[Returnanalytics-commits] r3970 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Aug 20 00:32:58 CEST 2015
Author: dacharya
Date: 2015-08-20 00:32:58 +0200 (Thu, 20 Aug 2015)
New Revision: 3970
Modified:
pkg/Dowd/R/AdjustedNormalVaRHotspots.R
Log:
Error message to be displayed changed.
Modified: pkg/Dowd/R/AdjustedNormalVaRHotspots.R
===================================================================
--- pkg/Dowd/R/AdjustedNormalVaRHotspots.R 2015-08-19 22:32:33 UTC (rev 3969)
+++ pkg/Dowd/R/AdjustedNormalVaRHotspots.R 2015-08-19 22:32:58 UTC (rev 3970)
@@ -1,85 +1,85 @@
-#' @title Hotspots for VaR adjusted by Cornish-Fisher correction
-#'
-#' @description Estimates the VaR hotspots (or vector of incremental VaRs) for a
-#' portfolio with portfolio return adjusted for non-normality by Cornish-Fisher
-#' corerction, for specified confidence level and holding period.
-#'
-#' @param vc.matrix Variance covariance matrix for returns
-#' @param mu Vector of expected position returns
-#' @param skew Return skew
-#' @param kurtosis Return kurtosis
-#' @param positions Vector of positions
-#' @param cl Confidence level and is scalar
-#' @param hp Holding period and is scalar
-#'
-#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
-#'
-#' @author Dinesh Acharya
-#'
-#' @examples
-#'
-#' # Hotspots for ES for randomly generated portfolio
-#' vc.matrix <- matrix(rnorm(16),4,4)
-#' mu <- rnorm(4)
-#' skew <- .5
-#' kurtosis <- 1.2
-#' positions <- c(5,2,6,10)
-#' cl <- .95
-#' hp <- 280
-#' AdjustedNormalVaRHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
-#'
-#' @export
-AdjustedNormalVaRHotspots <- function(vc.matrix, mu, skew, kurtosis, positions, cl, hp){
-
- # Check that positions vector read as a scalar or row vector
- positions <- as.matrix(positions)
- if (dim(positions)[1] > dim(positions)[2]){
- positions <- t(positions)
- }
-
- # Check that expected returns vector is read as a scalar or row vector
- mu <- as.matrix(mu)
- if (dim(mu)[1] > dim(mu)[2]){
- mu <- t(mu)
- }
-
- # Check that dimensions are correct
- if (max(dim(mu)) != max(dim(positions))){
- stop("Positions vector and expected returns vector must have same size")
- }
- vc.matrix <- as.matrix(vc.matrix)
- if (max(dim(vc.matrix)) != max(dim(positions))){
- stop("Positions vector and expected returns vector must have same size")
- }
-
- # Check that inputs obey sign and value restrictions
- if (cl >= 1){
- stop("Confidence level must be less than 1")
- }
- if (cl <= 0){
- stop("Confidence level must be greater than 0");
- }
- if (hp <= 0){
- stop("Holding period must be greater than 0");
- }
-
- # VaR and ES estimation
- z <- qnorm(1 - cl, 0 ,1)
- sigma <- positions %*% vc.matrix %*% t(positions)/(sum(positions)^2) # Initial standard deviation of portfolio returns
- adjustment <- (1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
- VaR <- - mu %*% t(positions) * hp - (z + adjustment) * sigma * (sum(positions)^2) * sqrt(hp)
-
- # VaR
- x <- double(length(positions))
- sigma <- double(length(positions))
- iVaR <- double(length(positions))
- for (i in 1:length(positions)){
- x <- positions
- x[i] <- 0
- sigma[i] <- x %*% vc.matrix %*% t(x)/sum(x)^2 # standard deviation of portfolio returns
- iVaR[i] <- VaR + mu %*% t(x) %*% hp + (z + adjustment) * sigma[i] * (sum(x))^2 * sqrt(hp) # Incremental VaR
- }
- y <- iVaR
- return(y)
-
+#' @title Hotspots for VaR adjusted by Cornish-Fisher correction
+#'
+#' @description Estimates the VaR hotspots (or vector of incremental VaRs) for a
+#' portfolio with portfolio return adjusted for non-normality by Cornish-Fisher
+#' corerction, for specified confidence level and holding period.
+#'
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param skew Return skew
+#' @param kurtosis Return kurtosis
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#'
+#' @examples
+#'
+#' # Hotspots for ES for randomly generated portfolio
+#' vc.matrix <- matrix(rnorm(16),4,4)
+#' mu <- rnorm(4)
+#' skew <- .5
+#' kurtosis <- 1.2
+#' positions <- c(5,2,6,10)
+#' cl <- .95
+#' hp <- 280
+#' AdjustedNormalVaRHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+#'
+#' @export
+AdjustedNormalVaRHotspots <- function(vc.matrix, mu, skew, kurtosis, positions, cl, hp){
+
+ # Check that positions vector read as a scalar or row vector
+ positions <- as.matrix(positions)
+ if (dim(positions)[1] > dim(positions)[2]){
+ positions <- t(positions)
+ }
+
+ # Check that expected returns vector is read as a scalar or row vector
+ mu <- as.matrix(mu)
+ if (dim(mu)[1] > dim(mu)[2]){
+ mu <- t(mu)
+ }
+
+ # Check that dimensions are correct
+ if (max(dim(mu)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+ vc.matrix <- as.matrix(vc.matrix)
+ if (max(dim(vc.matrix)) != max(dim(positions))){
+ stop("Positions vector and variance-covariance matrix must have compatible dimensions.")
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (cl >= 1){
+ stop("Confidence level must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level must be greater than 0");
+ }
+ if (hp <= 0){
+ stop("Holding period must be greater than 0");
+ }
+
+ # VaR and ES estimation
+ z <- qnorm(1 - cl, 0 ,1)
+ sigma <- positions %*% vc.matrix %*% t(positions)/(sum(positions)^2) # Initial standard deviation of portfolio returns
+ adjustment <- (1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
+ VaR <- - mu %*% t(positions) * hp - (z + adjustment) * sigma * (sum(positions)^2) * sqrt(hp)
+
+ # VaR
+ x <- double(length(positions))
+ sigma <- double(length(positions))
+ iVaR <- double(length(positions))
+ for (i in 1:length(positions)){
+ x <- positions
+ x[i] <- 0
+ sigma[i] <- x %*% vc.matrix %*% t(x)/sum(x)^2 # standard deviation of portfolio returns
+ iVaR[i] <- VaR + mu %*% t(x) %*% hp + (z + adjustment) * sigma[i] * (sum(x))^2 * sqrt(hp) # Incremental VaR
+ }
+ y <- iVaR
+ return(y)
+
}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list