[Robast-commits] r539 - branches/robast-0.9/pkg/RobExtremes/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jan 17 14:35:34 CET 2013


Author: dashunka
Date: 2013-01-17 14:35:34 +0100 (Thu, 17 Jan 2013)
New Revision: 539

Modified:
   branches/robast-0.9/pkg/RobExtremes/R/GEVFamily.R
   branches/robast-0.9/pkg/RobExtremes/R/GParetoFamily.R
   branches/robast-0.9/pkg/RobExtremes/R/PickandsEstimator.R
Log:
die Kleinigkeiten korrigiert

Modified: branches/robast-0.9/pkg/RobExtremes/R/GEVFamily.R
===================================================================
--- branches/robast-0.9/pkg/RobExtremes/R/GEVFamily.R	2013-01-17 00:41:38 UTC (rev 538)
+++ branches/robast-0.9/pkg/RobExtremes/R/GEVFamily.R	2013-01-17 13:35:34 UTC (rev 539)
@@ -1,358 +1,357 @@
-#################################
-##
-## Class: GEVFamily for positive shape
-##
-################################
-
-## class
-setClass("GEVFamily", contains="L2ParamFamily")
-
-## methods
-setMethod("validParameter",signature(object="GEVFamily"),
-           function(object, param, tol =.Machine$double.eps){
-             if (is(param, "ParamFamParameter")) 
-                 param <- main(param)
-             if (!all(is.finite(param))) 
-                 return(FALSE)
-             if (any(param[1] <= tol)) 
-                 return(FALSE)
-             if (any(param[2] <= tol))
-                 return(FALSE)
-             return(TRUE)
-           })
-
-
-## generating function 
-## loc: known/fixed threshold/location parameter
-## scale: scale parameter
-## shape: shape parameter
-## trafo: optional parameter transformation
-## start0Est: startEstimator for MLE and MDE --- if NULL HybridEstimator is used;
-
-GEVFamily <- function(loc = 0, scale = 1, shape = 0.5,
-                          of.interest = c("scale", "shape"),
-                          p = NULL, N = NULL, trafo = NULL,
-                          start0Est = NULL, withPos = TRUE){
-    if(is.null(trafo)){
-        of.interest <- unique(of.interest)
-        if(length(of.interest) > 2)
-            stop("A maximum number of two parameters resp. parameter transformations may be selected.")
-        if(!all(of.interest %in% c("scale", "shape", "quantile", "expected loss", "expected shortfall")))
-            stop("Parameters resp. transformations of interest have to be selected from: ",
-                "'scale', 'shape', 'quantile', 'expected loss', 'expected shortfall'.")
-
-        ## reordering of of.interest
-        if(("scale" %in% of.interest) && ("scale" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "scale"
-        }
-        if(!("scale" %in% of.interest) && ("shape" %in% of.interest) && ("shape" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "shape"
-        }
-        if(!any(c("scale", "shape") %in% of.interest) && ("quantile" %in% of.interest)
-          && ("quantile" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "quantile"
-        }
-        if(!any(c("scale", "shape", "quantile") %in% of.interest)
-          && ("expected shortfall" %in% of.interest)
-          && ("expected shortfall" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "expected shortfall"
-        }
-    }
-    theta <- c(loc, scale, shape)
-
-    ##symmetry
-    distrSymm <- NoSymmetry()
-
-    ## parameters
-    names(theta) <- c("loc", "scale", "shape")
-
-
-    if(!is.null(p)){
-       btq <- substitute({ q <- loc0 + theta[1]*((-log(1-p0))^(-theta[2])-1)/theta[2]
-                           names(q) <- "quantile"
-                           }, list(loc0 = loc, p0 = p))
-
-       bDq <- substitute({ scale <- theta[1];  shape <- theta[2]
-                        D1 <- ((-log(1-p0))^(-shape)-1)/shape
-                        D2 <- -scale/shape*(D1 + log(-log(1-p0))*(-log(1-p0))^(-shape))
-                        D <- t(c(D1, D2))
-                        rownames(D) <- "quantile"; colnames(D) <- NULL
-                        D }, list(p0 = p))
-       btes <- substitute({ if(theta[2]>=1L) es <- NA else {
-                            pg <- pgamma(-log(p0),1-theta[2], lower.tail = FALSE)
-                            es <- theta[1] * gamma(1-theta[2]) * pg / p0 /
-                                   theta[2] + loc0 }
-                            names(es) <- "expected shortfall"
-                            es }, list(loc0 = loc, p0 = p))
-       bDes <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA} else {
-                            scale <- theta[1]; shape <- theta[2]
-                            pg <- pgamma(-log(p0), 1-theta[2], lower.tail = FALSE)
-                            dd <- ddigamma(-log(p0),1-theta[2])
-                            D1 <- gamma(1-theta[2])*pg/p0/theta[2]
-                            D21 <- -theta[1]*gamma(1-theta[2])*pg/p0/theta[2]^2
-                            D22 < -theta[1]*digamma(1-theta[2])*pg/p0/theta[2]
-                            D23 <- theta[1]*dd/p0/theta[2]
-                            D2 <- D21+D22+D23}
-                            D <- t(c(D1, D2))
-                            rownames(D) <- "expected shortfall"
-                            colnames(D) <- NULL
-                            D }, list(loc0 = loc, p0 = p))
-    }
-    if(!is.null(N)){
-       btel <- substitute({ if(theta[2]>=1L) el <- NA else{
-                            el <- N0*(loc0+theta[1]*gamma(1-theta[2])/theta[2])}
-                            names(el) <- "expected loss"
-                            el }, list(loc0 = loc,N0 = N))
-       bDel <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA}else{
-                            scale <- theta[1]; shape <- theta[2]
-                            D1 <- N0*gamma(1-shape)/shape
-                            D2 <- -N0*theta[1]*digamma(1-theta[2])/theta[2]-
-                                   D1*scale/(1-shape)}
-                            D <- t(c(D1, D2))
-                            rownames(D) <- "expected loss"
-                            colnames(D) <- NULL
-                            D }, list(loc0 = loc, N0 = N))
-    }
-    if(is.null(trafo)){
-        tau <- NULL
-        if("scale" %in% of.interest){
-            tau <- function(theta){ th <- theta[1]; names(th) <- "scale";  th}
-            Dtau <- function(theta){ D <- t(c(1, 0)); rownames(D) <- "scale"; D}
-        }
-        if("shape" %in% of.interest){
-            if(is.null(tau)){
-               tau <- function(theta){th <- theta[2]; names(th) <- "shape"; th}
-               Dtau <- function(theta){D <- t(c(0,1));rownames(D) <- "shape";D}
-            }else{
-                tau <- function(theta){th <- theta
-                            names(th) <- c("scale", "shape"); th}
-                Dtau <- function(theta){ D <- diag(2);
-                            rownames(D) <- c("scale", "shape");D}
-                }
-            }
-        }
-        if("quantile" %in% of.interest){
-            if(is.null(p)) stop("Probability 'p' has to be specified.")
-            if(is.null(tau)){
-                tau <- function(theta){ }; body(tau) <- btq
-                Dtau <- function(theta){ };body(Dtau) <- bDq
-            }else{
-                tau1 <- tau
-                tau <- function(theta){ }
-                body(tau) <- substitute({ btq0; c(tau0(theta), q) },
-                                        list(btq0=btq, tau0 = tau1))
-                Dtau1 <- Dtau
-                Dtau <- function(theta){}
-                body(Dtau) <- substitute({ bDq0; rbind(Dtau0(theta), D) },
-                                         list(Dtau0 = Dtau1, bDq0 = bDq))
-            }
-        }
-        if("expected shortfall" %in% of.interest){
-            if(is.null(p)) stop("Probability 'p' has to be specified.")
-            if(is.null(tau)){
-                tau <- function(theta){ };  body(tau) <- btes
-                Dtau <- function(theta){ }; body(Dtau) <- bDes
-            }else{
-                tau1 <- tau
-                tau <- function(theta){ }
-                body(tau) <- substitute({ btes0; c(tau0(theta), es) },
-                                        list(tau0 = tau1, btes0=btes))
-                Dtau1 <- Dtau
-                Dtau <- function(theta){}
-                body(Dtau) <- substitute({ bDes0; rbind(Dtau0(theta), D) },
-                                         list(Dtau0 = Dtau1, bDes0=bDes))
-            }
-        }
-        if("expected loss" %in% of.interest){
-            if(is.null(N)) stop("Expected frequency 'N' has to be specified.")
-            if(is.null(tau)){
-                tau <- function(theta){ }; body(tau) <- btel
-                Dtau <- function(theta){ }; body(Dtau) <- bDel
-            }else{
-                tau1 <- tau
-                tau <- function(theta){ }
-                body(tau) <- substitute({ btel0; c(tau0(theta), el) },
-                                        list(tau0 = tau1, btel0=btel))
-                Dtau1 <- Dtau
-                Dtau <- function(theta){}
-                body(Dtau) <- substitute({ bDel0; rbind(Dtau0(theta), D) },
-                                         list(Dtau0 = Dtau1, bDel0=bDel))
-            }
-        }
-        trafo <- function(x){ list(fval = tau(x), mat = Dtau(x)) }
-    }else{
-        if(is.matrix(trafo) & nrow(trafo) > 2) stop("number of rows of 'trafo' > 2")
-    }
-
-
-    param <- ParamFamParameter(name = "theta", main = c(theta[2],theta[3]),
-                               fixed = theta[1],
-                               trafo = trafo, withPosRestr = withPos,
-                               .returnClsName ="ParamWithScaleAndShapeFamParameter")
-
-    ## distribution
-    distribution <- GEV(loc = loc, scale = scale, shape = shape)
-
-    ## starting parameters
-    startPar <- function(x,...){
-        mu <- theta[1]
-        
-        ## Pickand estimator
-        if(is.null(start0Est)){
-        #source("kMedMad_Qn_Estimators.R")
-           e0 <- PickandsEstimator(x,ParamFamily=GParetoFamily(loc = theta[1],
-                            scale = theta[2], shape = theta[3]))
-        }else{
-           if(is(start0Est,"function")){
-              e1 <- start0Est(x, ...)
-              e0 <-  if(is(e1,"Estimate")) estimate(e1) else e1
-           }
-           if(!is.null(names(e0)))
-               e0 <- e0[c("scale", "shape")]
-        }
-        if(any(x < mu-e0["scale"]/e0["shape"]))
-               stop("some data smaller than 'loc-scale/shape' ")
-
-        names(e0) <- NULL
-        return(e0)
-    }
-
-    ## what to do in case of leaving the parameter domain
-    makeOKPar <- function(theta) {
-        if(withPos){
-           if(!is.null(names(theta)))
-                 theta["shape"] <- abs(theta["shape"])
-           else  theta[2] <- abs(theta[2])
-        }
-        return(theta)
-    }
-
-    modifyPar <- function(theta){
-        theta <- abs(theta)
-        GEV(loc = loc, scale = theta[1], shape = theta[2])
-    }
-
-
-    ## L2-derivative of the distribution
-    L2deriv.fct <- function(param) {
-        sc <- force(main(param)[1])
-        k <- force(main(param)[2])
-        tr <- fixed(param)[1]
-
-        Lambda1 <- function(x) {
-         y <- x*0
-         ind <- (x > mu-sc/k) # = [later] (x1>0)
-         x <- (x[ind]-tr)/sc
-         x1 <- 1 + k * x
-         y[ind] <- (x*(1-x1^(-1/k))-1)/x1/sc
-#         xi*(-1/xi-1)*(x[ind]-mu)/beta^2/(1+xi*(x[ind]-mu)/beta) - (x[ind]-mu)*(1+xi*(x[ind]-mu)/beta)^(-1/xi-1)/beta^2
-         return(y)
-        }
-        Lambda2 <- function(x) {
-         y <- x*0
-         ind <- (x > tr-sc/k) # = [later] (x1>0)
-         x <- (x[ind]-tr)/sc
-         x1 <- 1 + k * x
-         x2 <- x / x1
-         y[ind]<- (1-x1^(-1/k))/k*(log(x1)/k-x2)-x2
-#         log(1+xi*(x[ind]-mu)/beta)/xi^2+(-1/xi-1)*(x[ind]-mu)/beta/(1+xi*(x[ind]-mu)/beta) - (1+xi*(x[ind]-mu)/beta)^(-1/xi)*log(1+xi*(x[ind]-mu)/beta)/xi^2 + (1+xi*(x[ind]-mu)/beta)^(-1/xi-1)*(x[ind]-mu)/beta/xi
-         return(y)
-        }
-        ## additional centering of scores to increase numerical precision!
-        z1 <- E(distribution, fun=Lambda1)
-        z2 <- E(distribution, fun=Lambda2)
-        return(list(function(x){ Lambda1(x)-z1 },function(x){ Lambda2(x)-z2 }))
-    }
-
-    ## Fisher Information matrix as a function of parameters
-    FisherInfo.fct <- function(param) {
-        sc <- force(main(param)[1])
-        k <- force(main(param)[2])
-#        tr <- force(fixed(param)[1])
-#        fct <- L2deriv.fct(param)
-#        P2 <-  GPareto(loc = tr, scale = sc, shape = k)
-        G20 <- gamma(2*k)
-        G10 <- gamma(k)
-        G21 <- digamma(2*k)
-        G11 <- digamma(k)
-        G01 <- digamma(1)
-        G02 <- trigamma(1)
-        I11 <- G20*2*k*(k^2-4*k+1)+G10*2*k*(k^2+k-1)+1
-        I11 <- I11/sc^2/k^2
-        I12 <- G20*k*(2*k^2-1)+ G10*k^2*(2-4*k) - k + 3
-        I12 <- I12 + G21*2*k^2 -G11*k^2*(k^2+2*k+1) -G01*k
-        I12 <- I12/sc/k^3
-        I22 <- G20*2*k*(k^2+1)-G10*2*k*(2+3*k+k^2) -3*k^2  +8*k +3
-        I22 <- I22 - G11*2*k^2*(1+k)+G10*2*k*(3-k)+k^2 *G02
-        I22 <- I22 /k^4
-        mat <- PosSemDefSymmMatrix(matrix(c(I11,I12,I12,I22),2,2))
-        dimnames(mat) <- list(scaleshapename,scaleshapename)
-        return(mat)
-    }
-
-
-#    FisherInfo.fct <- function(param) {
-#        beta <- force(main(param)[1])
-#        xi <- force(main(param)[2])
-#        mu <- force(fixed(param)[1])
-#        fct <- L2deriv.fct(param)
-#        P <-  GEV(loc = mu, scale = beta, shape = xi)
-#       E11 <- E(P,function(x)fct[[1]](x)*fct[[1]](x))
-#        E12 <- E(P,function(x)fct[[1]](x)*fct[[2]](x))
-#        E22 <- E(P,function(x)fct[[2]](x)*fct[[2]](x))
-#        return(PosSemDefSymmMatrix(matrix(c(E11,E12,E12,E22),2,2)))
-#    }
-
-    FisherInfo <- FisherInfo.fct(param)
-    name <- "Generalized Extreme Value Family with positive shape parameter: Frechet Family"
-
-    ## initializing the GPareto family with components of L2-family
-    L2Fam <- new("GEVFamily")
-    L2Fam at scaleshapename <- scaleshapename
-    L2Fam at name <- name
-    L2Fam at param <- param
-    L2Fam at distribution <- distribution
-    L2Fam at L2deriv.fct <- L2deriv.fct
-    L2Fam at FisherInfo.fct <- FisherInfo.fct
-    L2Fam at FisherInfo <- FisherInfo
-    L2Fam at startPar <- startPar
-    L2Fam at makeOKPar <- makeOKPar
-    L2Fam at modifyParam <- modifyPar
-    L2Fam at L2derivSymm <- FunSymmList(NonSymmetric(), NonSymmetric())
-    L2Fam at L2derivDistrSymm <- DistrSymmList(NoSymmetry(), NoSymmetry())
-
-    L2deriv <- EuclRandVarList(RealRandVariable(L2deriv.fct(param),
-                               Domain = Reals()))
-
-    L2Fam at fam.call <- substitute(GEV(loc = loc0, scale = scale0,
-                                 shape = shape0, of.interest = of.interest0,
-                                 p = p0, N = N0, trafo = trafo0,
-                                 withPos = withPos0),
-                         list(loc0 = loc, scale0 = scale, shape0 = shape,
-                              of.interest0 = of.interest, p0 = p, N0 = N,
-                              trafo0 = trafo, withPos0 = withPos))
-
-    L2Fam at LogDeriv <- function(x){
-                  x0 <- (x-loc)/scale
-                  x1 <- 1 + x0 * shape
-                  (shape+1)/scale/x1 + x1^(-1-1/shape)/scale
-                  }
-
-    L2Fam at L2deriv <- L2deriv
-
-    L2Fam at L2derivDistr <- imageDistr(RandVar = L2deriv, distr = distribution)
-
-    return(L2Fam)
-}
-
-#ddigamma(t,s) is d/ds \int_t^\infty exp(-x) (-log(x)) x^(-s) dx
-
-ddigamma <- function(t,s){
-              int <- function(x) exp(-x)*(-log(x))*x^(-s)
-              integrate(int, lower=t, upper=Inf)$value
-              }
+#################################
+##
+## Class: GEVFamily for positive shape
+##
+################################
+
+## class
+setClass("GEVFamily", contains="L2ParamFamily")
+
+## methods
+setMethod("validParameter",signature(object="GEVFamily"),
+           function(object, param, tol =.Machine$double.eps){
+             if (is(param, "ParamFamParameter")) 
+                 param <- main(param)
+             if (!all(is.finite(param))) 
+                 return(FALSE)
+             if (any(param[1] <= tol)) 
+                 return(FALSE)
+             if (any(param[2] <= tol))
+                 return(FALSE)
+             return(TRUE)
+           })
+
+
+## generating function 
+## loc: known/fixed threshold/location parameter
+## scale: scale parameter
+## shape: shape parameter
+## trafo: optional parameter transformation
+## start0Est: startEstimator for MLE and MDE --- if NULL HybridEstimator is used;
+
+GEVFamily <- function(loc = 0, scale = 1, shape = 0.5,
+                          of.interest = c("scale", "shape"),
+                          p = NULL, N = NULL, trafo = NULL,
+                          start0Est = NULL, withPos = TRUE){
+    if(is.null(trafo)){
+        of.interest <- unique(of.interest)
+        if(length(of.interest) > 2)
+            stop("A maximum number of two parameters resp. parameter transformations may be selected.")
+        if(!all(of.interest %in% c("scale", "shape", "quantile", "expected loss", "expected shortfall")))
+            stop("Parameters resp. transformations of interest have to be selected from: ",
+                "'scale', 'shape', 'quantile', 'expected loss', 'expected shortfall'.")
+
+        ## reordering of of.interest
+        if(("scale" %in% of.interest) && ("scale" != of.interest[1])){
+            of.interest[2] <- of.interest[1]
+            of.interest[1] <- "scale"
+        }
+        if(!("scale" %in% of.interest) && ("shape" %in% of.interest) && ("shape" != of.interest[1])){
+            of.interest[2] <- of.interest[1]
+            of.interest[1] <- "shape"
+        }
+        if(!any(c("scale", "shape") %in% of.interest) && ("quantile" %in% of.interest)
+          && ("quantile" != of.interest[1])){
+            of.interest[2] <- of.interest[1]
+            of.interest[1] <- "quantile"
+        }
+        if(!any(c("scale", "shape", "quantile") %in% of.interest)
+          && ("expected shortfall" %in% of.interest)
+          && ("expected shortfall" != of.interest[1])){
+            of.interest[2] <- of.interest[1]
+            of.interest[1] <- "expected shortfall"
+        }
+    }
+    theta <- c(loc, scale, shape)
+
+    ##symmetry
+    distrSymm <- NoSymmetry()
+
+    ## parameters
+    names(theta) <- c("loc", "scale", "shape")
+
+
+    if(!is.null(p)){
+       btq <- substitute({ q <- loc0 + theta[1]*((-log(1-p0))^(-theta[2])-1)/theta[2]
+                           names(q) <- "quantile"
+                           }, list(loc0 = loc, p0 = p))
+
+       bDq <- substitute({ scale <- theta[1];  shape <- theta[2]
+                        D1 <- ((-log(1-p0))^(-shape)-1)/shape
+                        D2 <- -scale/shape*(D1 + log(-log(1-p0))*(-log(1-p0))^(-shape))
+                        D <- t(c(D1, D2))
+                        rownames(D) <- "quantile"; colnames(D) <- NULL
+                        D }, list(p0 = p))
+       btes <- substitute({ if(theta[2]>=1L) es <- NA else {
+                            pg <- pgamma(-log(p0),1-theta[2], lower.tail = FALSE)
+                            es <- theta[1] * gamma(1-theta[2]) * pg / p0 /
+                                   theta[2] + loc0 }
+                            names(es) <- "expected shortfall"
+                            es }, list(loc0 = loc, p0 = p))
+       bDes <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA} else {
+                            scale <- theta[1]; shape <- theta[2]
+                            pg <- pgamma(-log(p0), 1-theta[2], lower.tail = FALSE)
+                            dd <- ddigamma(-log(p0),1-theta[2])
+                            D1 <- gamma(1-theta[2])*pg/p0/theta[2]
+                            D21 <- -theta[1]*gamma(1-theta[2])*pg/p0/theta[2]^2
+                            D22 < -theta[1]*digamma(1-theta[2])*pg/p0/theta[2]
+                            D23 <- theta[1]*dd/p0/theta[2]
+                            D2 <- D21+D22+D23}
+                            D <- t(c(D1, D2))
+                            rownames(D) <- "expected shortfall"
+                            colnames(D) <- NULL
+                            D }, list(loc0 = loc, p0 = p))
+    }
+    if(!is.null(N)){
+       btel <- substitute({ if(theta[2]>=1L) el <- NA else{
+                            el <- N0*(loc0+theta[1]*gamma(1-theta[2])/theta[2])}
+                            names(el) <- "expected loss"
+                            el }, list(loc0 = loc,N0 = N))
+       bDel <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA}else{
+                            scale <- theta[1]; shape <- theta[2]
+                            D1 <- N0*gamma(1-shape)/shape
+                            D2 <- -N0*theta[1]*digamma(1-theta[2])/theta[2]-
+                                   D1*scale/(1-shape)}
+                            D <- t(c(D1, D2))
+                            rownames(D) <- "expected loss"
+                            colnames(D) <- NULL
+                            D }, list(loc0 = loc, N0 = N))
+    }
+    if(is.null(trafo)){
+        tau <- NULL
+        if("scale" %in% of.interest){
+            tau <- function(theta){ th <- theta[1]; names(th) <- "scale";  th}
+            Dtau <- function(theta){ D <- t(c(1, 0)); rownames(D) <- "scale"; D}
+        }
+        if("shape" %in% of.interest){
+            if(is.null(tau)){
+               tau <- function(theta){th <- theta[2]; names(th) <- "shape"; th}
+               Dtau <- function(theta){D <- t(c(0,1));rownames(D) <- "shape";D}
+            }else{
+                tau <- function(theta){th <- theta
+                            names(th) <- c("scale", "shape"); th}
+                Dtau <- function(theta){ D <- diag(2);
+                            rownames(D) <- c("scale", "shape");D}
+                }
+            }
+        if("quantile" %in% of.interest){
+            if(is.null(p)) stop("Probability 'p' has to be specified.")
+            if(is.null(tau)){
+                tau <- function(theta){ }; body(tau) <- btq
+                Dtau <- function(theta){ };body(Dtau) <- bDq
+            }else{
+                tau1 <- tau
+                tau <- function(theta){ }
+                body(tau) <- substitute({ btq0; c(tau0(theta), q) },
+                                        list(btq0=btq, tau0 = tau1))
+                Dtau1 <- Dtau
+                Dtau <- function(theta){}
+                body(Dtau) <- substitute({ bDq0; rbind(Dtau0(theta), D) },
+                                         list(Dtau0 = Dtau1, bDq0 = bDq))
+            }
+        }
+        if("expected shortfall" %in% of.interest){
+            if(is.null(p)) stop("Probability 'p' has to be specified.")
+            if(is.null(tau)){
+                tau <- function(theta){ };  body(tau) <- btes
+                Dtau <- function(theta){ }; body(Dtau) <- bDes
+            }else{
+                tau1 <- tau
+                tau <- function(theta){ }
+                body(tau) <- substitute({ btes0; c(tau0(theta), es) },
+                                        list(tau0 = tau1, btes0=btes))
+                Dtau1 <- Dtau
+                Dtau <- function(theta){}
+                body(Dtau) <- substitute({ bDes0; rbind(Dtau0(theta), D) },
+                                         list(Dtau0 = Dtau1, bDes0=bDes))
+            }
+        }
+        if("expected loss" %in% of.interest){
+            if(is.null(N)) stop("Expected frequency 'N' has to be specified.")
+            if(is.null(tau)){
+                tau <- function(theta){ }; body(tau) <- btel
+                Dtau <- function(theta){ }; body(Dtau) <- bDel
+            }else{
+                tau1 <- tau
+                tau <- function(theta){ }
+                body(tau) <- substitute({ btel0; c(tau0(theta), el) },
+                                        list(tau0 = tau1, btel0=btel))
+                Dtau1 <- Dtau
+                Dtau <- function(theta){}
+                body(Dtau) <- substitute({ bDel0; rbind(Dtau0(theta), D) },
+                                         list(Dtau0 = Dtau1, bDel0=bDel))
+            }
+        }
+        trafo <- function(x){ list(fval = tau(x), mat = Dtau(x)) }
+    }else{
+        if(is.matrix(trafo) & nrow(trafo) > 2) stop("number of rows of 'trafo' > 2")
+    }
+
+
+    param <- ParamFamParameter(name = "theta", main = c(theta[2],theta[3]),
+                               fixed = theta[1],
+                               trafo = trafo, withPosRestr = withPos,
+                               .returnClsName ="ParamWithScaleAndShapeFamParameter")
+
+    ## distribution
+    distribution <- GEV(loc = loc, scale = scale, shape = shape)
+
+    ## starting parameters
+    startPar <- function(x,...){
+        mu <- theta[1]
+        
+        ## Pickand estimator
+        if(is.null(start0Est)){
+        #source("kMedMad_Qn_Estimators.R")
+           e0 <- PickandsEstimator(x,ParamFamily=GParetoFamily(loc = theta[1],
+                            scale = theta[2], shape = theta[3]))
+        }else{
+           if(is(start0Est,"function")){
+              e1 <- start0Est(x, ...)
+              e0 <-  if(is(e1,"Estimate")) estimate(e1) else e1
+           }
+           if(!is.null(names(e0)))
+               e0 <- e0[c("scale", "shape")]
+        }
+        if(any(x < mu-e0["scale"]/e0["shape"]))
+               stop("some data smaller than 'loc-scale/shape' ")
+
+        names(e0) <- NULL
+        return(e0)
+    }
+
+    ## what to do in case of leaving the parameter domain
+    makeOKPar <- function(theta) {
+        if(withPos){
+           if(!is.null(names(theta)))
+                 theta["shape"] <- abs(theta["shape"])
+           else  theta[2] <- abs(theta[2])
+        }
+        return(theta)
+    }
+
+    modifyPar <- function(theta){
+        theta <- abs(theta)
+        GEV(loc = loc, scale = theta[1], shape = theta[2])
+    }
+
+
+    ## L2-derivative of the distribution
+    L2deriv.fct <- function(param) {
+        sc <- force(main(param)[1])
+        k <- force(main(param)[2])
+        tr <- fixed(param)[1]
+
+        Lambda1 <- function(x) {
+         y <- x*0
+         ind <- (x > mu-sc/k) # = [later] (x1>0)
+         x <- (x[ind]-tr)/sc
+         x1 <- 1 + k * x
+         y[ind] <- (x*(1-x1^(-1/k))-1)/x1/sc
+#         xi*(-1/xi-1)*(x[ind]-mu)/beta^2/(1+xi*(x[ind]-mu)/beta) - (x[ind]-mu)*(1+xi*(x[ind]-mu)/beta)^(-1/xi-1)/beta^2
+         return(y)
+        }
+        Lambda2 <- function(x) {
+         y <- x*0
+         ind <- (x > tr-sc/k) # = [later] (x1>0)
+         x <- (x[ind]-tr)/sc
+         x1 <- 1 + k * x
+         x2 <- x / x1
+         y[ind]<- (1-x1^(-1/k))/k*(log(x1)/k-x2)-x2
+#         log(1+xi*(x[ind]-mu)/beta)/xi^2+(-1/xi-1)*(x[ind]-mu)/beta/(1+xi*(x[ind]-mu)/beta) - (1+xi*(x[ind]-mu)/beta)^(-1/xi)*log(1+xi*(x[ind]-mu)/beta)/xi^2 + (1+xi*(x[ind]-mu)/beta)^(-1/xi-1)*(x[ind]-mu)/beta/xi
+         return(y)
+        }
+        ## additional centering of scores to increase numerical precision!
+        z1 <- E(distribution, fun=Lambda1)
+        z2 <- E(distribution, fun=Lambda2)
+        return(list(function(x){ Lambda1(x)-z1 },function(x){ Lambda2(x)-z2 }))
+    }
+
+    ## Fisher Information matrix as a function of parameters
+    FisherInfo.fct <- function(param) {
+        sc <- force(main(param)[1])
+        k <- force(main(param)[2])
+#        tr <- force(fixed(param)[1])
+#        fct <- L2deriv.fct(param)
+#        P2 <-  GPareto(loc = tr, scale = sc, shape = k)
+        G20 <- gamma(2*k)
+        G10 <- gamma(k)
+        G21 <- digamma(2*k)
+        G11 <- digamma(k)
+        G01 <- digamma(1)
+        G02 <- trigamma(1)
+        I11 <- G20*2*k*(k^2-4*k+1)+G10*2*k*(k^2+k-1)+1
+        I11 <- I11/sc^2/k^2
+        I12 <- G20*k*(2*k^2-1)+ G10*k^2*(2-4*k) - k + 3
+        I12 <- I12 + G21*2*k^2 -G11*k^2*(k^2+2*k+1) -G01*k
+        I12 <- I12/sc/k^3
+        I22 <- G20*2*k*(k^2+1)-G10*2*k*(2+3*k+k^2) -3*k^2  +8*k +3
+        I22 <- I22 - G11*2*k^2*(1+k)+G10*2*k*(3-k)+k^2 *G02
+        I22 <- I22 /k^4
+        mat <- PosSemDefSymmMatrix(matrix(c(I11,I12,I12,I22),2,2))
+        dimnames(mat) <- list(scaleshapename,scaleshapename)
+        return(mat)
+    }
+
+
+#    FisherInfo.fct <- function(param) {
+#        beta <- force(main(param)[1])
+#        xi <- force(main(param)[2])
+#        mu <- force(fixed(param)[1])
+#        fct <- L2deriv.fct(param)
+#        P <-  GEV(loc = mu, scale = beta, shape = xi)
+#       E11 <- E(P,function(x)fct[[1]](x)*fct[[1]](x))
+#        E12 <- E(P,function(x)fct[[1]](x)*fct[[2]](x))
+#        E22 <- E(P,function(x)fct[[2]](x)*fct[[2]](x))
+#        return(PosSemDefSymmMatrix(matrix(c(E11,E12,E12,E22),2,2)))
+#    }
+
+    FisherInfo <- FisherInfo.fct(param)
+    name <- "Generalized Extreme Value Family with positive shape parameter: Frechet Family"
+
+    ## initializing the GPareto family with components of L2-family
+    L2Fam <- new("GEVFamily")
+    L2Fam at scaleshapename <- scaleshapename
+    L2Fam at name <- name
+    L2Fam at param <- param
+    L2Fam at distribution <- distribution
+    L2Fam at L2deriv.fct <- L2deriv.fct
+    L2Fam at FisherInfo.fct <- FisherInfo.fct
+    L2Fam at FisherInfo <- FisherInfo
+    L2Fam at startPar <- startPar
+    L2Fam at makeOKPar <- makeOKPar
+    L2Fam at modifyParam <- modifyPar
+    L2Fam at L2derivSymm <- FunSymmList(NonSymmetric(), NonSymmetric())
+    L2Fam at L2derivDistrSymm <- DistrSymmList(NoSymmetry(), NoSymmetry())
+
+    L2deriv <- EuclRandVarList(RealRandVariable(L2deriv.fct(param),
+                               Domain = Reals()))
+
+    L2Fam at fam.call <- substitute(GEV(loc = loc0, scale = scale0,
+                                 shape = shape0, of.interest = of.interest0,
+                                 p = p0, N = N0, trafo = trafo0,
+                                 withPos = withPos0),
+                         list(loc0 = loc, scale0 = scale, shape0 = shape,
+                              of.interest0 = of.interest, p0 = p, N0 = N,
+                              trafo0 = trafo, withPos0 = withPos))
+
+    L2Fam at LogDeriv <- function(x){
+                  x0 <- (x-loc)/scale
+                  x1 <- 1 + x0 * shape
+                  (shape+1)/scale/x1 + x1^(-1-1/shape)/scale
+                  }
+
+    L2Fam at L2deriv <- L2deriv
+
+    L2Fam at L2derivDistr <- imageDistr(RandVar = L2deriv, distr = distribution)
+
+    return(L2Fam)
+}
+
+#ddigamma(t,s) is d/ds \int_t^\infty exp(-x) (-log(x)) x^(-s) dx
+
+ddigamma <- function(t,s){
+              int <- function(x) exp(-x)*(-log(x))*x^(-s)
+              integrate(int, lower=t, upper=Inf)$value
+              }
               
\ No newline at end of file

Modified: branches/robast-0.9/pkg/RobExtremes/R/GParetoFamily.R
===================================================================
--- branches/robast-0.9/pkg/RobExtremes/R/GParetoFamily.R	2013-01-17 00:41:38 UTC (rev 538)
+++ branches/robast-0.9/pkg/RobExtremes/R/GParetoFamily.R	2013-01-17 13:35:34 UTC (rev 539)
@@ -1,331 +1,332 @@
-#################################
-##
-## Class: GParetoFamily
-##
-################################
-
-
-## methods
-setMethod("validParameter",signature(object="GParetoFamily"),
-           function(object, param, tol =.Machine$double.eps){
-             if (is(param, "ParamFamParameter")) 
-                 param <- main(param)
-             if (!all(is.finite(param))) 
-                 return(FALSE)
-             #if (any(param[1] <= tol))
-             #    return(FALSE)
-             if(object at param@withPosRestr)
-                 if (any(param[2] <= tol))
-                     return(FALSE)
-             return(TRUE)
-           })
-
-
-## generating function 
-## loc: known/fixed threshold/location parameter
-## scale: scale parameter
-## shape: shape parameter
-## of.interest: which parameters, transformations are of interest
-##              posibilites are: scale, shape, quantile, expected loss, expected shortfall
-##              a maximum number of two of these may be selected
-## p: probability needed for quantile and expected shortfall
-## N: expected frequency for expected loss
-## trafo: optional parameter transformation
-## start0Est: startEstimator for MLE and MDE --- if NULL HybridEstimator is used;
-### now uses exp-Trafo for scale!
-
-GParetoFamily <- function(loc = 0, scale = 1, shape = 0.5, 
-                          of.interest = c("scale", "shape"), 
-                          p = NULL, N = NULL, trafo = NULL,
-                          start0Est = NULL, withPos = TRUE){
-    if(is.null(trafo)){
-        of.interest <- unique(of.interest)
-        if(length(of.interest) > 2)
-            stop("A maximum number of two parameters resp. parameter transformations may be selected.")
-        if(!all(of.interest %in% c("scale", "shape", "quantile", "expected loss", "expected shortfall")))
-            stop("Parameters resp. transformations of interest have to be selected from: ",
-                "'scale', 'shape', 'quantile', 'expected loss', 'expected shortfall'.")
-
-        ## reordering of of.interest
-        if(("scale" %in% of.interest) && ("scale" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "scale"
-        }
-        if(!("scale" %in% of.interest) && ("shape" %in% of.interest) && ("shape" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "shape"
-        }
-        if(!any(c("scale", "shape") %in% of.interest) && ("quantile" %in% of.interest) 
-          && ("quantile" != of.interest[1])){
-            of.interest[2] <- of.interest[1]
-            of.interest[1] <- "quantile"
-        }
-        if(!any(c("scale", "shape", "quantile") %in% of.interest) 
-          && ("expected shortfall" %in% of.interest) 
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 539


More information about the Robast-commits mailing list