauljohn@@ku.edu>
> ##' @seealso \code{\link[pequod]{lmres}}
> ##' @example inst/examples/meanCenter-ex.R
> meanCenter <- function(model, centerOnlyInteractors=TRUE,
> centerDV=FALSE, standardize=FALSE, centerContrasts = F){
> UseMethod("meanCenter")
> }
>
> ##' @return A list including 1) model, a fitted regression object, 2)
> centeredVars, a list of the variables that were centered in the
> estimation of model, and 3) call, the call that generated the model
> result.
> ##' @rdname meanCenter
> ##' @export
> ##' @method meanCenter default
> ##' @S3method meanCenter default
> meanCenter.default <- function(model, centerOnlyInteractors=TRUE,
> centerDV=FALSE, standardize=FALSE, centerContrasts = F){
>
> std <- function(x) {
> if( !is.numeric(x) ){
> stop("center.lm tried to center a factor variable. No Can Do!")
> } else {
> scale(x, center = TRUE, scale = standardize)
> }
> }
>
> rdf <- get_all_vars(formula(model), model$model) #raw data frame
> t <- terms(model)
> tl <- attr(t, "term.labels")
> tmdc <- attr(t, "dataClasses") ##term model data classes
>
> isNumeric <- names(tmdc)[ which(tmdc %in% c("numeric"))]
> isFac <- names(tmdc)[ which(tmdc %in% c("factor"))]
> if (tmdc[1] != "numeric") stop("Sorry, DV not a single numeric column")
>
> ##Build "nc", a vector of variable names that "need centering"
> ##
> if (!centerDV) {
> if (centerOnlyInteractors == FALSE){
> nc <- isNumeric[-1] #-1 excludes response
> unique(nc)
> }else{
> interactTerms <- tl[grep(":", tl)]
> nc <- unique(unlist(strsplit( interactTerms, ":")))
> nc <- nc[which(nc %in% isNumeric)]
> }
> }else{
> if (centerOnlyInteractors == FALSE){
> nc <- isNumeric
> }else{
> interactTerms <- tl[grep(":", tl)]
> nc <- unique(unlist(strsplit( interactTerms, ":")))
> nc <- nc[which(nc %in% isNumeric)]
> nc <- c( names(tmdc)[1] , nc)
> }
> }
>
>
> mc <- model$call
> # run same model call, replacing non centered data with centered data.
> ## if no need to center factor contrasts:
> if (!centerContrasts)
> {
> stddat <- rdf
> for (i in nc) stddat[ , i] <- std( stddat[, i])
> mc$data <- quote(stddat)
> }else{
> ##dm: design matrix, only includes intercept and predictors
> dm <- model.matrix(model, data=rdf, contrasts.arg =
> model$contrasts, xlev = model$xlevels)
> ##contrastIdx: indexes of contrast variables in dm
> contrastIdx <- which(attr(dm, "assign")== match(isFac, tl))
> contrastVars <- colnames(dm)[contrastIdx]
> nc <- c(nc, contrastVars)
>
> dm <- as.data.frame(dm)
>
> hasIntercept <- attr(t, "intercept")
> if (hasIntercept) dm <- dm[ , -1] # removes intercept, column 1
>
> dv <- rdf[ ,names(tmdc)[1]] #tmdc[1] is response variable name
> dm <- cbind(dv, dm)
> colnames(dm)[1] <- names(tmdc)[1] #put colname for dv
>
> dmnames <- colnames(dm)
> hasColon <- dmnames[grep(":", dmnames)]
> dm <- dm[ , -match(hasColon, dmnames)] ##remove vars with colons
> (lm will recreate)
>
> ##Now, standardise the variables that need standardizing
> for (i in nc) dm[ , i] <- std( dm[, i])
>
>
> fmla <- formula(paste(dmnames[1], " ~ ", paste(dmnames[-1],
> collapse=" + ")))
> cat("This fitted model will use those centered variables\n")
> cat("Model-constructed interactions such as \"x1:x3\" are built
> from centered variables\n")
> mc$formula <- formula(fmla)
> mc$data <- quote(dm)
> }
>
> cat("These variables", nc, "Are centered in the design matrix \n")
>
> res <- eval(mc)
> class(res) <- c("mcreg", class(model))
> attr(res, "centeredVars") <- nc
> attr(res, "centerCall") <- match.call()
> res
> }
>
>
> ##' @author <pauljohn@@ku.edu>
> ##' @export
> ##' @S3method summary mcreg
> summary.mcreg <- function(object, ...){
> nc <- attr(object, "centeredVars")
> cat("The centered variables were: \n")
> print(nc)
> cat("Even though the variables here have the same names as their
> non-centered counterparts, I assure you these are centered.\n")
> mc <- attr(object, "centerCall")
> cat("These results were produced from: \n")
> print(mc)
> NextMethod(generic = "summary", object = object, ...)
> }
>
>
> ##' @author <pauljohn@@ku.edu>
> ##' @export
> ##' @S3method print mcreg
> print.mcreg <- function(x, ...){
> nc <- attr(x, "centeredVars")
> cat("The centered variables were: \n")
> print(nc)
> cat("Even though the variables here have the same names as their
> non-centered counterparts, I assure you these are centered.\n")
> mc <- attr(x, "centerCall")
> cat("These results were produced from: \n")
> print(mc)
> NextMethod(generic = "print", object = x, ...)
> }
>
> --
> Paul E. Johnson
> Professor, Political Science
> 1541 Lilac Lane, Room 504
> University of Kansas
> _______________________________________________
> Roxygen-devel mailing list
> Roxygen-devel at lists.r-forge.r-project.org
> https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/roxygen-devel
--
Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University
http://had.co.nz/
More information about the Roxygen-devel
mailing list