[Robast-commits] r125 - in pkg: ROptEst ROptEst/R ROptEst/inst/scripts ROptRegTS RandVar RandVar/R RandVar/inst/doc RobAStBase RobAStBase/R RobAStBase/man RobLox RobLox/R RobLox/man RobRex

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jul 24 19:07:22 CEST 2008


Author: stamats
Date: 2008-07-24 19:07:22 +0200 (Thu, 24 Jul 2008)
New Revision: 125

Removed:
   pkg/RandVar/inst/doc/RandVar.aux
   pkg/RandVar/inst/doc/RandVar.brf
   pkg/RandVar/inst/doc/RandVar.log
   pkg/RandVar/inst/doc/RandVar.out
   pkg/RandVar/inst/doc/RandVar.tex
   pkg/RandVar/inst/doc/RandVar.toc
Modified:
   pkg/ROptEst/DESCRIPTION
   pkg/ROptEst/R/getFixRobIC_fiUnOvShoot.R
   pkg/ROptEst/R/getInfRobIC_asUnOvShoot.R
   pkg/ROptEst/R/getRiskIC.R
   pkg/ROptEst/inst/scripts/BinomialModel.R
   pkg/ROptEst/inst/scripts/ExponentialScaleModel.R
   pkg/ROptEst/inst/scripts/GammaModel.R
   pkg/ROptEst/inst/scripts/GumbelLocationModel.R
   pkg/ROptEst/inst/scripts/LognormalAndNormalModel.R
   pkg/ROptEst/inst/scripts/NormalLocationScaleModel.R
   pkg/ROptEst/inst/scripts/NormalScaleModel.R
   pkg/ROptEst/inst/scripts/PoissonModel.R
   pkg/ROptEst/inst/scripts/UnderOverShootRisk.R
   pkg/ROptRegTS/DESCRIPTION
   pkg/RandVar/DESCRIPTION
   pkg/RandVar/R/EuclRandVariable.R
   pkg/RandVar/inst/doc/RandVar.pdf
   pkg/RobAStBase/DESCRIPTION
   pkg/RobAStBase/R/AllClass.R
   pkg/RobAStBase/R/AllGeneric.R
   pkg/RobAStBase/R/ContIC.R
   pkg/RobAStBase/R/TotalVarIC.R
   pkg/RobAStBase/R/Weights.R
   pkg/RobAStBase/R/getRiskIC.R
   pkg/RobAStBase/R/infoPlot.R
   pkg/RobAStBase/man/BdStWeight-class.Rd
   pkg/RobAStBase/man/BoundedWeight-class.Rd
   pkg/RobAStBase/man/ContIC-class.Rd
   pkg/RobAStBase/man/HampelWeight-class.Rd
   pkg/RobAStBase/man/RobWeight-class.Rd
   pkg/RobLox/DESCRIPTION
   pkg/RobLox/R/rlOptIC.R
   pkg/RobLox/R/rlsOptIC_AL.R
   pkg/RobLox/R/roblox.R
   pkg/RobLox/R/rowRoblox.R
   pkg/RobLox/R/rsOptIC.R
   pkg/RobLox/man/roblox.Rd
   pkg/RobLox/man/rowRoblox.Rd
   pkg/RobRex/DESCRIPTION
Log:
merged branch into trunk

Modified: pkg/ROptEst/DESCRIPTION
===================================================================
--- pkg/ROptEst/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,13 +1,12 @@
 Package: ROptEst
 Version: 0.6.0
-Date: 2008-02-14
+Date: 2008-07-21
 Title: Optimally robust estimation
 Description: Optimally robust estimation using S4 classes and methods
 Depends: R(>= 2.4.0), methods, distr(>= 2.0), distrEx(>= 2.0), distrMod(>= 2.0), RandVar(>= 0.6.2), RobAStBase
-Author: Matthias Kohl
+Author: Matthias Kohl, Peter Ruckdeschel
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
-SaveImage: no
 LazyLoad: yes
 License: GPL version 2 or later
-URL: http://www.stamats.de/RobASt.htm
+URL: http://robast.r-forge.r-project.org/
 Packaged: Thu Jan  3 20:00:08 2008; btm722

Modified: pkg/ROptEst/R/getFixRobIC_fiUnOvShoot.R
===================================================================
--- pkg/ROptEst/R/getFixRobIC_fiUnOvShoot.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/R/getFixRobIC_fiUnOvShoot.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -29,9 +29,16 @@
         a <- -A*c0
         b <- 2*A*c0
 
+        w <- new("BdStWeight")
+        clip(w) <- c(0,b)+a
+        stand(w) <- as.matrix(A)
+        weight(w) <- getweight(w, neighbor = TotalVarNeighborhood(radius = neighbor at radius), 
+                               biastype = symmetricBias(), normW = NormType())
+
         Risk <- getFiRisk(risk = risk, Distr = Distr, neighbor = neighbor, 
                           clip = c0, stand = A, sampleSize = sampleSize, 
                           Algo = Algo, cont = cont)
 
-        return(list(A = as.matrix(A), a = a, b = b, d = NULL, risk = Risk, info = info))    
+        return(list(A = as.matrix(A), a = a, b = b, d = NULL, risk = Risk, info = info, w = w,
+                    biastype = symmetricBias(), normtype = NormType()))
     })

Modified: pkg/ROptEst/R/getInfRobIC_asUnOvShoot.R
===================================================================
--- pkg/ROptEst/R/getInfRobIC_asUnOvShoot.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/R/getInfRobIC_asUnOvShoot.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -124,9 +124,17 @@
                      biastype = biastype, clip = c0, cent = z, trafo = trafo)
         a <- as.vector(A)*z
         b <- abs(as.vector(A))*c0
+
+        w <- new("BdStWeight")
+        clip(w) <- c(0,b)+a
+        stand(w) <- A
+        weight(w) <- getweight(w, neighbor = TotalVarNeighborhood(radius = neighbor at radius), 
+                               biastype = biastype, normW = normtype(risk))
+
         Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor, 
                           biastype = biastype, clip = b, cent = a, stand = A, 
                           trafo = trafo)
 
-        return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info))    
+        return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info, w = w,
+                    biastype = biastype, normtype = normtype(risk)))
     })

Modified: pkg/ROptEst/R/getRiskIC.R
===================================================================
--- pkg/ROptEst/R/getRiskIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/R/getRiskIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -15,7 +15,7 @@
                                  neighbor = "missing",
                                  L2Fam = "L2ParamFamily"),
     function(IC, risk, L2Fam){
-        Cov <- IC at Risks[["asCov"]]  ; print(L2Fam)      
+        Cov <- IC at Risks[["asCov"]]
         return(list(asCov = list(distribution = .getDistr(L2Fam), value = Cov)))
     })
 
@@ -26,9 +26,9 @@
 setMethod("getBiasIC", signature(IC = "HampIC",
                                  neighbor = "UncondNeighborhood"),
     function(IC, neighbor, L2Fam,...){
-        if(missing(L2Fam)) 
-           {misF <- TRUE; 
-            L2Fam <- eval(IC at CallL2Fam)}
+        if(missing(L2Fam))
+            L2Fam <- eval(IC at CallL2Fam)
+
         return(list(asBias = list(distribution = .getDistr(L2Fam), 
                     neighborhood = neighbor at type, value = IC at Risks$asBias$value)))
     })

Modified: pkg/ROptEst/inst/scripts/BinomialModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/BinomialModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/BinomialModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -27,7 +27,7 @@
 (RobB2 <- InfRobModel(center = B, neighbor = TotalVarNeighborhood(radius = 0.5)))
 
 ## MSE solution
-system.time(IC1 <- optIC(model=RobB1, risk=asMSE()), gcFirst = TRUE)
+system.time(IC1 <- optIC(model=RobB1, risk=asMSE()))
 IC1
 checkIC(IC1)
 Risks(IC1)
@@ -42,7 +42,7 @@
 Risks(IC1)
 plot(IC1)
 
-system.time(IC2 <- optIC(model=RobB2, risk=asMSE()), gcFirst = TRUE)
+system.time(IC2 <- optIC(model=RobB2, risk=asMSE()))
 IC2
 checkIC(IC2)
 Risks(IC2)
@@ -80,14 +80,14 @@
 
 ## radius minimax IC
 system.time(IC7 <- radiusMinimaxIC(L2Fam=B, neighbor=ContNeighborhood(), 
-                        risk=asMSE(), loRad=0, upRad=1), gcFirst = TRUE)
+                        risk=asMSE(), loRad=0, upRad=1))
 IC7
 checkIC(IC7)
 Risks(IC7)
 plot(IC7)
 
 system.time(IC8 <- radiusMinimaxIC(L2Fam=B, neighbor=TotalVarNeighborhood(), 
-                        risk=asMSE(), loRad=0, upRad=1), gcFirst = TRUE)
+                        risk=asMSE(), loRad=0, upRad=1))
 IC8
 checkIC(IC8)
 Risks(IC8)
@@ -97,10 +97,10 @@
 ## least favorable radius
 ## (may take quite some time!)
 system.time(r.rho1 <- leastFavorableRadius(L2Fam=B, neighbor=ContNeighborhood(),
-                    risk=asMSE(), rho=0.5), gcFirst = TRUE)
+                    risk=asMSE(), rho=0.5))
 r.rho1
 system.time(r.rho2 <- leastFavorableRadius(L2Fam=B, neighbor=TotalVarNeighborhood(),
-                    risk=asMSE(), rho=0.5), gcFirst = TRUE)
+                    risk=asMSE(), rho=0.5))
 r.rho2
 
 ## one-step estimation
@@ -109,24 +109,24 @@
 x <- rbinom(100, size=25, prob=(1-ind)*0.25 + ind*0.75)
 
 ## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- ksEstimator(x=x, Binom(size=25), param = "prob"))
+(est0 <- MDEstimator(x=x, BinomFamily(size=25), interval = c(0, 1)))
 
 ## 3. one-step estimation: radius known
-RobB3 <- InfRobModel(center=BinomFamily(size=25, prob=est0$prob), 
+RobB3 <- InfRobModel(center=BinomFamily(size=25, prob=est0$estimate),
                 neighbor=ContNeighborhood(radius=0.5))
 IC9 <- optIC(model=RobB3, risk=asMSE())
-(est1 <- oneStepEstimator(x, IC=IC9, start=est0$prob))
+(est1c <- oneStepEstimator(x, IC=IC9, start=est0$estimate))
 
-RobB4 <- InfRobModel(center=BinomFamily(size=25, prob=est0$prob), 
+RobB4 <- InfRobModel(center=BinomFamily(size=25, prob=est0$estimate),
                 neighbor=TotalVarNeighborhood(radius=0.25))
 IC10 <- optIC(model=RobB4, risk=asMSE())
-(est1 <- oneStepEstimator(x, IC=IC10, start=est0$prob))
+(est1v <- oneStepEstimator(x, IC=IC10, start=est0$estimate))
 
 ## 4. one-step estimation: radius interval
-IC11 <- radiusMinimaxIC(L2Fam=BinomFamily(size=25, prob=est0$prob),
+IC11 <- radiusMinimaxIC(L2Fam=BinomFamily(size=25, prob=est0$estimate),
                 neighbor=ContNeighborhood(), risk=asMSE(), loRad=0, upRad=Inf)
-(est2 <- oneStepEstimator(x, IC=IC11, start=est0$prob))
+(est2c <- oneStepEstimator(x, IC=IC11, start=est0$estimate))
 
-IC12 <- radiusMinimaxIC(L2Fam=BinomFamily(size=25, prob=est0$prob),
+IC12 <- radiusMinimaxIC(L2Fam=BinomFamily(size=25, prob=est0$estimate),
                 neighbor=TotalVarNeighborhood(), risk=asMSE(), loRad=0, upRad=Inf)
-(est2 <- oneStepEstimator(x, IC=IC12, start=est0$prob))
+(est2v <- oneStepEstimator(x, IC=IC12, start=est0$estimate))

Modified: pkg/ROptEst/inst/scripts/ExponentialScaleModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/ExponentialScaleModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/ExponentialScaleModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -3,25 +3,25 @@
 ###############################################################################
 require(ROptEst)
 
-## generates Exponential Scale Family with rate = 1
-E1 <- ExpScaleFamily(rate = 1) 
+## generates Exponential Scale Family with rate = 2
+E1 <- ExpScaleFamily(rate = 2) 
 E1        # show E1
 plot(E1)  # plot of Exp(rate = 1) and L_2 derivative
 checkL2deriv(E1)
 
-# classical optimal IC
+## classical optimal IC
 E1.IC0 <- optIC(model = E1, risk = asCov())
 E1.IC0       # show IC
 checkIC(E1.IC0)
 Risks(E1.IC0)
 plot(E1.IC0) # plot IC
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 E1.Rob1 <- InfRobModel(center = E1, neighbor = ContNeighborhood(radius = 0.5))
 E1.Rob1     # show E1.Rob1
 E1.Rob2 <- InfRobModel(center = E1, neighbor = TotalVarNeighborhood(radius = 0.5))
 
-# MSE solution
+## MSE solution
 (E1.IC1 <- optIC(model=E1.Rob1, risk=asMSE()))
 checkIC(E1.IC1)
 Risks(E1.IC1)
@@ -31,7 +31,7 @@
 Risks(E1.IC2)
 plot(E1.IC2)
 
-# lower case solutions
+## lower case solutions
 (E1.IC3 <- optIC(model=E1.Rob1, risk=asBias()))
 checkIC(E1.IC3)
 Risks(E1.IC3)
@@ -41,7 +41,7 @@
 Risks(E1.IC4)
 plot(E1.IC4)
 
-# Hampel solution
+## Hampel solution
 (E1.IC5 <- optIC(model=E1.Rob1, risk=asHampel(bound=clip(E1.IC1))))
 checkIC(E1.IC5)
 Risks(E1.IC5)
@@ -51,7 +51,7 @@
 Risks(E1.IC6)
 plot(E1.IC6)
 
-# radius minimax IC
+## radius minimax IC
 (E1.IC7 <- radiusMinimaxIC(L2Fam=E1, neighbor=ContNeighborhood(), 
                 risk=asMSE(), loRad=0, upRad=0.5))
 checkIC(E1.IC7)
@@ -61,8 +61,8 @@
 checkIC(E1.IC8)
 Risks(E1.IC8)
 
-# least favorable radius
-# (may take quite some time!)
+## least favorable radius
+## (may take quite some time!)
 (E1.r.rho1 <- leastFavorableRadius(L2Fam=E1, neighbor=ContNeighborhood(),
                     risk=asMSE(), rho=0.5))
 (E1.r.rho2 <- leastFavorableRadius(L2Fam=E1, neighbor=TotalVarNeighborhood(),
@@ -74,15 +74,15 @@
 E1.x <- rexp(1e2, rate=(1-ind)*2+ind*10)
 
 ## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(E1.est0 <- ksEstimator(x=E1.x, Exp()))
+(E1.est0 <- MDEstimator(x=E1.x, ExpScaleFamily(), interval = c(0, 10)))
 
 ## 3. one-step estimation: radius known
-E1.Rob3 <- InfRobModel(center=ExpScaleFamily(rate=E1.est0$rate), 
+E1.Rob3 <- InfRobModel(center=ExpScaleFamily(rate=1/E1.est0$estimate),
                 neighbor=ContNeighborhood(radius=0.5))
 E1.IC9 <- optIC(model=E1.Rob3, risk=asMSE())
-(E1.est1 <- oneStepEstimator(E1.x, IC=E1.IC9, start=E1.est0$rate))
+(E1.est1 <- oneStepEstimator(E1.x, IC=E1.IC9, start=E1.est0$estimate))
 
 ## 4. one-step estimation: radius interval
-E1.IC10 <- radiusMinimaxIC(L2Fam=ExpScaleFamily(rate=E1.est0$rate),
+E1.IC10 <- radiusMinimaxIC(L2Fam=ExpScaleFamily(rate=1/E1.est0$estimate),
                 neighbor=ContNeighborhood(), risk=asMSE(), loRad=0, upRad=Inf)
-(E1.est2 <- oneStepEstimator(E1.x, IC=E1.IC10, start=E1.est0$rate))
+(E1.est2 <- oneStepEstimator(E1.x, IC=E1.IC10, start=E1.est0$estimate))

Modified: pkg/ROptEst/inst/scripts/GammaModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/GammaModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/GammaModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -4,16 +4,17 @@
 require(ROptEst)
 
 ## generates Gamma Family with 
-## scale = 1 and shape = 1
-G <- GammaFamily(scale = 1, shape = 2)
+## scale = 2 and shape = 0.5
+G <- GammaFamily(scale = 2, shape = 0.5)
 G       # show G
-plot(G) # plot of Gammad(scale = 1, shape = 2) and L_2 derivative
+plot(G) # plot of Gammad(scale = 2, shape = 0.5) and L_2 derivative
+distrExOptions(ErelativeTolerance = 1e-8) # increase precision for E
 checkL2deriv(G)
 
 ## classical optimal IC
 IC0 <- optIC(model = G, risk = asCov())
 IC0       # show IC
-system.time(checkIC(IC0), gcFirst = TRUE)
+checkIC(IC0) # seems to be a numerical problem!?
 Risks(IC0)
 plot(IC0) # plot IC
 
@@ -22,25 +23,25 @@
 RobG1     # show RobB1
 
 ## MSE solution
-system.time(IC1 <- optIC(model=RobG1, risk=asMSE()), gcFirst = TRUE)
+system.time(IC1 <- optIC(model=RobG1, risk=asMSE()))
 IC1
 checkIC(IC1)
 Risks(IC1)
 plot(IC1)
-x11()
+devNew()
 infoPlot(IC1)
 
 ## lower case solutions
-system.time(IC2 <- optIC(model=RobG1, risk=asBias(), tol = 1e-10), gcFirst = TRUE)
+system.time(IC2 <- optIC(model=RobG1, risk=asBias(), tol = 1e-10))
 IC2
 checkIC(IC2)
 Risks(IC2)
 plot(IC2)
-x11()
+devNew()
 infoPlot(IC2)
 
 ## Hampel solution
-system.time(IC3 <- optIC(model=RobG1, risk=asHampel(bound=clip(IC1))), gcFirst = TRUE)
+system.time(IC3 <- optIC(model=RobG1, risk=asHampel(bound=clip(IC1))))
 IC3
 checkIC(IC3)
 Risks(IC3)
@@ -51,23 +52,26 @@
 ## radius minimax IC
 ## takes quite some time - about 30 min.
 system.time(IC4 <- radiusMinimaxIC(L2Fam=G, neighbor=ContNeighborhood(), 
-                risk=asMSE(), loRad=0, upRad=Inf), gcFirst = TRUE)
+            risk=asMSE(), loRad=0, upRad=Inf))
 
 ## least favorable radius
-## takes quite some time - several hours!
+## takes really long time - several hours!
 #system.time(r.rho1 <- leastFavorableRadius(L2Fam=G, neighbor=ContNeighborhood(),
 #                    risk=asMSE(), rho=0.5))
 
 ## one-step estimation
 ## 1. generate a contaminated sample
 ind <- rbinom(100, size=1, prob=0.05) 
-x <- (1-ind)*rgamma(100, scale = 1, shape = 2) + ind*10
+x <- (1-ind)*rgamma(100, scale = 1, shape = 2) + ind*rgamma(100, scale = 3, shape = 5)
 
 ## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- ksEstimator(x=x, Gammad()))
+(est0 <- MDEstimator(x=x, GammaFamily()))
 
+## non-robust ML estimator
+MLEstimator(x=x, GammaFamily())
+
 ## 3. one-step estimation: radius known
-RobG3 <- InfRobModel(center=GammaFamily(scale = est0$scale, shape = est0$shape), 
+RobG3 <- InfRobModel(center=GammaFamily(scale = est0$estimate[1], shape = est0$estimate[2]), 
                 neighbor=ContNeighborhood(radius=0.5))
 IC9 <- optIC(model=RobG3, risk=asMSE())
-(est1 <- oneStepEstimator(x, IC=IC9, start=est0))
+(est1 <- oneStepEstimator(x, IC=IC9, start=est0$estimate))

Modified: pkg/ROptEst/inst/scripts/GumbelLocationModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/GumbelLocationModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/GumbelLocationModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -7,25 +7,24 @@
 
 ## generates Gumbel Location Family with loc = 0
 ## (known scale = 1)
-distrExOptions(ElowerTruncQuantile, 1e-15) # non-finite function value in integrate
-G0 <- GumbelLocationFamily(loc=0, scale=1) 
+distrExOptions(ElowerTruncQuantile = 1e-15) # non-finite function value in integrate
+G0 <- GumbelLocationFamily(loc = 0, scale = 1)
 G0        # show G0
 plot(G0)  # plot of Gumbel(loc = 0, scale = 1) and L_2 derivative
 checkL2deriv(G0)
 
-# classical optimal IC
+## classical optimal IC
 G0.IC0 <- optIC(model = G0, risk = asCov())
 G0.IC0       # show IC
 plot(G0.IC0) # plot IC
 checkIC(G0.IC0)
-Risks(G0.IC0)
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 G0.Rob1 <- InfRobModel(center = G0, neighbor = ContNeighborhood(radius = 0.5))
 G0.Rob1     # show G0.Rob1
 G0.Rob2 <- InfRobModel(center = G0, neighbor = TotalVarNeighborhood(radius = 0.5))
 
-# MSE solution
+## MSE solution
 E1.Rob1 <- InfRobModel(center = ExpScaleFamily(), neighbor = ContNeighborhood(radius = 0.5))
 (E1.IC1 <- optIC(model=E1.Rob1, risk=asMSE()))
 G0.IC1 <- optIC(model=G0.Rob1, risk=asMSE())
@@ -37,7 +36,8 @@
 clip(G0.IC1)
 cent(G0.IC1)
 stand(G0.IC1)
-# alternatively
+
+## alternatively
 G0.IC11 <- E1.IC1 # rate = 1!
 CallL2Fam(G0.IC11) <- call("GumbelLocationFamily")
 cent(G0.IC11) <- -cent(E1.IC1)
@@ -47,7 +47,6 @@
 
 E1.Rob2 <- InfRobModel(center = ExpScaleFamily(), neighbor = TotalVarNeighborhood(radius = 0.5))
 E1.IC2 <- optIC(model=E1.Rob2, risk=asMSE())
-#distrExOptions(ElowerTruncQuantile, 1e-15)
 G0.IC2 <- optIC(model=G0.Rob2, risk=asMSE())
 checkIC(G0.IC2)
 Risks(G0.IC2)
@@ -57,7 +56,7 @@
 clipLo(G0.IC2)
 clipUp(G0.IC2)
 stand(G0.IC2)
-# alternatively
+## alternatively
 G0.IC21 <- E1.IC2 # rate = 1!
 CallL2Fam(G0.IC21) <- call("GumbelLocationFamily")
 clipLo(G0.IC21) <- -clipUp(E1.IC2)
@@ -66,7 +65,7 @@
 checkIC(G0.IC21)
 Risks(G0.IC21)
 
-# lower case solutions
+## lower case solutions
 (G0.IC3 <- optIC(model=G0.Rob1, risk=asBias()))
 checkIC(G0.IC3)
 Risks(G0.IC3)
@@ -74,7 +73,7 @@
 checkIC(G0.IC4)
 Risks(G0.IC4)
 
-# Hampel solution
+## Hampel solution
 (G0.IC5 <- optIC(model=G0.Rob1, risk=asHampel(bound=clip(G0.IC1))))
 checkIC(G0.IC5)
 Risks(G0.IC5)
@@ -82,25 +81,25 @@
 checkIC(G0.IC6)
 Risks(G0.IC6)
 
-# radius minimax IC
-# numerically instable for small 'loRad'!
-# => use connection to ExpScaleFamily for computations
-#(G0.IC7 <- radiusMinimaxIC(L2Fam=G0, neighbor=ContNeighborhood(), 
-#                risk=asMSE(), loRad=0.5, upRad=1.0))
-#checkIC(G0.IC7)
-#Risks(G0.IC7)
-#(G0.IC8 <- radiusMinimaxIC(L2Fam=G0, neighbor=TotalVarNeighborhood(), 
-#                risk=asMSE(), loRad=0.5, upRad=1.0))
-#checkIC(G0.IC8)
-#Risks(G0.IC8)
+## radius minimax IC
+## numerically instable for small 'loRad'!
+## => use connection to ExpScaleFamily for computations
+(G0.IC7 <- radiusMinimaxIC(L2Fam=G0, neighbor=ContNeighborhood(), 
+                risk=asMSE(), loRad=0.5, upRad=1.0))
+checkIC(G0.IC7)
+Risks(G0.IC7)
+(G0.IC8 <- radiusMinimaxIC(L2Fam=G0, neighbor=TotalVarNeighborhood(), 
+                risk=asMSE(), loRad=0.5, upRad=1.0))
+checkIC(G0.IC8)
+Risks(G0.IC8)
 
-# least favorable radius
-# numerically instable!
-# => use connection to ExpScaleFamily for computations
-#(G0.r.rho1 <- leastFavorableRadius(L2Fam=G0, neighbor=ContNeighborhood(),
-#                    risk=asMSE(), rho=0.5))
-#(G0.r.rho2 <- leastFavorableRadius(L2Fam=G0, neighbor=TotalVarNeighborhood(),
-#                    risk=asMSE(), rho=1/3))
+## least favorable radius
+## numerically instable!
+## => use connection to ExpScaleFamily for computations
+(G0.r.rho1 <- leastFavorableRadius(L2Fam=G0, neighbor=ContNeighborhood(),
+                    risk=asMSE(), rho=0.5))
+(G0.r.rho2 <- leastFavorableRadius(L2Fam=G0, neighbor=TotalVarNeighborhood(),
+                    risk=asMSE(), rho=1/3))
 
 ## one-step estimation
 ## 1. generate a contaminated sample
@@ -108,24 +107,24 @@
 G0.x <- rgumbel(1e2, loc=(1-ind)*0.5+ind*1)
 
 ## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(G0.est0 <- ksEstimator(x=G0.x, Gumbel(), param = "loc"))
+(G0.est0 <- MDEstimator(x=G0.x, GumbelLocationFamily(), interval = c(0, 5)))
 
 ## 3. one-step estimation: radius known
-G0.Rob3 <- InfRobModel(center=GumbelLocationFamily(loc=G0.est0$loc), 
-                neighbor=ContNeighborhood(radius=0.5))
+G0.Rob3 <- InfRobModel(center=GumbelLocationFamily(loc=G0.est0$estimate), 
+                       neighbor=ContNeighborhood(radius=0.5))
 G0.IC9 <- optIC(model=G0.Rob3, risk=asMSE())
-(G0.est1 <- oneStepEstimator(G0.x, IC=G0.IC9, start=G0.est0$loc))
+(G0.est1 <- oneStepEstimator(G0.x, IC=G0.IC9, start=G0.est0$estimate))
 
 ## 4. M estimation: radius known
 G0.Rob31 <- InfRobModel(center=GumbelLocationFamily(loc=0), 
-                neighbor=ContNeighborhood(radius=0.5))
+                        neighbor=ContNeighborhood(radius=0.5))
 G0.IC91 <- optIC(model=G0.Rob31, risk=asMSE())
 (G0.est11 <- locMEstimator(G0.x, IC=G0.IC91))
 
 ## 5. one-step estimation: radius interval
-G0.IC10 <- radiusMinimaxIC(L2Fam=GumbelLocationFamily(loc=G0.est0$loc),
+G0.IC10 <- radiusMinimaxIC(L2Fam=GumbelLocationFamily(loc=G0.est0$estimate),
                 neighbor=ContNeighborhood(), risk=asMSE(), loRad=0.5, upRad=1)
-(G0.est2 <- oneStepEstimator(G0.x, IC=G0.IC10, start=G0.est0$loc))
+(G0.est2 <- oneStepEstimator(G0.x, IC=G0.IC10, start=G0.est0$estimate))
 
 ## 6. M estimation: radius interval
 G0.IC101 <- radiusMinimaxIC(L2Fam=GumbelLocationFamily(),

Modified: pkg/ROptEst/inst/scripts/LognormalAndNormalModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/LognormalAndNormalModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/LognormalAndNormalModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -16,7 +16,7 @@
 checkL2deriv(N0)
 
 
-# classical optimal IC
+## classical optimal IC
 LN1.IC0 <- optIC(model = LN1, risk = asCov())
 LN1.IC0       # show IC
 plot(LN1.IC0) # plot IC
@@ -29,7 +29,7 @@
 Risks(N0.IC0)
 
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 LN1.Rob1 <- InfRobModel(center = LN1, neighbor = ContNeighborhood(radius = 0.5))
 LN1.Rob1     # show LN1.Rob1
 LN1.Rob2 <- InfRobModel(center = LN1, neighbor = TotalVarNeighborhood(radius = 0.25))
@@ -38,7 +38,7 @@
 N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = 0.25))
 
 
-# MSE solution
+## MSE solution
 LN1.IC1 <- optIC(model=LN1.Rob1, risk=asMSE())
 checkIC(LN1.IC1)
 Risks(LN1.IC1)
@@ -74,7 +74,7 @@
 stand(N0.IC2)
 
 
-# lower case solutions
+## lower case solutions
 LN1.IC3 <- optIC(model=LN1.Rob1, risk=asBias())
 checkIC(LN1.IC3)
 Risks(LN1.IC3)
@@ -96,7 +96,7 @@
 plot(N0.IC4)
 
 
-# Hampel solution
+## Hampel solution
 LN1.IC5 <- optIC(model=LN1.Rob1, risk=asHampel(bound=clip(LN1.IC1)))
 checkIC(LN1.IC5)
 Risks(LN1.IC5)
@@ -117,7 +117,7 @@
 Risks(N0.IC6)
 plot(N0.IC6)
 
-# radius minimax IC
+## radius minimax IC
 (LN1.IC7 <- radiusMinimaxIC(L2Fam=LN1, neighbor=ContNeighborhood(), 
                 risk=asMSE(), loRad=0, upRad=0.5))
 checkIC(LN1.IC7)
@@ -125,7 +125,7 @@
 plot(LN1.IC7)
 
 (N0.IC7 <- radiusMinimaxIC(L2Fam=N0, neighbor=ContNeighborhood(), 
-                risk=asMSE(), loRad=0.1, upRad=0.5))
+                risk=asMSE(), loRad=0, upRad=0.5))
 checkIC(N0.IC7)
 Risks(N0.IC7)
 plot(N0.IC7)
@@ -143,8 +143,8 @@
 plot(N0.IC8)
 
 
-# least favorable radius
-# (may take quite some time!)
+## least favorable radius
+## (may take quite some time!)
 (LN1.r.rho1 <- leastFavorableRadius(L2Fam=LN1, neighbor=ContNeighborhood(),
                     risk=asMSE(), rho=0.5))
 (N0.r.rho1 <- leastFavorableRadius(L2Fam=N0, neighbor=ContNeighborhood(),

Modified: pkg/ROptEst/inst/scripts/NormalLocationScaleModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/NormalLocationScaleModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/NormalLocationScaleModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -9,38 +9,40 @@
 plot(N0)  # plot of Norm(mean = 0, sd = 1) and L_2 derivative
 checkL2deriv(N0)
 
-# classical optimal IC
+## classical optimal IC
 N0.IC0 <- optIC(model = N0, risk = asCov())
 N0.IC0       # show IC
 checkIC(N0.IC0)
 Risks(N0.IC0)
 plot(N0.IC0) # plot IC
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0.5))
 N0.Rob1     # show N0.Rob1
 
-# MSE solution
-system.time(N0.IC1 <- optIC(model = N0.Rob1, risk = asMSE()), gcFirst = TRUE)
+## MSE solution
+system.time(N0.IC1 <- optIC(model = N0.Rob1, risk = asMSE()))
 checkIC(N0.IC1)
 Risks(N0.IC1)
 plot(N0.IC1)
 infoPlot(N0.IC1)
 
-system.time(N0.IC1.i <- optIC(model = N0.Rob1, risk = asMSE(normtype=InfoNorm())), gcFirst = TRUE)
+system.time(N0.IC1.i <- optIC(model = N0.Rob1, risk = asMSE(normtype=InfoNorm())))
 checkIC(N0.IC1.i)
 Risks(N0.IC1.i)
 plot(N0.IC1.i)
 infoPlot(N0.IC1.i)
 
-system.time(N0.IC1.s <- optIC(model = N0.Rob1, risk = asMSE(normtype=SelfNorm())), gcFirst = TRUE)
+system.time(N0.IC1.s <- optIC(model = N0.Rob1, risk = asMSE(normtype=SelfNorm())))
 checkIC(N0.IC1.s)
 Risks(N0.IC1.s)
 plot(N0.IC1.s)
 infoPlot(N0.IC1.s)
 
 comparePlot(N0.IC1,N0.IC1.i,N0.IC1.s)
-# lower case solutions
+
+
+## lower case solutions
 (N0.IC2 <- optIC(model = N0.Rob1, risk = asBias(), tol = 1e-10))
 checkIC(N0.IC2)
 Risks(N0.IC2)
@@ -53,15 +55,15 @@
 plot(N0.IC2.i)
 infoPlot(N0.IC2.i)
 
-# Hampel solution
+## Hampel solution
 (N0.IC3 <- optIC(model = N0.Rob1, risk = asHampel(bound = clip(N0.IC1))))
 checkIC(N0.IC3)
 Risks(N0.IC3)
 plot(N0.IC3) 
 infoPlot(N0.IC3)
 
-# radius minimax IC
-# (may take quite some time!)
+## radius minimax IC
+## (may take quite some time!)
 (N0.IC4 <- radiusMinimaxIC(L2Fam=N0, neighbor=ContNeighborhood(), 
                 risk=asMSE(), loRad=0, upRad=Inf))
 checkIC(N0.IC4)
@@ -85,10 +87,10 @@
 infoPlot(N0.IC4.s)
 
 
-# least favorable radius
-# (may take quite some time!)
-#N0.r.rho1 <- leastFavorableRadius(L2Fam=N0, neighbor=ContNeighborhood(),
-#                    risk=asMSE(), rho=0.5)
+## least favorable radius
+## (may take quite some time!)
+N0.r.rho1 <- leastFavorableRadius(L2Fam=N0, neighbor=ContNeighborhood(),
+                    risk=asMSE(), rho=0.5)
 
 ## one-step estimation
 ## 1. generate a contaminated sample
@@ -96,13 +98,13 @@
 x <- rnorm(100, mean=0, sd=(1-ind) + ind*9)
 
 ## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- MDEstimator(x=x, NormLocationScaleFamily(), distance = KolmogorovDist))
+(est0 <- MDEstimator(x=x, NormLocationScaleFamily()))
 
 ## 3. one-step estimation: radius known
-N1 <- NormLocationScaleFamily(mean=est0$mean, sd=est0$sd)
+N1 <- NormLocationScaleFamily(mean=est0$estimate[1], sd=est0$estimate[2])
 N1.Rob <- InfRobModel(center = N1, neighbor = ContNeighborhood(radius = 0.5))
 IC1 <- optIC(model = N1.Rob, risk = asMSE())
-(est1 <- oneStepEstimator(x, IC1, est0))
+(est1 <- oneStepEstimator(x, IC1, est0$estimate))
 
 ## 4. one-step estimation: radius unknown
 ## rough estimate: 1-10% contamination
@@ -111,4 +113,4 @@
 ## takes some time
 IC2 <- radiusMinimaxIC(L2Fam=N1, neighbor=ContNeighborhood(),risk=asMSE(), 
                        loRad=0.1, upRad=1.0) 
-(est2 <- oneStepEstimator(x, IC2, est0))
+(est2 <- oneStepEstimator(x, IC2, est0$estimate))

Modified: pkg/ROptEst/inst/scripts/NormalScaleModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/NormalScaleModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/NormalScaleModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -3,25 +3,25 @@
 ###############################################################################
 require(ROptEst)
 
-## generates Normal Scale Family with scale = 1
-N0 <- NormScaleFamily(mean=0, sd=1) 
+## generates Normal Scale Family with scale = 3
+N0 <- NormScaleFamily(mean=2, sd=3) 
 N0        # show G0
-plot(N0)  # plot of Norm(mean = 0, sd = 1) and L_2 derivative
+plot(N0)  # plot of Norm(mean = 2, sd = 3) and L_2 derivative
 checkL2deriv(N0)
 
-# classical optimal IC
+## classical optimal IC
 N0.IC0 <- optIC(model = N0, risk = asCov())
 N0.IC0       # show IC
 plot(N0.IC0) # plot IC
 checkIC(N0.IC0)
 Risks(N0.IC0)
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0.5))
 N0.Rob1     # show N0.Rob1
 N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = 0.5))
 
-# MSE solution
+## MSE solution
 (N0.IC1 <- optIC(model=N0.Rob1, risk=asMSE()))
 checkIC(N0.IC1)
 Risks(N0.IC1)
@@ -32,7 +32,7 @@
 Risks(N0.IC2)
 plot(N0.IC2)
 
-# lower case solutions
+## lower case solutions
 (N0.IC3 <- optIC(model=N0.Rob1, risk=asBias()))
 checkIC(N0.IC3)
 Risks(N0.IC3)
@@ -42,7 +42,7 @@
 Risks(N0.IC4)
 plot(N0.IC4)
 
-# Hampel solution
+## Hampel solution
 (N0.IC5 <- optIC(model=N0.Rob1, risk=asHampel(bound=clip(N0.IC1))))
 checkIC(N0.IC5)
 Risks(N0.IC5)
@@ -52,7 +52,7 @@
 Risks(N0.IC6)
 plot(N0.IC6)
 
-# radius minimax IC
+## radius minimax IC
 (N0.IC7 <- radiusMinimaxIC(L2Fam=N0, neighbor=ContNeighborhood(), 
                 risk=asMSE(), loRad=0, upRad=Inf))
 checkIC(N0.IC7)
@@ -64,8 +64,8 @@
 Risks(N0.IC8)
 plot(N0.IC8)
 
-# least favorable radius
-# (may take quite some time!)
+## least favorable radius
+## (may take quite some time!)
 (N0.r.rho1 <- leastFavorableRadius(L2Fam=N0, neighbor=ContNeighborhood(),
                     risk=asMSE(), rho=0.5))
 (N0.r.rho2 <- leastFavorableRadius(L2Fam=N0, neighbor=TotalVarNeighborhood(),

Modified: pkg/ROptEst/inst/scripts/PoissonModel.R
===================================================================
--- pkg/ROptEst/inst/scripts/PoissonModel.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/PoissonModel.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -12,14 +12,14 @@
 plot(P) # plot of Pois(lambda = 4.5) and L_2 derivative
 checkL2deriv(P)
 
-# classical optimal IC
+## classical optimal IC
 IC0 <- optIC(model = P, risk = asCov())
 IC0       # show IC
 checkIC(IC0)
 Risks(IC0)
 plot(IC0) # plot IC
 
-# L_2 family + infinitesimal neighborhood
+## L_2 family + infinitesimal neighborhood
 RobP1 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 0.5))
 RobP1     # show RobP1
 (RobP2 <- InfRobModel(center = P, neighbor = TotalVarNeighborhood(radius = 0.5)))
@@ -28,7 +28,7 @@
 lowerCaseRadius(L2Fam = P, ContNeighborhood(radius = 0.5), risk = asMSE())
 lowerCaseRadius(L2Fam = P, TotalVarNeighborhood(radius = 0.5), risk = asMSE())
 
-# MSE solution
+## MSE solution
 (IC1 <- optIC(model=RobP1, risk=asMSE()))
 checkIC(IC1)
 Risks(IC1)
@@ -50,14 +50,14 @@
 plot(IC2)
 
 
-# lower case solutions
+## lower case solutions
 (IC3 <- optIC(model=RobP1, risk=asBias()))
 checkIC(IC3)
 Risks(IC3)
 plot(IC3)
 
 (IC3.p <- optIC(model=RobP1, risk=asBias(biastype=positiveBias())))
-checkIC(IC3.p)
+checkIC(IC3.p) # numerical problem???
 Risks(IC3.p)
 plot(IC3.p)
 
@@ -72,7 +72,7 @@
 Risks(IC4)
 plot(IC4)
 
-# Hampel solution
+## Hampel solution
 (IC5 <- optIC(model=RobP1, risk=asHampel(bound=clip(IC1))))
 checkIC(IC5)
 Risks(IC5)
@@ -84,7 +84,7 @@
 plot(IC6)
 
 
-# radius minimax IC
+## radius minimax IC
 (IC7 <- radiusMinimaxIC(L2Fam=P, neighbor=ContNeighborhood(), 
                 risk=asMSE(), loRad=0, upRad=0.5))
 checkIC(IC7)
@@ -109,8 +109,8 @@
 Risks(IC8)
 plot(IC8)
 
-# least favorable radius
-# (may take quite some time!)
+## least favorable radius
+## (may take quite some time!)
 (r.rho1 <- leastFavorableRadius(L2Fam=P, neighbor=ContNeighborhood(),
                     risk=asMSE(), rho=0.5))
 (r.rho2 <- leastFavorableRadius(L2Fam=P, neighbor=TotalVarNeighborhood(),
@@ -122,21 +122,21 @@
 x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532), 
        rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27), 
        rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
-       
+
 ## 0. mean (classical optimal)
 (est0 <- mean(x))
 
 ## 1. Kolmogorov(-Smirnov) minimum distance estimator
-(est1 <- MDEstimator(x=x, PoisFamily(), distance = KolmogorovDist))
+(est1 <- MDEstimator(x=x, PoisFamily(), interval = c(0, 10)))
 
 ## 2. one-step estimation: radius interval
 ## 2.1 small amount of contamination < 2%
-IC9 <- radiusMinimaxIC(L2Fam=PoisFamily(lambda=est1$lambda),
+IC9 <- radiusMinimaxIC(L2Fam=PoisFamily(lambda=est1$estimate),
                 neighbor=ContNeighborhood(), risk=asMSE(), loRad=0, upRad=1)
-(est21 <- oneStepEstimator(x, IC=IC9, start=est1$lambda))
+(est21 <- oneStepEstimator(x, IC=IC9, start=est1$estimate))
 ## 2.2 amount of contamination unknown
-IC10 <- radiusMinimaxIC(L2Fam=PoisFamily(lambda=est1$lambda),
+IC10 <- radiusMinimaxIC(L2Fam=PoisFamily(lambda=est1$estimate),
                 neighbor=ContNeighborhood(), risk=asMSE(), loRad=0, upRad=Inf)
-(est22 <- oneStepEstimator(x, IC=IC10, start=est1$lambda))
+(est22 <- oneStepEstimator(x, IC=IC10, start=est1$estimate))
 
 distroptions("TruncQuantile", 1e-5) # default

Modified: pkg/ROptEst/inst/scripts/UnderOverShootRisk.R
===================================================================
--- pkg/ROptEst/inst/scripts/UnderOverShootRisk.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptEst/inst/scripts/UnderOverShootRisk.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -12,10 +12,10 @@
 N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0))
 N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = 0))
 
-system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)))
 checkIC(IC0c)
 Risks(IC0c)
-system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)))
 checkIC(IC0v)
 Risks(IC0v)
 
@@ -23,22 +23,22 @@
 N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 2*tau*1/sqrt(2*pi)))
 N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = tau*1/sqrt(2*pi)))
 
-system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)))
 checkIC(IC0c)
 Risks(IC0c)
-system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)))
 checkIC(IC0v)
 Risks(IC0v)
 
 
-# L_2 family + infinitesimal resp. fixed neighborhood
+## L_2 family + infinitesimal resp. fixed neighborhood
 rad <- 0.5
 N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = rad))
 N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = rad/2))
 N0.Rob3 <- FixRobModel(center = N0, neighbor = ContNeighborhood(radius = rad/sqrt(n)))
 N0.Rob4 <- FixRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = rad/2/sqrt(n)))
 
-# asUnOvShoot solution
+## asUnOvShoot solution
 N0.IC1 <- optIC(model = N0.Rob1, risk = asUnOvShoot(width = tau))
 checkIC(N0.IC1)
 Risks(N0.IC1)
@@ -49,7 +49,7 @@
 Risks(N0.IC2)
 plot(N0.IC2)
 
-# fiUnOvShoot solution
+## fiUnOvShoot solution
 N0.IC3 <- optIC(model=N0.Rob3, risk=fiUnOvShoot(width = tau/sqrt(n)), sampleSize = n)
 checkIC(N0.IC3)
 Risks(N0.IC3)
@@ -60,8 +60,8 @@
 Risks(N0.IC4)
 plot(N0.IC4)
 
-# O(n^(-0.5))-corrected solution 
-# in case of contamination neighborhoods
+## O(n^(-0.5))-corrected solution 
+## in case of contamination neighborhoods
 N0.IC5 <- N0.IC1
 clipUp1 <- clipUp(N0.IC1)/as.vector(stand(N0.IC1))
 clipUp5 <- max(0, clipUp1 - rad*(rad + clipUp1*tau)/(sqrt(n)*2*tau*pnorm(-clipUp1)))
@@ -75,8 +75,8 @@
 getRiskIC(N0.IC5, asUnOvShoot(width = tau), ContNeighborhood(radius=rad))
 getRiskIC(N0.IC5, fiUnOvShoot(width = tau/sqrt(n)), ContNeighborhood(radius=rad/sqrt(n)), sampleSize = n)
 
-# O(n^(-1))-corrected solution 
-# in case of total variation neighborhoods
+## O(n^(-1))-corrected solution 
+## in case of total variation neighborhoods
 N0.IC6 <- N0.IC2
 clipUp2 <- clipUp(N0.IC2)/as.vector(stand(N0.IC2))
 clipUp6 <- max(0, clipUp2 - tau*(2*clipUp2^2*rad/2 + tau*dnorm(clipUp2))/(6*n*pnorm(-clipUp2)))
@@ -99,25 +99,25 @@
 
 ## 2. M estimation
 N0.Rob5 <- InfRobModel(center = NormLocationFamily(mean = 0), 
-                neighbor = ContNeighborhood(radius = 0.5))
+                       neighbor = ContNeighborhood(radius = 0.5))
 N0.IC7 <- optIC(model=N0.Rob5, risk=asUnOvShoot(width = 1.960))
 (Mest1 <- locMEstimator(X, IC=N0.IC7))
 
 N0.Rob6 <- FixRobModel(center = NormLocationFamily(mean = 0), 
-                neighbor = ContNeighborhood(radius = 0.05))
-N0.IC8 <- optIC(model = N0.Rob6, risk=fiUnOvShoot(width = 0.196), sampleSize = 1e2)
+                       neighbor = ContNeighborhood(radius = 0.05))
+N0.IC8 <- optIC(model = N0.Rob6, risk=fiUnOvShoot(width = 1.960/sqrt(n)), sampleSize = 1e2)
 (Mest2 <- locMEstimator(X, IC=N0.IC8))
 
 
 ## 3. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- ksEstimator(x=X, Norm(), param = "mean"))
+(est0 <- MDEstimator(x=X, NormLocationFamily(), interval = c(-5, 5)))
 
 ## 4. one-step estimation
-N0.Rob7 <- InfRobModel(center = NormLocationFamily(mean = est0$mean), 
-                neighbor = ContNeighborhood(radius=0.5))
+N0.Rob7 <- InfRobModel(center = NormLocationFamily(mean = est0$estimate), 
+                       neighbor = ContNeighborhood(radius=0.5))
 N0.IC9 <- optIC(model=N0.Rob7, risk=asUnOvShoot(width = 1.960))
-(est1 <- oneStepEstimator(X, IC = N0.IC9, start = est0$mean))
-N0.Rob8 <- FixRobModel(center = NormLocationFamily(mean = est0$mean), 
-                neighbor = ContNeighborhood(radius=0.05))
-N0.IC10 <- optIC(model=N0.Rob8, risk=fiUnOvShoot(width = 0.196), sampleSize = 1e2)
-(est2 <- oneStepEstimator(X, IC = N0.IC10, start = est0$mean))
+(est1 <- oneStepEstimator(X, IC = N0.IC9, start = est0$estimate))
+N0.Rob8 <- FixRobModel(center = NormLocationFamily(mean = est0$estimate), 
+                       neighbor = ContNeighborhood(radius=0.05))
+N0.IC10 <- optIC(model=N0.Rob8, risk=fiUnOvShoot(width = 1.960/sqrt(n)), sampleSize = 1e2)
+(est2 <- oneStepEstimator(X, IC = N0.IC10, start = est0$estimate))

Modified: pkg/ROptRegTS/DESCRIPTION
===================================================================
--- pkg/ROptRegTS/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/ROptRegTS/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,14 +1,13 @@
 Package: ROptRegTS
-Version: 0.5.0
-Date: 2007-07-30
+Version: 0.6.0
+Date: 2008-07-21
 Title: Optimally robust estimation for regression-type models
 Description: Optimally robust estimation for regression-type 
     models using S4 classes and methods
 Depends: R (>= 2.4.0), methods, distr(>= 1.9), distrEx(>= 1.9), RandVar(>= 0.6), ROptEst(>= 0.5.0)
-Author: Matthias Kohl <Matthias.Kohl at stamats.de>
+Author: Matthias Kohl <Matthias.Kohl at stamats.de>, Peter Ruckdeschel
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
-SaveImage: no
 LazyLoad: yes
 License: GPL version 2 or later
-URL: http://www.stamats.de/RobASt.htm
-Packaged: Mon Aug  6 08:09:59 2007; kohl
+URL: http://robast.r-forge.r-project.org/
+Packaged: Mon Aug  6 08:09:59 2007; kohl

Modified: pkg/RandVar/DESCRIPTION
===================================================================
--- pkg/RandVar/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,6 +1,6 @@
 Package: RandVar
 Version: 0.6.3
-Date: 2008-04-23
+Date: 2008-07-21
 Title: Implementation of random variables
 Description: Implementation of random variables by means
     of S4 classes and methods
@@ -9,5 +9,5 @@
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
 LazyLoad: yes
 License: GPL version 2 or later
-URL: http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/RandVar.html
+URL: http://robast.r-forge.r-project.org/
 Packaged: Tue Oct  2 15:25:20 2007; Matthias Kohl

Modified: pkg/RandVar/R/EuclRandVariable.R
===================================================================
--- pkg/RandVar/R/EuclRandVariable.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/R/EuclRandVariable.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -230,7 +230,7 @@
 setMethod("evalRandVar", signature(RandVar = "EuclRandMatrix", 
                                    x = "numeric",
                                    distr = "missing"), 
-    function(x, RandVar){
+    function(RandVar, x){
         if(!is.null(RandVar at Domain)){
             if(length(x) != RandVar at Domain@dimension)
                 stop("x has wrong dimension")
@@ -271,7 +271,7 @@
 setMethod("evalRandVar", signature(RandVar = "EuclRandMatrix", 
                                    x = "numeric",
                                    distr = "Distribution"), 
-    function(x, RandVar, distr){
+    function(RandVar, x, distr){
         if(is.null(RandVar at Domain))
             stop("domain of 'RandVar' is 'NULL'")
         if(ncol(x) != RandVar at Domain@dimension)

Deleted: pkg/RandVar/inst/doc/RandVar.aux
===================================================================
--- pkg/RandVar/inst/doc/RandVar.aux	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.aux	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,42 +0,0 @@
-\relax 
-\ifx\hyper at anchor\@undefined
-\global \let \oldcontentsline\contentsline
-\gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
-\global \let \oldnewlabel\newlabel
-\gdef \newlabel#1#2{\newlabelxx{#1}#2}
-\gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
-\AtEndDocument{\let \contentsline\oldcontentsline
-\let \newlabel\oldnewlabel}
-\else
-\global \let \hyper at last\relax 
-\fi
-
-\citation{MK:05}
-\@writefile{brf}{\backcite{MK:05}{{1}{(document)}{Doc-Start}}}
-\citation{distr}
-\@writefile{toc}{\contentsline {section}{\numberline {1}{\tt  S4} Classes}{2}{section.1}}
-\@writefile{brf}{\backcite{distr}{{2}{1}{section.1}}}
-\citation{distr}
-\citation{Cham:98}
-\citation{Gent:03}
-\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Class {\tt  RandVariable} and Subclasses}}{3}{figure.1}}
-\newlabel{ap.Rpack.RandVar.dia1}{{1}{3}{Class {\tt RandVariable} and Subclasses\relax }{figure.1}{}}
-\@writefile{toc}{\contentsline {section}{\numberline {2}Functions and Methods}{3}{section.2}}
-\@writefile{brf}{\backcite{distr}{{3}{2}{section.2}}}
-\@writefile{brf}{\backcite{Cham:98}{{3}{2}{section.2}}}
-\@writefile{brf}{\backcite{Gent:03}{{3}{2}{section.2}}}
-\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Generating Functions of Package {\tt  RandVar}}}{4}{table.1}}
-\newlabel{ap.Rpack.RandVar.tab.gen}{{1}{4}{Generating Functions of Package {\tt RandVar}\relax }{table.1}{}}
-\citation{distr}
-\@writefile{brf}{\backcite{distr}{{8}{2}{table.1}}}
-\citation{distr}
-\citation{MK:05}
-\bibcite{Cham:98}{1}
-\@writefile{brf}{\backcite{distr}{{9}{2}{table.1}}}
-\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces New Generic Functions of Package {\tt  RandVar}}}{9}{table.2}}
-\newlabel{ap.Rpack.RandVar.tab}{{2}{9}{New Generic Functions of Package {\tt RandVar}\relax }{table.2}{}}
-\@writefile{toc}{\contentsline {section}{\numberline {3}Odds and Ends}{9}{section.3}}
-\@writefile{brf}{\backcite{MK:05}{{9}{3}{section.3}}}
-\bibcite{Gent:03}{2}
-\bibcite{MK:05}{3}
-\bibcite{distr}{4}

Deleted: pkg/RandVar/inst/doc/RandVar.brf
===================================================================
--- pkg/RandVar/inst/doc/RandVar.brf	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.brf	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,8 +0,0 @@
-\backcite {MK:05}{{1}{(document)}{Doc-Start}}
-\backcite {distr}{{2}{1}{section.1}}
-\backcite {distr}{{3}{2}{section.2}}
-\backcite {Cham:98}{{3}{2}{section.2}}
-\backcite {Gent:03}{{3}{2}{section.2}}
-\backcite {distr}{{8}{2}{table.1}}
-\backcite {distr}{{9}{2}{table.1}}
-\backcite {MK:05}{{9}{3}{section.3}}

Deleted: pkg/RandVar/inst/doc/RandVar.log
===================================================================
--- pkg/RandVar/inst/doc/RandVar.log	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.log	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,459 +0,0 @@
-This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=pdflatex 2007.12.8)  21 APR 2008 06:59
-entering extended mode
- file:line:error style messages enabled.
- %&-line parsing enabled.
-**\nonstopmode \input /home/btm722/arbeit/Rpackages/RForge/robast/pkg/RandVar/i
-nst/doc/RandVar.tex
-(/home/btm722/arbeit/Rpackages/RForge/robast/pkg/RandVar/inst/doc/RandVar.tex
-(/usr/share/texmf-texlive/tex/latex/base/article.cls
-Document Class: article 2005/09/16 v1.4f Standard LaTeX document class
-(/usr/share/texmf-texlive/tex/latex/base/size11.clo
-File: size11.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
-)
-\c at part=\count79
-\c at section=\count80
-\c at subsection=\count81
-\c at subsubsection=\count82
-\c at paragraph=\count83
-\c at subparagraph=\count84
-\c at figure=\count85
-\c at table=\count86
-\abovecaptionskip=\skip41
-\belowcaptionskip=\skip42
-\bibindent=\dimen102
-)
-(/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty
-Package: geometry 2002/07/08 v3.2 Page Geometry
-
-(/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty
-Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
-\KV at toks@=\toks14
-)
-\Gm at cnth=\count87
-\Gm at cntv=\count88
-\c at Gm@tempcnt=\count89
-\Gm at bindingoffset=\dimen103
-\Gm at wd@mp=\dimen104
-\Gm at odd@mp=\dimen105
-\Gm at even@mp=\dimen106
-\Gm at dimlist=\toks15
-)
-(/usr/share/texmf-texlive/tex/latex/graphics/color.sty
-Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)
-
-(/etc/texmf/tex/latex/config/color.cfg
-File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
-)
-Package color Info: Driver file: pdftex.def on input line 130.
-
-(/usr/share/texmf-texlive/tex/latex/pdftex-def/pdftex.def
-File: pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX
-\Gread at gobject=\count90
-))
-(/usr/share/texmf-texlive/tex/generic/oberdiek/ifpdf.sty
-Package: ifpdf 2006/02/20 v1.4 Provides the ifpdf switch (HO)
-Package ifpdf Info: pdfTeX in pdf mode detected.
-)
-(/usr/share/texmf-texlive/tex/latex/hyperref/hyperref.sty
-Package: hyperref 2007/02/07 v6.75r Hypertext links for LaTeX
-\@linkdim=\dimen107
-\Hy at linkcounter=\count91
-\Hy at pagecounter=\count92
-
-(/usr/share/texmf-texlive/tex/latex/hyperref/pd1enc.def
-File: pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO)
-)
-(/etc/texmf/tex/latex/config/hyperref.cfg
-File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
-)
-(/usr/share/texmf-texlive/tex/latex/oberdiek/kvoptions.sty
-Package: kvoptions 2006/08/22 v2.4 Connects package keyval with LaTeX options (
-HO)
-)
-Package hyperref Info: Option `bookmarks' set `true' on input line 2238.
-Package hyperref Info: Option `colorlinks' set `true' on input line 2238.
-Package hyperref Info: Option `raiselinks' set `true' on input line 2238.
-Package hyperref Info: Option `plainpages' set `true' on input line 2238.
-Package hyperref Info: Hyper figures OFF on input line 2288.
-Package hyperref Info: Link nesting OFF on input line 2293.
-Package hyperref Info: Hyper index ON on input line 2296.
-Package hyperref Info: Plain pages ON on input line 2301.
-Package hyperref Info: Backreferencing ON on input line 2306.
-
-Implicit mode ON; LaTeX internals redefined
-Package hyperref Info: Bookmarks ON on input line 2444.
-(/usr/share/texmf-texlive/tex/latex/hyperref/backref.sty
-Package: backref 2006/10/06 v1.27 Bibliographical back referencing
-)
-(/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty
-\Urlmuskip=\muskip10
-Package: url 2005/06/27  ver 3.2  Verb mode for urls, etc.
-)
-LaTeX Info: Redefining \url on input line 2599.
-\Fld at menulength=\count93
-\Field at Width=\dimen108
-\Fld at charsize=\dimen109
-\Choice at toks=\toks16
-\Field at toks=\toks17
-Package hyperref Info: Hyper figures OFF on input line 3102.
-Package hyperref Info: Link nesting OFF on input line 3107.
-Package hyperref Info: Hyper index ON on input line 3110.
-Package hyperref Info: backreferencing ON on input line 3115.
-Package hyperref Info: Link coloring ON on input line 3120.
-\Hy at abspage=\count94
-\c at Item=\count95
-\c at Hfootnote=\count96
-)
-*hyperref using driver hpdftex*
-(/usr/share/texmf-texlive/tex/latex/hyperref/hpdftex.def
-File: hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX
-\Fld at listcount=\count97
-)
-(/home/btm722/RTOP/R-2-7-branch/share/texmf/Sweave.sty
-
-LaTeX Warning: You have requested package `/home/btm722/RTOP/R-2-7-branch/share
-/texmf/Sweave',
-               but the package provides `Sweave'.
-
-Package: Sweave 
-(/usr/share/texmf-texlive/tex/latex/base/ifthen.sty
-Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
-)
-(/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty
-Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
-
-(/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty
-Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
-
-(/usr/share/texmf-texlive/tex/latex/graphics/trig.sty
-Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
-)
-(/etc/texmf/tex/latex/config/graphics.cfg
-File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
-)
-Package graphics Info: Driver file: pdftex.def on input line 90.
-)
-\Gin at req@height=\dimen110
-\Gin at req@width=\dimen111
-)
-(/usr/share/texmf-texlive/tex/latex/fancyvrb/fancyvrb.sty
-Package: fancyvrb 1998/07/17
-
-Style option: `fancyvrb' v2.6, with DG/SPQR fixes <1998/07/17> (tvz)
-\FV at CodeLineNo=\count98
-\FV at InFile=\read1
-\FV at TabBox=\box26
-\c at FancyVerbLine=\count99
-\FV at StepNumber=\count100
-\FV at OutFile=\write3
-
-No file fancyvrb.cfg.
-) (/home/btm722/RTOP/R-2-7-branch/share/texmf/upquote.sty
-Package: upquote 2003/08/11 v1.1 Covington's upright-quote modification to verb
-atim and verb
-
-(/usr/share/texmf-texlive/tex/latex/base/textcomp.sty
-Package: textcomp 2005/09/27 v1.99g Standard LaTeX package
-Package textcomp Info: Sub-encoding information:
-(textcomp)               5 = only ISO-Adobe without \textcurrency
-(textcomp)               4 = 5 + \texteuro
-(textcomp)               3 = 4 + \textohm
-(textcomp)               2 = 3 + \textestimated + \textcurrency
-(textcomp)               1 = TS1 - \textcircled - \t
-(textcomp)               0 = TS1 (full)
-(textcomp)             Font families with sub-encoding setting implement
-(textcomp)             only a restricted character set as indicated.
-(textcomp)             Family '?' is the default used for unknown fonts.
-(textcomp)             See the documentation for details.
-Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 71.
-
-(/usr/share/texmf-texlive/tex/latex/base/ts1enc.def
-File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
-)
-LaTeX Info: Redefining \oldstylenums on input line 266.
-Package textcomp Info: Setting cmr sub-encoding to TS1/0 on input line 281.
-Package textcomp Info: Setting cmss sub-encoding to TS1/0 on input line 282.
-Package textcomp Info: Setting cmtt sub-encoding to TS1/0 on input line 283.
-Package textcomp Info: Setting cmvtt sub-encoding to TS1/0 on input line 284.
-Package textcomp Info: Setting cmbr sub-encoding to TS1/0 on input line 285.
-Package textcomp Info: Setting cmtl sub-encoding to TS1/0 on input line 286.
-Package textcomp Info: Setting ccr sub-encoding to TS1/0 on input line 287.
-Package textcomp Info: Setting ptm sub-encoding to TS1/4 on input line 288.
-Package textcomp Info: Setting pcr sub-encoding to TS1/4 on input line 289.
-Package textcomp Info: Setting phv sub-encoding to TS1/4 on input line 290.
-Package textcomp Info: Setting ppl sub-encoding to TS1/3 on input line 291.
-Package textcomp Info: Setting pag sub-encoding to TS1/4 on input line 292.
-Package textcomp Info: Setting pbk sub-encoding to TS1/4 on input line 293.
-Package textcomp Info: Setting pnc sub-encoding to TS1/4 on input line 294.
-Package textcomp Info: Setting pzc sub-encoding to TS1/4 on input line 295.
-Package textcomp Info: Setting bch sub-encoding to TS1/4 on input line 296.
-Package textcomp Info: Setting put sub-encoding to TS1/5 on input line 297.
-Package textcomp Info: Setting uag sub-encoding to TS1/5 on input line 298.
-Package textcomp Info: Setting ugq sub-encoding to TS1/5 on input line 299.
-Package textcomp Info: Setting ul8 sub-encoding to TS1/4 on input line 300.
-Package textcomp Info: Setting ul9 sub-encoding to TS1/4 on input line 301.
-Package textcomp Info: Setting augie sub-encoding to TS1/5 on input line 302.
-Package textcomp Info: Setting dayrom sub-encoding to TS1/3 on input line 303.
-Package textcomp Info: Setting dayroms sub-encoding to TS1/3 on input line 304.
-
-Package textcomp Info: Setting pxr sub-encoding to TS1/0 on input line 305.
-Package textcomp Info: Setting pxss sub-encoding to TS1/0 on input line 306.
-Package textcomp Info: Setting pxtt sub-encoding to TS1/0 on input line 307.
-Package textcomp Info: Setting txr sub-encoding to TS1/0 on input line 308.
-Package textcomp Info: Setting txss sub-encoding to TS1/0 on input line 309.
-Package textcomp Info: Setting txtt sub-encoding to TS1/0 on input line 310.
-Package textcomp Info: Setting futs sub-encoding to TS1/4 on input line 311.
-Package textcomp Info: Setting futx sub-encoding to TS1/4 on input line 312.
-Package textcomp Info: Setting futj sub-encoding to TS1/4 on input line 313.
-Package textcomp Info: Setting hlh sub-encoding to TS1/3 on input line 314.
-Package textcomp Info: Setting hls sub-encoding to TS1/3 on input line 315.
-Package textcomp Info: Setting hlst sub-encoding to TS1/3 on input line 316.
-Package textcomp Info: Setting hlct sub-encoding to TS1/5 on input line 317.
-Package textcomp Info: Setting hlx sub-encoding to TS1/5 on input line 318.
-Package textcomp Info: Setting hlce sub-encoding to TS1/5 on input line 319.
-Package textcomp Info: Setting hlcn sub-encoding to TS1/5 on input line 320.
-Package textcomp Info: Setting hlcw sub-encoding to TS1/5 on input line 321.
-Package textcomp Info: Setting hlcf sub-encoding to TS1/5 on input line 322.
-Package textcomp Info: Setting pplx sub-encoding to TS1/3 on input line 323.
-Package textcomp Info: Setting pplj sub-encoding to TS1/3 on input line 324.
-Package textcomp Info: Setting ptmx sub-encoding to TS1/4 on input line 325.
-Package textcomp Info: Setting ptmj sub-encoding to TS1/4 on input line 326.
-))
-(/usr/share/texmf-texlive/tex/latex/base/fontenc.sty
-Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
-
-(/usr/share/texmf-texlive/tex/latex/base/t1enc.def
-File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
-LaTeX Font Info:    Redeclaring font encoding T1 on input line 43.
-))
-(/usr/share/texmf-texlive/tex/latex/ae/ae.sty
-Package: ae 2001/02/12 1.3 Almost European Computer Modern
-
-(/usr/share/texmf-texlive/tex/latex/base/fontenc.sty
-Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
-
-(/usr/share/texmf-texlive/tex/latex/base/t1enc.def
-File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
-LaTeX Font Info:    Redeclaring font encoding T1 on input line 43.
-)
-LaTeX Font Info:    Try loading font information for T1+aer on input line 100.
-
-(/usr/share/texmf-texlive/tex/latex/ae/t1aer.fd
-File: t1aer.fd 1997/11/16 Font definitions for T1/aer.
-)))) (./RandVar.aux)
-\openout1 = `RandVar.aux'.
-
-LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for PD1/pdf/m/n on input line 30.
-LaTeX Font Info:    ... okay on input line 30.
-LaTeX Font Info:    Checking defaults for TS1/cmr/m/n on input line 30.
-LaTeX Font Info:    Try loading font information for TS1+cmr on input line 30.
-
-(/usr/share/texmf-texlive/tex/latex/base/ts1cmr.fd
-File: ts1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
-)
-LaTeX Font Info:    ... okay on input line 30.
--------------------- Geometry parameters
-paper: class default
-landscape: --
-twocolumn: --
-twoside: --
-asymmetric: --
-h-parts: 92.14519pt, 0.7\paperwidth , 92.14519pt (default)
-v-parts: 95.39737pt, 0.7\paperheight , 143.09605pt (default)
-hmarginratio: 1:1
-vmarginratio: 2:3
-lines: --
-heightrounded: --
-bindingoffset: 0.0pt
-truedimen: --
-includehead: --
-includefoot: --
-includemp: --
-driver: pdftex
--------------------- Page layout dimensions and switches
-\paperwidth  614.295pt
-\paperheight 794.96999pt
-\textwidth  430.00462pt
-\textheight 556.47656pt
-\oddsidemargin  19.8752pt
-\evensidemargin 19.8752pt
-\topmargin  -13.87262pt
-\headheight 12.0pt
-\headsep    25.0pt
-\footskip   30.0pt
-\marginparwidth 59.0pt
-\marginparsep   10.0pt
-\columnsep  10.0pt
-\skip\footins  10.0pt plus 4.0pt minus 2.0pt
-\hoffset 0.0pt
-\voffset 0.0pt
-\mag 1000
-
-(1in=72.27pt, 1cm=28.45pt)
------------------------
-Package hyperref Info: Link coloring ON on input line 30.
-
-(/usr/share/texmf-texlive/tex/latex/hyperref/nameref.sty
-Package: nameref 2006/12/27 v2.28 Cross-referencing by name of section
-
-(/usr/share/texmf-texlive/tex/latex/oberdiek/refcount.sty
-Package: refcount 2006/02/20 v3.0 Data extraction from references (HO)
-)
-\c at section@level=\count101
-)
-LaTeX Info: Redefining \ref on input line 30.
-LaTeX Info: Redefining \pageref on input line 30.
- (./RandVar.out)
-(./RandVar.out)
-\@outlinefile=\write4
-\openout4 = `RandVar.out'.
-
-LaTeX Font Info:    Try loading font information for T1+aett on input line 39.
- (/usr/share/texmf-texlive/tex/latex/ae/t1aett.fd
-File: t1aett.fd 1997/11/16 Font definitions for T1/aett.
-)
-LaTeX Font Info:    External font `cmex10' loaded for size
-(Font)              <12> on input line 39.
-LaTeX Font Info:    External font `cmex10' loaded for size
-(Font)              <8> on input line 39.
-LaTeX Font Info:    External font `cmex10' loaded for size
-(Font)              <6> on input line 39.
-
-(./RandVar.toc)
-\tf at toc=\write5
-\openout5 = `RandVar.toc'.
-
- [1
-
-{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<def>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\f at encoding' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<let>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<def>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\f at family' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<def>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\f at series' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<def>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\f at shape' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\<def>-command' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\font at name' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\T1/aett/m/n/14.4' on input line 50.
-
-
-Package hyperref Warning: Token not allowed in a PDFDocEncoded string,
-(hyperref)                removing `\ignorespaces' on input line 50.
-
-LaTeX Font Info:    External font `cmex10' loaded for size
-(Font)              <10.95> on input line 71.
-<RandVariable.pdf, id=39, 353.32pt x 533.995pt>
-File: RandVariable.pdf Graphic file (type pdf)
- <use RandVariable.pdf> [2
-
-]
-Underfull \hbox (badness 1867) in paragraph at lines 115--115
-[]\T1/aer/m/n/10.95 Generates an ob-ject of class \T1/aett/m/n/10.95 Eu-clRand-
-
- []
-
-[3 <./RandVariable.pdf>] [4] [5] [6] [7] [8] (./RandVar.brf)
-\tf at brf=\write6
-\openout6 = `RandVar.brf'.
-
- [9]
-Underfull \hbox (badness 10000) in paragraph at lines 462--462
-[]\T1/aer/m/n/10.95 Ruckdeschel P., Kohl M., Sta-bla T., and Cam-phausen F.  S4
-
- []
-
-
-Underfull \hbox (badness 10000) in paragraph at lines 462--462
-\T1/aer/m/n/10.95 Classes for Dis-tri-bu-tions.  \T1/aer/m/it/10.95 R-News\T1/a
-er/m/n/10.95 , \T1/aer/bx/n/10.95 6\T1/aer/m/n/10.95 (2): 10--13.  http://CRAN.
-R-
- []
-
-
-Underfull \hbox (badness 10000) in paragraph at lines 462--462
-\T1/aer/m/n/10.95 project.org/doc/Rnews/Rnews_2006-2.pdf  See also http://www.u
-ni-
- []
-
-
-Underfull \hbox (badness 6641) in paragraph at lines 462--462
-\T1/aer/m/n/10.95 bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/dist
-r.pdf  [][]2[][],
- []
-
-[10] (./RandVar.aux) ) 
-Here is how much of TeX's memory you used:
- 4177 strings out of 95062
- 58790 string characters out of 1182216
- 111871 words of memory out of 1500000
- 7240 multiletter control sequences out of 10000+50000
- 34947 words of font info for 79 fonts, out of 1200000 for 2000
- 28 hyphenation exceptions out of 8191
- 35i,11n,41p,340b,481s stack positions out of 5000i,500n,6000p,200000b,5000s
-</usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmbx10.p
-fb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmbx12.pfb></usr/share/texm
-f-texlive/fonts/type1/bluesky/cm/cmex10.pfb></usr/share/texmf-texlive/fonts/typ
-e1/bluesky/cm/cmmi10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmmi6
-.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmmi8.pfb></usr/share/tex
-mf-texlive/fonts/type1/bluesky/cm/cmr10.pfb></usr/share/texmf-texlive/fonts/typ
-e1/bluesky/cm/cmr12.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr17.
-pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmsltt10.pfb></usr/share/t
-exmf-texlive/fonts/type1/bluesky/cm/cmsy10.pfb></usr/share/texmf-texlive/fonts/
-type1/bluesky/cm/cmti10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cm
-tt10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmtt12.pfb>
-Output written on RandVar.pdf (10 pages, 121493 bytes).
-PDF statistics:
- 167 PDF objects out of 1000 (max. 8388607)
- 23 named destinations out of 1000 (max. 131072)
- 46 words of extra memory for PDF output out of 10000 (max. 10000000)
-

Deleted: pkg/RandVar/inst/doc/RandVar.out
===================================================================
--- pkg/RandVar/inst/doc/RandVar.out	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.out	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,3 +0,0 @@
-\BOOKMARK [1][-]{section.1}{S4 Classes}{}
-\BOOKMARK [1][-]{section.2}{Functions and Methods}{}
-\BOOKMARK [1][-]{section.3}{Odds and Ends}{}

Modified: pkg/RandVar/inst/doc/RandVar.pdf
===================================================================
(Binary files differ)

Deleted: pkg/RandVar/inst/doc/RandVar.tex
===================================================================
--- pkg/RandVar/inst/doc/RandVar.tex	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.tex	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,466 +0,0 @@
-%\VignetteIndexEntry{RandVar}
-%\VignetteDepends{distr,distrEx}
-%\VignetteKeywords{random variable, S4 classes, S4 methods}
-%\VignettePackage{RandVar}
-%
-\documentclass[11pt]{article}
-\usepackage{geometry}\usepackage{color}
-\usepackage{ifpdf}
-\definecolor{darkblue}{rgb}{0.0,0.0,0.75}
-\usepackage[%
-baseurl={http://www.stamats.de},%
-pdftitle={RandVar: Implementation of random variables by means of S4 classes and methods},%
-pdfauthor={Matthias Kohl},%
-pdfsubject={RandVar},%
-pdfkeywords={random variable, S4 classes, S4 methods},%
-pagebackref,bookmarks,colorlinks,linkcolor=darkblue,citecolor=darkblue,%
-pagecolor=darkblue,raiselinks,plainpages,pdftex]{hyperref}
-%
-\markboth{\sl Packages ``{\tt RandVar}''}{\sl Packages ``{\tt RandVar}''}
-%
-% -------------------------------------------------------------------------------
-\newcommand{\code}[1]{{\tt #1}}
-\newcommand{\pkg}[1]{{\tt "#1"}}
-\newcommand{\pkgversion}{{\tt 2.0}}
-\newcommand{\pkgExversion}{{\tt 0.6.2}}
-% -------------------------------------------------------------------------------
-%
-% -------------------------------------------------------------------------------
-\usepackage{/home/btm722/RTOP/R-2-7-branch/share/texmf/Sweave}
-\begin{document}
-% -------------------------------------------------------------------------------
-\title{RandVar: Implementation of random variables by means
-    of {\tt S4} classes and methods}
-\author{Matthias Kohl\\
-e-Mail: {\tt matthias.kohl at stamats.de}\\
-}
-\maketitle
-% -------------------------------------------------------------------------------
-\begin{abstract}
-% -------------------------------------------------------------------------------
-In this package we implement random variables by means of {\tt S4} classes
-and methods. This vignette corresponds to Appendix D.2 in Kohl~(2005)~\cite{MK:05}.
-% -------------------------------------------------------------------------------
-\end{abstract}
-% -------------------------------------------------------------------------------
-\tableofcontents
-% -------------------------------------------------------------------------------
-\clearpage
-% -----------------------------------------------------------------------
-\section{{\tt S4} Classes}
-% -----------------------------------------------------------------------
-The {\tt S4} class {\tt RandVariable} (cf.\ Figure~\ref{ap.Rpack.RandVar.dia1})
-has the slots {\tt Map}, {\tt Domain} and {\tt Range} where {\tt Map}
-contains a list of functions which are measurable maps from {\tt Domain}
-to {\tt Range}. The elements contained in the list {\tt Map} must be functions in 
-one argument named {\tt x}. We do not allow further parameters for these 
-functions as this would lead to inconsistent objects. Strictly speaking, an object of 
-class {\tt RandVariable} would represent not only one random variable but a whole 
-set of random variables depending on these parameters.
-% -----------------------------------------------------------------------
-\par
-The slots {\tt Domain} and {\tt Range} are filled with an object of
-class {\tt OptionalrSpace}; i.e., they contain {\tt NULL} or an object of class 
-{\tt rSpace} (see package {\tt distr}~\cite{distr}). In case of
-{\tt EuclRandVariable} and {\tt RealRandVariable} the slot {\tt Range} is filled 
-with an object of class {\tt Euclideanspace} and {\tt Reals}, respectively. The 
-class {\tt EuclRandMatrix} additionally has the slot {\tt Dim} which is a vector 
-of integers and contains the dimensions of the Euclidean random matrix.
-% -----------------------------------------------------------------------
-\par
-Using these {\tt S4} classes there are two possibilities to implement a ${\rm R}^k$
-valued random variable. First, we could define a {\tt EuclRandVariable}
-whose slot {\tt Map} contains a list with one function which maps to ${\rm R}^k$;
-i.e., the slot {\tt Range} is a $k$-dimensional Euclidean space. Second, we could
-define a {\tt EuclRandVariable} whose slot {\tt Map} contains a list with $n$
-functions (projections) which map to ${\rm R}^m$ where $k = m*n$. Now, the slot
-{\tt Range} is an $m$-dimensional Euclidean space.
-Since it is sometimes convenient to regard a ${\rm R}^k$ valued random variable
-as measurable map consisting of ${\rm R}^{k_i}$ valued maps where $\sum k_i = k$,
-we introduce a further class called {\tt EuclRandVarList}.
-With this class we can now define ${\rm R}^k$ valued random variables as a list
-of ${\rm R}^{k_i}$ valued random variables with compatible domains. More precisely,
-the elements of a {\tt EuclRandVarList} may even have very different ranges
-(not necessarily Euclidean spaces) they only need to have compatible
-domains which is checked via the generic function {\tt compatibleDomains}.
-% -----------------------------------------------------------------------
-\begin{figure}[!ht]
-\begin{center}
-  \ifpdf
-    \includegraphics[scale=1.0, viewport = 14 15 244 275]{RandVariable.pdf}
-  \else
-    \includegraphics[scale=1.0]{RandVariable.eps}
-  \fi
-  \caption[Class {\tt RandVariable} and Subclasses]{Class
-    {\tt RandVariable} and subclasses.}
-  \label{ap.Rpack.RandVar.dia1}
-\end{center}
-\end{figure}
-% -----------------------------------------------------------------------
-\newpage
-\section{Functions and Methods}
-% -----------------------------------------------------------------------
-As in case of package {\tt distrEx}~\cite{distr}, we follow the advices of 
-Section~7.3 of \cite{Cham:98} and \cite{Gent:03}. That is, we introduce 
-generating functions as well as accessor and replacement functions. A short
-description of the implemented generating functions is given in
-Table~\ref{ap.Rpack.RandVar.tab.gen}.
-% -----------------------------------------------------------------------
-\begin{table}[!ht]
-\begin{center}
-\begin{tabular}{p{4cm}|p{7.5cm}}
-  \textbf{Generating Function} & \textbf{Description} \\ \hline\hline
-  {\tt EuclRandMatrix} & Generates an object of class {\tt EuclRandMatrix}\\ \hline
-  {\tt EuclRandVariable} & Generates an object of class {\tt EuclRandVariable}\\ \hline
-  {\tt EuclRandVarList}   & Generates an object of class {\tt EuclRandVarList}\\ \hline
-  {\tt RandVariable} & Generates an object of class {\tt RandVariable}\\ \hline
-  {\tt RealRandVariable} & Generates an object of class {\tt RealRandVariable}
-\end{tabular}
-\caption[Generating Functions of Package {\tt RandVar}]{Generating
-functions of package {\tt RandVar}.}\label{ap.Rpack.RandVar.tab.gen}%
-\end{center}
-\end{table}
-% -----------------------------------------------------------------------
-\par\noindent
-While there are accessor functions for all slots of the newly defined
-{\tt S4} classes, replacement functions are only implemented for those
-slots a user should modify.
-% -----------------------------------------------------------------------
-\par
-Our next goal was that one can use these classes of random variables like
-ordinary numeric vectors or matrices. Hence, we overloaded the {\tt S4}
-group generic functions {\tt Arith} and {\tt Math} as well as matrix
-multiplication {\tt \%*\%}. For the matrix multiplication of {\tt EuclRandVarList}s 
-we additionally introduced the operator {\tt \%m\%}.
-Now, if we have random variables {\tt X} and {\tt Y}, a numerical
-vector {\tt v} and a numerical matrix {\tt M} (with compatible dimensions)
-we can for instance generate
-\begin{Schunk}
-\begin{Sinput}
-> library(RandVar)
-> (X <- RealRandVariable(Map = list(function(x) {
-+     x
-+ }, function(x) {
-+     x^2
-+ }), Domain = Reals(), Range = Reals()))
-\end{Sinput}
-\begin{Soutput}
-An object of class “RealRandVariable” 
-length of Map:	 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-\end{Soutput}
-\begin{Sinput}
-> Map(X)
-\end{Sinput}
-\begin{Soutput}
-[[1]]
-function (x) 
-{
-    x
-}
-
-[[2]]
-function (x) 
-{
-    x^2
-}
-\end{Soutput}
-\begin{Sinput}
-> evalRandVar(X, 2)
-\end{Sinput}
-\begin{Soutput}
-     [,1]
-[1,]    2
-[2,]    4
-\end{Soutput}
-\begin{Sinput}
-> evalRandVar(X, as.matrix(seq(2, 10, 2)))
-\end{Sinput}
-\begin{Soutput}
-, , 1
-
-     [,1] [,2] [,3] [,4] [,5]
-[1,]    2    4    6    8   10
-[2,]    4   16   36   64  100
-\end{Soutput}
-\begin{Sinput}
-> R1 <- exp(X - 1)
-> Map(R1)
-\end{Sinput}
-\begin{Soutput}
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            x
-        }
-        f1(x) - 1
-    }
-    exp(f1(x))
-}
-<environment: 0x8cd175c>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            x^2
-        }
-        f1(x) - 1
-    }
-    exp(f1(x))
-}
-<environment: 0x8cd175c>
-\end{Soutput}
-\begin{Sinput}
-> R2 <- exp(X - 1:2)
-> Map(R2)
-\end{Sinput}
-\begin{Soutput}
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            x
-        }
-        f1(x) - 1L
-    }
-    exp(f1(x))
-}
-<environment: 0x90d97e4>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            x^2
-        }
-        f1(x) - 2L
-    }
-    exp(f1(x))
-}
-<environment: 0x90d97e4>
-\end{Soutput}
-\begin{Sinput}
-> (Y <- RealRandVariable(Map = list(function(x) {
-+     sin(x)
-+ }, function(x) {
-+     cos(x)
-+ }), Domain = Reals(), Range = Reals()))
-\end{Sinput}
-\begin{Soutput}
-An object of class “RealRandVariable” 
-length of Map:	 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-\end{Soutput}
-\begin{Sinput}
-> Map(Y)
-\end{Sinput}
-\begin{Soutput}
-[[1]]
-function (x) 
-{
-    sin(x)
-}
-
-[[2]]
-function (x) 
-{
-    cos(x)
-}
-\end{Soutput}
-\begin{Sinput}
-> R3 <- X %*% Y
-> dimension(R3)
-\end{Sinput}
-\begin{Soutput}
-[1] 1
-\end{Soutput}
-\begin{Sinput}
-> 2 * sin(2) + 2^2 * cos(2)
-\end{Sinput}
-\begin{Soutput}
-[1] 0.1540075
-\end{Soutput}
-\begin{Sinput}
-> (R4 <- X %*% t(Y))
-\end{Sinput}
-\begin{Soutput}
-An object of class “EuclRandMatrix” 
-Dim of Map:	 2 2 
-Domain:	Real Space with dimension 1 
-Range:	Euclidean Space with dimension 1 
-\end{Soutput}
-\begin{Sinput}
-> dimension(R4)
-\end{Sinput}
-\begin{Soutput}
-[1] 4
-\end{Soutput}
-\begin{Sinput}
-> (M <- matrix(c(2 * sin(2), 2^2 * sin(2), 2 * cos(2), 2^2 * cos(2)), 
-+     ncol = 2))
-\end{Sinput}
-\begin{Soutput}
-         [,1]       [,2]
-[1,] 1.818595 -0.8322937
-[2,] 3.637190 -1.6645873
-\end{Soutput}
-\begin{Sinput}
-> (R5 <- M %*% R4)
-\end{Sinput}
-\begin{Soutput}
-An object of class “EuclRandMatrix” 
-Dim of Map:	 2 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-\end{Soutput}
-\end{Schunk}
-We also implemented {\tt S4} methods for the generic function {\tt E} of 
-package {\tt distrEx}~\cite{distr}. That is, given some distribution {\tt D}, 
-respectively some conditional distribution {\tt CD} and some random variable {\tt X}
-we can compute the (conditional) expectation of {\tt X} under {\tt D}, respectively 
-{\tt CD} simply by
-\begin{Schunk}
-\begin{Sinput}
-> D <- Norm()
-> E(object = D, fun = X)
-\end{Sinput}
-\begin{Soutput}
-[1] 2.587378e-16 9.999942e-01
-\end{Soutput}
-\begin{Sinput}
-> E(D)
-\end{Sinput}
-\begin{Soutput}
-[1] 0
-\end{Soutput}
-\begin{Sinput}
-> var(D)
-\end{Sinput}
-\begin{Soutput}
-[1] 1
-\end{Soutput}
-\begin{Sinput}
-> (CD <- LMCondDistribution(theta = 1))
-\end{Sinput}
-\begin{Soutput}
-Distribution object of class: AbscontCondDistribution
-theta :  1 
-intercept :  0 
-scale :  1 
-## cond:
-name:	conditioning by an Euclidean space
-Range:	Euclidean Space with dimension 1
-\end{Soutput}
-\begin{Sinput}
-> E(object = CD, fun = X, cond = 2)
-\end{Sinput}
-\begin{Soutput}
-[1] 2.000000 4.999993
-\end{Soutput}
-\begin{Sinput}
-> E(Norm(mean = 2))
-\end{Sinput}
-\begin{Soutput}
-[1] 2
-\end{Soutput}
-\begin{Sinput}
-> E(Norm(mean = 2), fun = function(x) {
-+     x^2
-+ })
-\end{Sinput}
-\begin{Soutput}
-[1] 4.999993
-\end{Soutput}
-\end{Schunk}
-for some given condition {\tt cond}.
-% -----------------------------------------------------------------------
-\par
-In addition, we define methods for the generic function {\tt show} for the classes
-{\tt RandVariable}, {\tt EuclRandMatrix} and {\tt EuclRandVarList}. There are 
-also methods for the generic functions {\tt dimension} (see package 
-{\tt distr}~\cite{distr}), {\tt length}, {\tt ncol}, {\tt nrow}, {\tt t} and 
-{\tt [} (cf.\ package {\tt base}). For more details we refer to the corresponding 
-help pages.
-% -----------------------------------------------------------------------
-\par
-Finally, we introduce several new generic functions. A brief description
-of these functions is given in Table~\ref{ap.Rpack.RandVar.tab}.
-% -----------------------------------------------------------------------
-\begin{table}[!ht]
-\begin{center}
-\begin{tabular}{p{3.5cm}|p{8cm}}
-  \textbf{Generic Function} & \textbf{Description} \\ \hline\hline
-  \texttt{\%m\%} & matrix multiplication for {\tt EuclRandVarList}s \\ \hline
-  \texttt{compatibleDomains} & test if the domains of two random variables
-                     are compatible \\ \hline
-  \texttt{evalRandVar} & evaluation of random variables\\ \hline
-  \texttt{imageDistr} & image distribution of some distribution under some
-               random variable \\ \hline
-  \texttt{numberOfMaps} & number of functions contained in the slots {\tt Map}
-                 of the members of a {\tt EuclRandVarList}
-\end{tabular}
-\caption[New Generic Functions of Package {\tt RandVar}]
-{New generic functions of package {\tt RandVar} (without accessor
-and replacement functions).}\label{ap.Rpack.RandVar.tab}%
-\end{center}
-\end{table}
-% -----------------------------------------------------------------------
-\par\noindent
-For more details about the full functionality of package {\tt RandVar}
-we refer to the source code and the corresponding help pages, respectively.
-% -----------------------------------------------------------------------
-\section{Odds and Ends}
-% -----------------------------------------------------------------------
-The main issue is to reduce the computation time for methods using
-objects of class {\tt RandVariable} and its subclasses as these classes
-play an important role in the computation of optimally robust
-estimators; confer Kohl~(2005)~\cite{MK:05}.
-In particular, we are looking for ways to increase the computation speed
-of {\tt evalRandVar} and {\tt E}.
-%-------------------------------------------------------------------------------
-\begin{thebibliography}{8}
-
-\bibitem{Cham:98}
-Chambers J.M. 
-\newblock {\em {Programming with data. A guide to the S language}\/}.
-\newblock {Springer}.
-\newblock http://cm.bell-labs.com/stat/Sbook/index.html
-
-\bibitem{Gent:03}
-Gentleman R.
-\newblock {\em Object Orientated Programming. Slides of a Short Course held in Auckland\/}.
-\newblock http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf
-
-\bibitem{MK:05}
-Kohl M. 
-\newblock {\em Numerical Contributions to the Asymptotic Theory of Robustness\/}. 
-\newblock {Dissertation}, Universit\"at Bayreuth. 
-\newblock See also http://stamats.de/ThesisMKohl.pdf
-
-\bibitem{distr}
-Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. 
-\newblock {S4 Classes for Distributions.} 
-\newblock {\em R-News\/}, {\bf 6}(2): 10--13.
-\newblock http://CRAN.R-project.org/doc/Rnews/Rnews\_2006-2.pdf
-\newblock See also {http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/distr.pdf}
-
-\end{thebibliography}
-% -------------------------------------------------------------------------------
-\end{document}
-% -------------------------------------------------------------------------------

Deleted: pkg/RandVar/inst/doc/RandVar.toc
===================================================================
--- pkg/RandVar/inst/doc/RandVar.toc	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RandVar/inst/doc/RandVar.toc	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,3 +0,0 @@
-\contentsline {section}{\numberline {1}{\tt S4} Classes}{2}{section.1}
-\contentsline {section}{\numberline {2}Functions and Methods}{3}{section.2}
-\contentsline {section}{\numberline {3}Odds and Ends}{9}{section.3}

Modified: pkg/RobAStBase/DESCRIPTION
===================================================================
--- pkg/RobAStBase/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,13 +1,12 @@
 Package: RobAStBase
 Version: 0.1.0
-Date: 2008-02-26
+Date: 2008-07-21
 Title: Robust Asymptotic Statistics
 Description: Base S4-classes and functions for robust asymptotic statistics.
 Depends: R(>= 2.6.0), methods, distr(>= 2.0), distrEx(>= 2.0), distrMod(>= 2.0), RandVar(>= 0.6.2)
 Author: Matthias Kohl, Peter Ruckdeschel
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
-SaveImage: no
 LazyLoad: yes
 License: GPL version 2 or later
-URL: http://www.stamats.de/RobASt.htm
+URL: http://robast.r-forge.r-project.org/
 Packaged: Thu Jan  3 20:00:08 2008; btm722

Modified: pkg/RobAStBase/R/AllClass.R
===================================================================
--- pkg/RobAStBase/R/AllClass.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/AllClass.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -53,7 +53,7 @@
 # Weights
 setClass("RobAStControl", representation(name ="character"),
           contains = "VIRTUAL")
-          
+
 setClass("RobWeight", representation(name = "character", weight = "function"), 
           prototype(name = "some weight", weight = function(x) 1))
 setClass("BoundedWeight", representation(clip = "numeric"), 

Modified: pkg/RobAStBase/R/AllGeneric.R
===================================================================
--- pkg/RobAStBase/R/AllGeneric.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/AllGeneric.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -115,7 +115,7 @@
 }
 if(!isGeneric("weight<-")){
     setGeneric("weight<-",
-        function(object, value,  ...) standardGeneric("weight<-"))
+        function(object, value, ...) standardGeneric("weight<-"))
 }
 if(!isGeneric("clip")){
     setGeneric("clip",

Modified: pkg/RobAStBase/R/ContIC.R
===================================================================
--- pkg/RobAStBase/R/ContIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/ContIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -59,7 +59,7 @@
         normtype <-  res$normtype
         biastype <-  res$biastype
         if(is.null(res$w)) res$w <- new("HampelWeight")
-        w <- res$w        
+        w <- res$w
         return(ContIC(
                 name = "IC of contamination type", 
                 CallL2Fam = call("L2ParamFamily", 
@@ -100,8 +100,14 @@
     function(object, value){ 
         stopifnot(is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        clip(w) <- value
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = object at stand, a = object at cent, b = value, d = object at lowerCase,
-                    risk = object at Risks, info = object at Infos)
+                    risk = object at Risks, info = object at Infos, w = w,
+                    normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = ContNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("clip<-", "The clipping bound has been changed")
@@ -112,8 +118,14 @@
     function(object, value){ 
         stopifnot(is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        cent(w) <- as.vector(solve(object at stand) %*% value)
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = object at stand, a = value, b = object at clip, d = object at lowerCase,
-                    risk = object at Risks, info = object at Infos)
+                    risk = object at Risks, info = object at Infos, w = w,
+                    normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = ContNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("cent<-", "The centering constant has been changed")
@@ -124,8 +136,14 @@
     function(object, value){ 
         stopifnot(is.matrix(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        stand(w) <- value
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = value, a = object at cent, b = object at clip, d = object at lowerCase,
-                    risk = object at Risks, info = object at Infos)
+                    risk = object at Risks, info = object at Infos, w = w,
+                    normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = ContNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("stand<-", "The standardizing matrix has been changed")
@@ -137,7 +155,8 @@
         stopifnot(is.null(value)||is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
         res <- list(A = object at stand, a = object at cent, b = object at clip, d = value,
-                    risk = object at Risks, info = object at Infos)
+                    risk = object at Risks, info = object at Infos, w = object at weight,
+                    normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = ContNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("lowerCase<-", "The slot 'lowerCase' has been changed")
@@ -148,7 +167,8 @@
     function(object, value){ 
         L2Fam <- eval(value)
         res <- list(A = object at stand, a = object at cent, b = object at clip, d = object at lowerCase,
-                    risk = object at Risks, info = object at Infos)
+                    risk = object at Risks, info = object at Infos, w = object at weight,
+                    normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = ContNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("CallL2Fam<-", "The slot 'CallL2Fam' has been changed")

Modified: pkg/RobAStBase/R/TotalVarIC.R
===================================================================
--- pkg/RobAStBase/R/TotalVarIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/TotalVarIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -90,8 +90,14 @@
     function(object, value){ 
         stopifnot(is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        clip(w)[1] <- value
+        weight(w) <- getweight(w, neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = object at stand, a = value, b = object at clipUp-value, 
-                    d = object at lowerCase, risk = object at Risks, info = object at Infos)
+                    d = object at lowerCase, risk = object at Risks, info = object at Infos, 
+                    w = w, normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("clipLo<-", "The lower clipping bound has been changed")
@@ -102,8 +108,14 @@
     function(object, value){ 
         stopifnot(is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        clip(w)[2] <- value
+        weight(w) <- getweight(w, neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = object at stand, a = object at clipLo, b = value-object at clipLo, 
-                    d = object at lowerCase, risk = object at Risks, info = object at Infos)
+                    d = object at lowerCase, risk = object at Risks, info = object at Infos, 
+                    w = w, normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("clipUp<-", "The upper clipping bound has been changed")
@@ -114,8 +126,14 @@
     function(object, value){ 
         stopifnot(is.matrix(value))
         L2Fam <- eval(object at CallL2Fam)
+        w <- object at weight
+        stand(w) <- value
+        weight(w) <- getweight(w, neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
+                               biastype = object at biastype, 
+                               normW = object at normtype)
         res <- list(A = value, a = object at clipLo, b = object at clipUp-object@clipLo, 
-                    d = object at lowerCase, risk = object at Risks, info = object at Infos)
+                    d = object at lowerCase, risk = object at Risks, info = object at Infos, 
+                    w = w, normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("stand<-", "The standardizing matrix has been changed")
@@ -127,7 +145,8 @@
         stopifnot(is.null(value)||is.numeric(value))
         L2Fam <- eval(object at CallL2Fam)
         res <- list(A = object at stand, a = object at clipLo, b = object at clipUp-object@clipLo, 
-                    d = value, risk = object at Risks, info = object at Infos)
+                    d = value, risk = object at Risks, info = object at Infos, 
+                    w = object at weight, normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("lowerCase<-", "The slot 'lowerCase' has been changed")
@@ -138,7 +157,8 @@
     function(object, value){ 
         L2Fam <- eval(value)
         res <- list(A = object at stand, a = object at clipLo, b = object at clipUp-object@clipLo, 
-                    d = object at lowerCase, risk = object at Risks, info = object at Infos)
+                    d = object at lowerCase, risk = object at Risks, info = object at Infos, 
+                    w = object at weight, normtype = object at normtype, biastype = object at biastype)
         object <- generateIC(neighbor = TotalVarNeighborhood(radius = object at neighborRadius), 
                              L2Fam = L2Fam, res = res)
         addInfo(object) <- c("CallL2Fam<-", "The slot 'CallL2Fam' has been changed")

Modified: pkg/RobAStBase/R/Weights.R
===================================================================
--- pkg/RobAStBase/R/Weights.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/Weights.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,29 +1,41 @@
-.eq <-function(x,y = 0*x, tol = 1e-7) abs(x-y)<tol
-
 setMethod("name", "RobWeight", function(object) object at name)
-setReplaceMethod("name", "RobWeight", function(object,value) 
-                  {object at name <- value; object})
+setReplaceMethod("name", "RobWeight", 
+    function(object, value){
+        object at name <- value
+        object
+    })
 
 
 setMethod("clip", "BoundedWeight", function(object) object at clip)
-setReplaceMethod("clip", "BoundedWeight", function(object,value) 
-                   {object at clip <- value; object})
+setReplaceMethod("clip", "BoundedWeight", 
+    function(object, value){
+        object at clip <- value
+        object
+    })
 
 
 setMethod("stand", "BdStWeight", function(object) object at stand)
-setReplaceMethod("stand", "BdStWeight", function(object,value) 
-                  {object at stand <- value; object})
+setReplaceMethod("stand", "BdStWeight", 
+    function(object, value){
+        object at stand <- value
+        object
+    })
 
 
 setMethod("cent", "HampelWeight", function(object) object at cent)
-setReplaceMethod("cent", "HampelWeight", function(object,value) 
-                   {object at cent <- value; object})
+setReplaceMethod("cent", "HampelWeight", 
+    function(object, value){
+        object at cent <- value
+        object
+    })
 
 setMethod("weight", "RobWeight", function(object) object at weight)
+setReplaceMethod("weight", "RobWeight", 
+    function(object, value){
+        object at weight <- value
+        object
+    })
 
-setReplaceMethod("weight", "RobWeight", function(object,value)
-        {object at weight <- value; object})
-
 setMethod("getweight",
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
                     biastype = "BiasType"),# normtype = "NormType"),
@@ -104,7 +116,7 @@
                 function(x){
                    y <- A%*%(x-z)
                    norm0 <- fct(normW)(y) 
-                   ind <- 1-.eq(norm0)                   
+                   ind <- 1-.eq(norm0)
                    ind*b/(norm0+1-ind)
                    }
                 }
@@ -124,7 +136,7 @@
                    y <- A*(x-z)
                    indp <- (y>0)
                    ind0 <- .eq(y)
-                   indm <- (y<0)                                                         
+                   indm <- (y<0)
                    indm*b1/(y+ind0) + indp*b2/(y+ind0)
                    }
                 }
@@ -159,7 +171,7 @@
                    y <- A*x
                    indp <- (y>0)
                    ind0 <- .eq(y)
-                   indm <- (y<0)                                                         
+                   indm <- (y<0)
                    indm*b1/(y+ind0) + indp*b2/(y+ind0)
                    }
                 }

Modified: pkg/RobAStBase/R/getRiskIC.R
===================================================================
--- pkg/RobAStBase/R/getRiskIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/getRiskIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -52,8 +52,8 @@
         if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
             stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
 
-        trCov <- getRiskIC(IC, risk = asCov(), L2Fam = L2Fam)$trCov        
-        trCov$value <- sum(diag(std %*% trCov$value))
+        trCov <- getRiskIC(IC, risk = asCov(), L2Fam = L2Fam)$asCov
+        trCov$value <- sum(diag(trCov$value))
 
         prec <- checkIC(IC, L2Fam, out = FALSE)
         if(prec > tol)

Modified: pkg/RobAStBase/R/infoPlot.R
===================================================================
--- pkg/RobAStBase/R/infoPlot.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/R/infoPlot.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -22,7 +22,7 @@
 
             trafo <- L2Fam at param@trafo
             dims <- nrow(trafo)
-            
+
             QFc <- diag(dims)
             if(is(object,"ContIC") & dims>1 )
                {if (is(normtype(object),"QFNorm")) QFc <- QuadForm(normtype(object))
@@ -67,7 +67,7 @@
                 w0 <- options("warn")
                 options(warn = -1)
                 opar <- par()
-                get(getOption("device"))()
+                devNew()
                 par(mfrow = c(nrows, ncols))
                 IC1.i.5 <- QF.5%*%IC1
                 classIC.i.5 <- QFc.5%*%classIC

Modified: pkg/RobAStBase/man/BdStWeight-class.Rd
===================================================================
--- pkg/RobAStBase/man/BdStWeight-class.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/man/BdStWeight-class.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -29,8 +29,10 @@
       accessor function for slot \code{stand}. }
 
     \item{stand<-}{\code{signature(object = "BdStWeight", value = "matrix")}:
-      replacement function for slot \code{stand}. }
-
+      replacement function for slot \code{stand}. This replacement method 
+      should be used with great care, as the slot \code{weight} is not
+      simultaneously updated and hence, this may lead to inconsistent
+      objects.}
   }
 }
 \references{

Modified: pkg/RobAStBase/man/BoundedWeight-class.Rd
===================================================================
--- pkg/RobAStBase/man/BoundedWeight-class.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/man/BoundedWeight-class.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -25,8 +25,10 @@
       accessor function for slot \code{clip}. }
 
     \item{clip<-}{\code{signature(object = "BoundedWeight", value = "numeric")}:
-      replacement function for slot \code{clip}. }
-
+      replacement function for slot \code{clip}. This replacement method 
+      should be used with great care, as the slot \code{weight} is not
+      simultaneously updated and hence, this may lead to inconsistent
+      objects. }
   }
 }
 \references{

Modified: pkg/RobAStBase/man/ContIC-class.Rd
===================================================================
--- pkg/RobAStBase/man/ContIC-class.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/man/ContIC-class.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -59,8 +59,10 @@
 
     \item{\code{weight}:}{ object of class \code{"HampelWeight"}:
       weight function }
+
     \item{\code{biastype}:}{ object of class \code{"BiasType"}:
       bias type (symmetric/onsided/asymmetric) }
+
     \item{\code{normtype}:}{ object of class \code{"NormType"}:
       norm type (Euclidean, information/self-standardized)}
 

Modified: pkg/RobAStBase/man/HampelWeight-class.Rd
===================================================================
--- pkg/RobAStBase/man/HampelWeight-class.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/man/HampelWeight-class.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -31,8 +31,10 @@
       accessor function for slot \code{cent}. }
 
     \item{cent<-}{\code{signature(object = "HampelWeight", value = "matrix")}:
-      replacement function for slot \code{cent}. }
-
+      replacement function for slot \code{cent}. This replacement method 
+      should be used with great care, as the slot \code{weight} is not
+      simultaneously updated and hence, this may lead to inconsistent
+      objects. }
   }
 }
 \references{

Modified: pkg/RobAStBase/man/RobWeight-class.Rd
===================================================================
--- pkg/RobAStBase/man/RobWeight-class.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobAStBase/man/RobWeight-class.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -3,11 +3,11 @@
 \alias{RobWeight-class}
 \alias{name,RobWeight-method}
 \alias{name<-,RobWeight-method}
+\alias{weight}
 \alias{weight,RobWeight-method}
-\alias{weight}
+\alias{weight<-}
 \alias{weight<--methods}
 \alias{weight<-,RobWeight-method}
-\alias{weight<-}
 
 \title{Robust Weight classes}
 \description{Classes for robust weights.}
@@ -25,13 +25,13 @@
     \item{name}{\code{signature(object = "RobWeight")}: 
       accessor function for slot \code{name}. }
 
-    \item{name<-}{\code{signature(object = "RobWeight", value = "character")}: 
+    \item{name<-}{\code{signature(object = "RobWeight")}: 
       replacement function for slot \code{name}. }
 
     \item{weight}{\code{signature(object = "RobWeight")}: 
       accessor function for slot \code{weight}. }
 
-    \item{weight<-}{\code{signature(object = "RobWeight", value = "ANY")}: 
+    \item{weight<-}{\code{signature(object = "RobWeight")}: 
       replacement function for slot \code{weight}. }
   }
 }

Modified: pkg/RobLox/DESCRIPTION
===================================================================
--- pkg/RobLox/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,15 +1,15 @@
 Package: RobLox
 Version: 0.6.0
-Date: 2008-02-26
+Date: 2008-07-21
 Title: Optimally robust influence curves for location and scale
 Description: functions for the determination of optimally 
     robust influence curves in case of normal
     location with unknown scale
 Depends: R(>= 2.6.0), stats, distrMod(>= 2.0.0), RobAStBase(>= 0.1.0)
+Suggests: Biobase
 Author: Matthias Kohl <Matthias.Kohl at stamats.de>
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
-SaveImage: no
 LazyLoad: yes
 License: GPL version 2 or later
-URL: http://www.stamats.de/RobASt.htm
+URL: http://robast.r-forge.r-project.org/
 Packaged: Mon Aug  6 08:07:25 2007; kohl

Modified: pkg/RobLox/R/rlOptIC.R
===================================================================
--- pkg/RobLox/R/rlOptIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/R/rlOptIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -10,11 +10,20 @@
     A <- sd^2*A1
 
     if(computeIC){
+        w <- new("HampelWeight")
+        clip(w) <- b
+        cent(w) <- 0
+        stand(w) <- as.matrix(A)
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                               biastype = symmetricBias(), 
+                               normW = NormType())
+
         return(generateIC(neighbor = ContNeighborhood(radius = r), 
                     L2Fam = NormLocationFamily(mean = mean, sd = sd), 
                     res = list(A = as.matrix(A), a = 0, b = b, d = NULL, 
                                risk = list(asMSE = A, asBias = b, asCov = A - r^2*b^2), 
-                               info = c("rlOptIC", "optimally robust IC for AL estimators and 'asMSE'"))))
+                               info = c("rlOptIC", "optimally robust IC for AL estimators and 'asMSE'"),
+                               w = w, biastype = symmetricBias(), normtype = NormType())))
     }else{
         return(list(A = A, a = 0, b = b))
     }

Modified: pkg/RobLox/R/rlsOptIC_AL.R
===================================================================
--- pkg/RobLox/R/rlsOptIC_AL.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/R/rlsOptIC_AL.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -127,11 +127,20 @@
 
 
     if(computeIC){
+        w <- new("HampelWeight")
+        clip(w) <- b
+        cent(w) <- c(0, a2-1)
+        stand(w) <- A
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                               biastype = symmetricBias(), 
+                               normW = NormType())
+
         return(generateIC(neighbor = ContNeighborhood(radius = r), 
                     L2Fam = NormLocationScaleFamily(mean = mean, sd = sd), 
-                    res = list(A = A, a = a, b = b, d = NULL, 
-                               risk = list(asMSE = mse, asBias = b, asCov = mse - r^2*b^2), 
-                               info = c("rlsOptIC.AL", "optimally robust IC for AL estimators and 'asMSE'"))))
+                    res = list(A = as.matrix(A), a = a, b = b, d = NULL, 
+                               risk = list(asMSE = mse, asBias = b, trAsCov = mse - r^2*b^2), 
+                               info = c("rlOptIC", "optimally robust IC for AL estimators and 'asMSE'"),
+                               w = w, biastype = symmetricBias(), normtype = NormType())))
     }else{
         return(list(A = A, a = a, b = b))
     }

Modified: pkg/RobLox/R/roblox.R
===================================================================
--- pkg/RobLox/R/roblox.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/R/roblox.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -242,11 +242,19 @@
                                           "and 'asMSE'")),
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
             if(returnIC){
+                w <- new("HampelWeight")
+                clip(w) <- b
+                cent(w) <- a/A2
+                stand(w) <- diag(c(A1, A2))
+                weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                 IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                   L2Fam = NormLocationScaleFamily(mean = mean, sd = sd), 
                                   res = list(A = diag(c(A1, A2)), a = a, b = b, d = NULL, 
                                       risk = list(asMSE = mse, asBias = b, asCov = mse - r^2*b^2), 
-                                      info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                      info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                      w = w, biastype = symmetricBias(), normtype = NormType()))
                 return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix, "optIC" = IC1), 
                                  class = c("ALEstimate", "Estimate")))
             }else
@@ -296,11 +304,19 @@
                                   paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
             if(returnIC){
+                w <- new("HampelWeight")
+                clip(w) <- b
+                cent(w) <- a/A2
+                stand(w) <- diag(c(A1, A2))
+                weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                 IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                   L2Fam = NormLocationScaleFamily(mean = mean, sd = sd), 
                                   res = list(A = diag(c(A1, A2)), a = a, b = b, d = NULL, 
                                       risk = list(asMSE = mse, asBias = b, asCov = mse - r^2*b^2), 
-                                      info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                      info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                      w = w, biastype = symmetricBias(), normtype = NormType()))
                 Infos(IC1) <- matrix(c(rep("roblox", 3), 
                                       paste("radius-minimax IC for contamination interval [", 
                                         round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
@@ -315,6 +331,8 @@
         }
     }else{
         if(missing(mean)){
+            if(length(sd) != 1)
+                stop("'sd' has length != 1")
             if(sd <= 0)
                 stop("'sd' has to be positive")
             if(missing(initial.est)){
@@ -341,11 +359,19 @@
                                               "and 'asMSE'")),
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 if(returnIC){
+                    w <- new("HampelWeight")
+                    clip(w) <- b
+                    cent(w) <- 0
+                    stand(w) <- A
+                    weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                     IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                       L2Fam = NormLocationFamily(mean = mean, sd = sd), 
                                       res = list(A = as.matrix(A), a = 0, b = b, d = NULL, 
                                           risk = list(asMSE = A, asBias = b, asCov = b^2), 
-                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                          w = w, biastype = symmetricBias(), normtype = NormType()))
                     return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix, "optIC" = IC1),
                                  class = c("ALEstimate", "Estimate")))
                 }else
@@ -387,11 +413,19 @@
                                       paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 if(returnIC){
+                    w <- new("HampelWeight")
+                    clip(w) <- b
+                    cent(w) <- 0
+                    stand(w) <- A
+                    weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                     IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                       L2Fam = NormLocationFamily(mean = mean, sd = sd), 
                                       res = list(A = as.matrix(A), a = 0, b = b, d = NULL, 
                                           risk = list(asMSE = A, asBias = b, asCov = b^2), 
-                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                          w = w, biastype = symmetricBias(), normtype = NormType()))
                     Infos(IC1) <- matrix(c(rep("roblox", 3), 
                                  paste("radius-minimax IC for contamination interval [", 
                                    round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
@@ -406,6 +440,8 @@
             }
         }
         if(missing(sd)){
+            if(length(mean) != 1)
+                stop("mean has length != 1")
             if(missing(initial.est)){ 
                 sd <- mad(x, na.rm = TRUE)
                 if(sd == 0)
@@ -437,11 +473,19 @@
                                               "and 'asMSE'")),
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 if(returnIC){
+                    w <- new("HampelWeight")
+                    clip(w) <- b
+                    cent(w) <- a/A
+                    stand(w) <- A
+                    weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                     IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                       L2Fam = NormScaleFamily(mean = mean, sd = sd), 
                                       res = list(A = as.matrix(A), a = a, b = b, d = NULL, 
                                           risk = list(asMSE = A, asBias = b, asCov = b^2), 
-                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                          w = w, biastype = symmetricBias(), normtype = NormType()))
                     return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix, "optIC" = IC1),
                                  class = c("ALEstimate", "Estimate")))
                 }else
@@ -485,11 +529,19 @@
                                       paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 if(returnIC){
+                    w <- new("HampelWeight")
+                    clip(w) <- b
+                    cent(w) <- a/A
+                    stand(w) <- A
+                    weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                                       biastype = symmetricBias(), 
+                                       normW = NormType())
                     IC1 <- generateIC(neighbor = ContNeighborhood(radius = r), 
                                       L2Fam = NormScaleFamily(mean = mean, sd = sd), 
                                       res = list(A = as.matrix(A), a = a, b = b, d = NULL, 
                                           risk = list(asMSE = A, asBias = b, asCov = b^2), 
-                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'")))
+                                          info = c("roblox", "optimally robust IC for AL estimators and 'asMSE'"),
+                                          w = w, biastype = symmetricBias(), normtype = NormType()))
                     Infos(IC1) <- matrix(c(rep("roblox", 3), 
                                  paste("radius-minimax IC for contamination interval [", 
                                    round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),

Modified: pkg/RobLox/R/rowRoblox.R
===================================================================
--- pkg/RobLox/R/rowRoblox.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/R/rowRoblox.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -111,8 +111,13 @@
 
     if(missing(mean) && missing(sd)){
         if(missing(initial.est)){
-            mean <- apply(x, 1, median, na.rm = TRUE)
-            sd <- apply(x, 1, mad, na.rm = TRUE)
+            if(require(Biobase)){
+                mean <- rowMedians(x, na.rm = TRUE)
+                sd <- rowMedians(abs(x-mean), na.rm = TRUE)/qnorm(0.75)
+            }else{
+                mean <- apply(x, 1, median, na.rm = TRUE)
+                sd <- apply(abs(x-mean), 1, median, na.rm = TRUE)/qnorm(0.75)
+            }
             if(any(sd == 0))
                 stop("'mad(x, na.rm = TRUE) == 0' => cannot compute a valid initial estimate, 
                       please specify one via 'initial.est'")
@@ -192,7 +197,7 @@
                                   paste("radius-minimax estimates for contamination interval [", 
                                     round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
                                   paste("least favorable contamination: ", round(r/sqrtn, 3), sep = ""),
-                                  paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
+                                  paste("maximum MSE-inefficiency: ", round(ineff[1], 3), sep = "")), 
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
             return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix), 
                              class = c("ALEstimate", "Estimate")))
@@ -201,11 +206,15 @@
         if(missing(mean)){
             if(any(sd <= 0))
                 stop("'sd' has to be positive")
+            if(!is.numeric(sd) || (length(sd) != 1 && length(sd) != nrow(x)))
+                stop("'sd' has wrong dimension")
             if(missing(initial.est)){
-                mean <- apply(x, 1, median, na.rm = TRUE)
+                if(require(Biobase)){
+                    mean <- rowMedians(x, na.rm = TRUE)
+                }else{
+                    mean <- apply(x, 1, median, na.rm = TRUE)
+                }
             }else{
-                if(!is.numeric(sd) || (length(sd) != 1 && length(sd) != nrow(x)))
-                    stop("'sd' has wrong dimension")
                 if(!is.numeric(initial.est) || length(initial.est) != nrow(x))
                     stop("'initial.est' has wrong dimension")
                 mean <- initial.est
@@ -220,8 +229,8 @@
                     A <- sd^2*.getA.loc(r)
                     b <- sd*.getb.loc(r)
                 }
-                robEst <- .kstep.loc.matrix(x = x, initial.est = mean, A = A, b = b, sd = sd, k = k)
-                names(robEst) <- c("mean")
+                robEst <- as.matrix(.kstep.loc.matrix(x = x, initial.est = mean, A = A, b = b, sd = sd, k = k))
+                colnames(robEst) <- "mean"
                 Info.matrix <- matrix(c("roblox", 
                                         paste("optimally robust estimates for contamination 'eps' =", round(eps, 3),
                                               "and 'asMSE'")),
@@ -255,27 +264,32 @@
                         ineff <- (A - b^2*(r^2 - rlo^2))/Alo
                     }
                 }
-                robEst <- .kstep.loc.matrix(x = x, initial.est = mean, A = A, b = b, sd = sd, k = k)
-                names(robEst) <- c("mean")
+                robEst <- as.matrix(.kstep.loc.matrix(x = x, initial.est = mean, A = A, b = b, sd = sd, k = k))
+                colnames(robEst) <- "mean"
                 Info.matrix <- matrix(c(rep("roblox", 3), 
                                       paste("radius-minimax estimates for contamination interval [", 
                                         round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
                                       paste("least favorable contamination: ", round(r/sqrtn, 3), sep = ""),
-                                      paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
+                                      paste("maximum MSE-inefficiency: ", round(ineff[1], 3), sep = "")), 
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix), 
                                  class = c("ALEstimate", "Estimate")))
             }
         }
         if(missing(sd)){
-            if(missing(initial.est)){ 
-                sd <- apply(x, 1, mad, na.rm = TRUE)
+            if(!is.numeric(mean) || (length(mean) != 1 && length(mean) != nrow(x)))
+                stop("'mean' has wrong dimension")
+            if(missing(initial.est)){
+                if(require(Biobase)){
+                    M <- rowMedians(x, na.rm = TRUE)
+                    sd <- rowMedians(abs(x-M), na.rm = TRUE)/qnorm(0.75)
+                }else{
+                    sd <- apply(x, 1, mad, na.rm = TRUE)
+                }
                 if(any(sd == 0))
                   stop("'mad(x, na.rm = TRUE) == 0' => cannot compute a valid initial estimate, 
                        please specify one via 'initial.est'")
             }else{
-                if(!is.numeric(mean) || (length(mean) != 1 && length(mean) != nrow(x)))
-                    stop("'mean' has wrong dimension")
                 if(!is.numeric(initial.est) || length(initial.est) != nrow(x))
                     stop("'initial.est' has wrong dimension")
                 sd <- initial.est
@@ -294,8 +308,8 @@
                     a <- sd*.geta.sc(r)
                     b <- sd*.getb.sc(r)
                 }
-                robEst <- .kstep.sc.matrix(x = x, initial.est = sd, A = A, a = a, b = b, mean = mean, k = k)
-                names(robEst) <- c("sd")
+                robEst <- as.matrix(.kstep.sc.matrix(x = x, initial.est = sd, A = A, a = a, b = b, mean = mean, k = k))
+                colnames(robEst) <- "sd"
                 Info.matrix <- matrix(c("roblox", 
                                         paste("optimally robust estimates for contamination 'eps' =", round(eps, 3),
                                               "and 'asMSE'")),
@@ -331,13 +345,13 @@
                         ineff <- (A - b^2*(r^2 - rlo^2))/Alo
                     }
                 }
-                robEst <- .kstep.sc.matrix(x = x, initial.est = sd, A = A, a = a, b = b, mean = mean, k = k)
-                names(robEst) <- c("sd")
+                robEst <- as.matrix(.kstep.sc.matrix(x = x, initial.est = sd, A = A, a = a, b = b, mean = mean, k = k))
+                colnames(robEst) <- "sd"
                 Info.matrix <- matrix(c(rep("roblox", 3), 
                                       paste("radius-minimax estimates for contamination interval [", 
                                         round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
                                       paste("least favorable contamination: ", round(r/sqrtn, 3), sep = ""),
-                                      paste("maximum MSE-inefficiency: ", round(ineff, 3), sep = "")), 
+                                      paste("maximum MSE-inefficiency: ", round(ineff[1], 3), sep = "")), 
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
                 return(structure(list("estimate" = robEst, "steps" = k, "Infos" = Info.matrix), 
                                  class = c("ALEstimate", "Estimate")))

Modified: pkg/RobLox/R/rsOptIC.R
===================================================================
--- pkg/RobLox/R/rsOptIC.R	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/R/rsOptIC.R	2008-07-24 17:07:22 UTC (rev 125)
@@ -62,11 +62,20 @@
     A <- sd^2*A1
 
     if(computeIC){
+        w <- new("HampelWeight")
+        clip(w) <- b
+        cent(w) <- z-1
+        stand(w) <- as.matrix(A)
+        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
+                               biastype = symmetricBias(), 
+                               normW = NormType())
+
         return(generateIC(neighbor = ContNeighborhood(radius = r), 
-                    L2Fam = NormScaleFamily(mean = mean, sd = sd), 
+                    L2Fam = NormScaleFamily(sd = sd, mean = mean), 
                     res = list(A = as.matrix(A), a = a, b = b, d = NULL, 
                                risk = list(asMSE = A, asBias = b, asCov = A - r^2*b^2), 
-                               info = c("rsOptIC", "optimally robust IC for AL estimators and 'asMSE'"))))
+                               info = c("rlOptIC", "optimally robust IC for AL estimators and 'asMSE'"),
+                               w = w, biastype = symmetricBias(), normtype = NormType())))
     }else{
         return(list(A = A, a = a, b = b))
     }

Modified: pkg/RobLox/man/roblox.Rd
===================================================================
--- pkg/RobLox/man/roblox.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/man/roblox.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -90,8 +90,7 @@
 
 ## amount of gross errors known
 res1 <- roblox(x, eps = 0.05, returnIC = TRUE)
-res1$mean
-res1$sd
+res1$estimate
 res1$optIC
 checkIC(res1$optIC)
 Risks(res1$optIC)
@@ -101,8 +100,7 @@
 
 ## amount of gross errors unknown
 res2 <- roblox(x, eps.lower = 0.01, eps.upper = 0.1, returnIC = TRUE)
-res2$mean
-res2$sd
+res2$estimate
 res2$optIC
 checkIC(res2$optIC)
 Risks(res2$optIC)
@@ -118,10 +116,10 @@
 c(median(x), mad(x))
 
 # optimally robust (amount of gross errors known)
-c(res1$mean, res1$sd)
+res1$estimate
 
 # optimally robust (amount of gross errors unknown)
-c(res2$mean, res2$sd)
+res2$estimate
 
 # Kolmogorov(-Smirnov) minimum distance estimator (robust)
 (ks.est <- MDEstimator(x, ParamFamily = NormLocationScaleFamily(), distance = KolmogorovDist))

Modified: pkg/RobLox/man/rowRoblox.Rd
===================================================================
--- pkg/RobLox/man/rowRoblox.Rd	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobLox/man/rowRoblox.Rd	2008-07-24 17:07:22 UTC (rev 125)
@@ -33,8 +33,10 @@
   scale with location specified, or both if neither is specified. The computation
   uses a k-step construction with an appropriate initial estimate for location
   or scale or location and scale, respectively. Valid candidates are e.g. 
-  median and/or MAD (default) as well as Kolmogorov(-Smirnov) or von Mises minimum 
-  distance estimators; cf. Rieder (1994) and Kohl (2005).
+  median and/or MAD (default) as well as Kolmogorov(-Smirnov) or Cram\'er von 
+  Mises minimum distance estimators; cf. Rieder (1994) and Kohl (2005). In case 
+  package Biobase from Bioconductor is installed as is suggested, 
+  median and/or MAD are computed using function \code{rowMedians}.
 
   These functions are optimized for the situation where one has a matrix 
   and wants to compute the optimally robust estimator for every row, 
@@ -44,7 +46,7 @@
   If the amount of gross errors (contamination) is known, it can be 
   specified by \code{eps}. The radius of the corresponding infinitesimal 
   contamination neighborhood is obtained by multiplying \code{eps} 
-  by the square root of the sample size. 
+  by the square root of the sample size.
 
   If the amount of gross errors (contamination) is unknown, try to find a 
   rough estimate for the amount of gross errors, such that it lies 
@@ -64,7 +66,8 @@
   In case of location, respectively scale one additionally has to specify
   \code{sd}, respectively \code{mean} where \code{sd} and \code{mean} can
   be a single number, i.e., identical for all rows, respectively columns,
-  or a vector, i.e., different for all rows, respectively columns.
+  or a vector with length identical to the number of rows, respectively 
+  columns.
 }
 \value{
   An object of S3-class \code{"ALEstimate"} which inherits from 

Modified: pkg/RobRex/DESCRIPTION
===================================================================
--- pkg/RobRex/DESCRIPTION	2008-07-24 16:57:59 UTC (rev 124)
+++ pkg/RobRex/DESCRIPTION	2008-07-24 17:07:22 UTC (rev 125)
@@ -1,6 +1,6 @@
 Package: RobRex
-Version: 0.5.0
-Date: 2007-07-30
+Version: 0.6.0
+Date: 2008-07-21
 Title: Optimally robust influence curves for regression and scale
 Description: functions for the determination of optimally 
     robust influence curves in case of linear regression 
@@ -9,8 +9,7 @@
 Depends: R (>= 2.4.0), ROptRegTS(>= 0.5.0)
 Author: Matthias Kohl <Matthias.Kohl at stamats.de>
 Maintainer: Matthias Kohl <Matthias.Kohl at stamats.de>
-SaveImage: no
 LazyLoad: yes
 License: GPL version 2 or later
 URL: http://www.stamats.de/RobASt.htm
-Packaged: Mon Aug  6 08:18:03 2007; kohl
+Packaged: Mon Aug  6 08:18:03 2007; kohl



More information about the Robast-commits mailing list