[Robast-commits] r124 - branches/robast-0.6/pkg/ROptEst/inst/scripts
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Jul 24 18:57:59 CEST 2008
Author: stamats
Date: 2008-07-24 18:57:59 +0200 (Thu, 24 Jul 2008)
New Revision: 124
Modified:
branches/robast-0.6/pkg/ROptEst/inst/scripts/UnderOverShootRisk.R
Log:
adapted to new implementation
Modified: branches/robast-0.6/pkg/ROptEst/inst/scripts/UnderOverShootRisk.R
===================================================================
--- branches/robast-0.6/pkg/ROptEst/inst/scripts/UnderOverShootRisk.R 2008-07-24 14:59:51 UTC (rev 123)
+++ branches/robast-0.6/pkg/ROptEst/inst/scripts/UnderOverShootRisk.R 2008-07-24 16:57:59 UTC (rev 124)
@@ -12,10 +12,10 @@
N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0))
N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = 0))
-system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)))
checkIC(IC0c)
Risks(IC0c)
-system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)))
checkIC(IC0v)
Risks(IC0v)
@@ -23,22 +23,22 @@
N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 2*tau*1/sqrt(2*pi)))
N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = tau*1/sqrt(2*pi)))
-system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0c <- optIC(model=N0.Rob1, risk=asUnOvShoot(width = tau)))
checkIC(IC0c)
Risks(IC0c)
-system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)), gcFirst = TRUE)
+system.time(IC0v <- optIC(model=N0.Rob2, risk=asUnOvShoot(width = tau)))
checkIC(IC0v)
Risks(IC0v)
-# L_2 family + infinitesimal resp. fixed neighborhood
+## L_2 family + infinitesimal resp. fixed neighborhood
rad <- 0.5
N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = rad))
N0.Rob2 <- InfRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = rad/2))
N0.Rob3 <- FixRobModel(center = N0, neighbor = ContNeighborhood(radius = rad/sqrt(n)))
N0.Rob4 <- FixRobModel(center = N0, neighbor = TotalVarNeighborhood(radius = rad/2/sqrt(n)))
-# asUnOvShoot solution
+## asUnOvShoot solution
N0.IC1 <- optIC(model = N0.Rob1, risk = asUnOvShoot(width = tau))
checkIC(N0.IC1)
Risks(N0.IC1)
@@ -49,7 +49,7 @@
Risks(N0.IC2)
plot(N0.IC2)
-# fiUnOvShoot solution
+## fiUnOvShoot solution
N0.IC3 <- optIC(model=N0.Rob3, risk=fiUnOvShoot(width = tau/sqrt(n)), sampleSize = n)
checkIC(N0.IC3)
Risks(N0.IC3)
@@ -60,8 +60,8 @@
Risks(N0.IC4)
plot(N0.IC4)
-# O(n^(-0.5))-corrected solution
-# in case of contamination neighborhoods
+## O(n^(-0.5))-corrected solution
+## in case of contamination neighborhoods
N0.IC5 <- N0.IC1
clipUp1 <- clipUp(N0.IC1)/as.vector(stand(N0.IC1))
clipUp5 <- max(0, clipUp1 - rad*(rad + clipUp1*tau)/(sqrt(n)*2*tau*pnorm(-clipUp1)))
@@ -75,8 +75,8 @@
getRiskIC(N0.IC5, asUnOvShoot(width = tau), ContNeighborhood(radius=rad))
getRiskIC(N0.IC5, fiUnOvShoot(width = tau/sqrt(n)), ContNeighborhood(radius=rad/sqrt(n)), sampleSize = n)
-# O(n^(-1))-corrected solution
-# in case of total variation neighborhoods
+## O(n^(-1))-corrected solution
+## in case of total variation neighborhoods
N0.IC6 <- N0.IC2
clipUp2 <- clipUp(N0.IC2)/as.vector(stand(N0.IC2))
clipUp6 <- max(0, clipUp2 - tau*(2*clipUp2^2*rad/2 + tau*dnorm(clipUp2))/(6*n*pnorm(-clipUp2)))
@@ -99,25 +99,25 @@
## 2. M estimation
N0.Rob5 <- InfRobModel(center = NormLocationFamily(mean = 0),
- neighbor = ContNeighborhood(radius = 0.5))
+ neighbor = ContNeighborhood(radius = 0.5))
N0.IC7 <- optIC(model=N0.Rob5, risk=asUnOvShoot(width = 1.960))
(Mest1 <- locMEstimator(X, IC=N0.IC7))
N0.Rob6 <- FixRobModel(center = NormLocationFamily(mean = 0),
- neighbor = ContNeighborhood(radius = 0.05))
-N0.IC8 <- optIC(model = N0.Rob6, risk=fiUnOvShoot(width = 0.196), sampleSize = 1e2)
+ neighbor = ContNeighborhood(radius = 0.05))
+N0.IC8 <- optIC(model = N0.Rob6, risk=fiUnOvShoot(width = 1.960/sqrt(n)), sampleSize = 1e2)
(Mest2 <- locMEstimator(X, IC=N0.IC8))
## 3. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- ksEstimator(x=X, Norm(), param = "mean"))
+(est0 <- MDEstimator(x=X, NormLocationFamily(), interval = c(-5, 5)))
## 4. one-step estimation
-N0.Rob7 <- InfRobModel(center = NormLocationFamily(mean = est0$mean),
- neighbor = ContNeighborhood(radius=0.5))
+N0.Rob7 <- InfRobModel(center = NormLocationFamily(mean = est0$estimate),
+ neighbor = ContNeighborhood(radius=0.5))
N0.IC9 <- optIC(model=N0.Rob7, risk=asUnOvShoot(width = 1.960))
-(est1 <- oneStepEstimator(X, IC = N0.IC9, start = est0$mean))
-N0.Rob8 <- FixRobModel(center = NormLocationFamily(mean = est0$mean),
- neighbor = ContNeighborhood(radius=0.05))
-N0.IC10 <- optIC(model=N0.Rob8, risk=fiUnOvShoot(width = 0.196), sampleSize = 1e2)
-(est2 <- oneStepEstimator(X, IC = N0.IC10, start = est0$mean))
+(est1 <- oneStepEstimator(X, IC = N0.IC9, start = est0$estimate))
+N0.Rob8 <- FixRobModel(center = NormLocationFamily(mean = est0$estimate),
+ neighbor = ContNeighborhood(radius=0.05))
+N0.IC10 <- optIC(model=N0.Rob8, risk=fiUnOvShoot(width = 1.960/sqrt(n)), sampleSize = 1e2)
+(est2 <- oneStepEstimator(X, IC = N0.IC10, start = est0$estimate))
More information about the Robast-commits
mailing list