[Returnanalytics-commits] r3969 - pkg/Dowd/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Aug 20 00:32:34 CEST 2015


Author: dacharya
Date: 2015-08-20 00:32:33 +0200 (Thu, 20 Aug 2015)
New Revision: 3969

Modified:
   pkg/Dowd/R/AdjustedNormalESHotspots.R
Log:
Error message to be displayed changed.

Modified: pkg/Dowd/R/AdjustedNormalESHotspots.R
===================================================================
--- pkg/Dowd/R/AdjustedNormalESHotspots.R	2015-08-16 12:54:50 UTC (rev 3968)
+++ pkg/Dowd/R/AdjustedNormalESHotspots.R	2015-08-19 22:32:33 UTC (rev 3969)
@@ -1,114 +1,114 @@
-#' @title Hotspots for ES adjusted by Cornish-Fisher correction
-#' 
-#' @description Estimates the ES hotspots (or vector of incremental ESs) for a 
-#' portfolio with portfolio return adjusted for non-normality by Cornish-Fisher 
-#' corerction, for specified confidence level and holding period.
-#' 
-#' @param vc.matrix Variance covariance matrix for returns
-#' @param mu Vector of expected position returns
-#' @param skew Return skew
-#' @param kurtosis Return kurtosis
-#' @param positions Vector of positions
-#' @param cl Confidence level and is scalar
-#' @param hp Holding period and is scalar
-#' 
-#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
-#' 
-#' @author Dinesh Acharya
-#' 
-#' @examples
-#' 
-#'    # Hotspots for ES for randomly generated portfolio
-#'    vc.matrix <- matrix(rnorm(16),4,4)
-#'    mu <- rnorm(4)
-#'    skew <- .5
-#'    kurtosis <- 1.2
-#'    positions <- c(5,2,6,10)
-#'    cl <- .95
-#'    hp <- 280
-#'    AdjustedNormalESHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
-#' 
-#' @export
-AdjustedNormalESHotspots <- function(vc.matrix, mu, skew, kurtosis, positions,
-                                    cl, hp){
-  
-  # Check that positions vector read as a scalar or row vector
-  positions <- as.matrix(positions)
-  if (dim(positions)[1] > dim(positions)[2]){
-    positions <- t(positions)
-  }
-  
-  # Check that expected returns vector is read as a scalar or row vector
-  mu <- as.matrix(mu)
-  if (dim(mu)[1] > dim(mu)[2]){
-    mu <- t(mu)
-  }
-  
-  # Check that dimensions are correct
-  if (max(dim(mu)) != max(dim(positions))){
-    stop("Positions vector and expected returns vector must have same size")
-  }
-  if (max(dim(vc.matrix)) != max(dim(positions))){
-    stop("Positions vector and expected returns vector must have same size")
-  }
-  
-  # Check that inputs obey sign and value restrictions
-  if (cl >= 1){
-    stop("Confidence level must be less than 1")
-  }
-  if (cl <= 0){
-    stop("Confidence level must be greater than 0");
-  }
-  if (hp <= 0){
-    stop("Holding period must be greater than 0");
-  }
-  
-  # VaR and ES estimation
-  # Begin with portfolio ES
-  z <- qnorm(1 - cl, 0 ,1)
-  sigma <- positions %*% vc.matrix %*% t(positions)/(sum(positions)^2) # Initial 
-  # standard deviation of portfolio returns
-  adjustment <- (1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
-    (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
-  VaR <- - mu %*% t(positions) * hp - (z + adjustment) * sigma * 
-    (sum(positions)^2) * sqrt(hp) # Initial VaR
-  n <- 1000 # Number of slives into which tail is divided
-  cl0 <- cl # Initial confidence level
-  term <- VaR
-  delta.cl <- (1 - cl) / n # Increment to confidence level
-  for (k in 1:(n - 1)) {
-    cl <- cl0 + k * delta.cl # Revised cl
-    z <- qnorm(1 - cl, 0, 1)
-    adjustment=(1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
-      (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
-    term <- term - mu %*% t(positions) * hp - (z + adjustment) * sigma * 
-      (sum(positions)^2) * sqrt(hp)
-  }
-  portfolio.ES <- term/n
-  
-  # Portfolio ES
-  es <- double(length(positions))
-  ies <- double(length(positions))
-  for (j in 1:length(positions)) {
-    x <- positions
-    x[j] <- 0
-    sigma <- x %*% vc.matrix %*% t(x) / (sum(x)^2)
-    term[j] <- - mu %*% t(x) * hp - qnorm(1-cl, 0, 1) * x %*% 
-      vc.matrix %*% t(x) * sqrt(hp)
-    
-    for (k in 1:(n - 1)){
-      cl <- cl0 + k * delta.cl # Revised cl
-      z <- qnorm(1-cl, 0, 1)
-      adjustment=(1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
-        (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
-      term[j] <- term[j] - mu %*% t(positions) * hp - (z + adjustment) * 
-        sigma * (sum(positions)^2) * sqrt(hp)
-    }
-    es[j] <- term[j]/n # ES on portfolio minus position j
-    ies [j] <- portfolio.ES - es[j] # Incremental ES
-    
-  }
-  y <- ies
-  return(ies)
-  
-}
+#' @title Hotspots for ES adjusted by Cornish-Fisher correction
+#' 
+#' @description Estimates the ES hotspots (or vector of incremental ESs) for a 
+#' portfolio with portfolio return adjusted for non-normality by Cornish-Fisher 
+#' corerction, for specified confidence level and holding period.
+#' 
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param skew Return skew
+#' @param kurtosis Return kurtosis
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#' 
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#' 
+#' @author Dinesh Acharya
+#' 
+#' @examples
+#' 
+#'    # Hotspots for ES for randomly generated portfolio
+#'    vc.matrix <- matrix(rnorm(16),4,4)
+#'    mu <- rnorm(4)
+#'    skew <- .5
+#'    kurtosis <- 1.2
+#'    positions <- c(5,2,6,10)
+#'    cl <- .95
+#'    hp <- 280
+#'    AdjustedNormalESHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+#' 
+#' @export
+AdjustedNormalESHotspots <- function(vc.matrix, mu, skew, kurtosis, positions,
+                                    cl, hp){
+  
+  # Check that positions vector read as a scalar or row vector
+  positions <- as.matrix(positions)
+  if (dim(positions)[1] > dim(positions)[2]){
+    positions <- t(positions)
+  }
+  
+  # Check that expected returns vector is read as a scalar or row vector
+  mu <- as.matrix(mu)
+  if (dim(mu)[1] > dim(mu)[2]){
+    mu <- t(mu)
+  }
+  
+  # Check that dimensions are correct
+  if (max(dim(mu)) != max(dim(positions))){
+    stop("Positions vector and expected returns vector must have same size.")
+  }
+  if (max(dim(vc.matrix)) != max(dim(positions))){
+    stop("Positions vector and variance-covariance matrix must have compatible dimensions.")
+  }
+  
+  # Check that inputs obey sign and value restrictions
+  if (cl >= 1){
+    stop("Confidence level must be less than 1")
+  }
+  if (cl <= 0){
+    stop("Confidence level must be greater than 0");
+  }
+  if (hp <= 0){
+    stop("Holding period must be greater than 0");
+  }
+  
+  # VaR and ES estimation
+  # Begin with portfolio ES
+  z <- qnorm(1 - cl, 0 ,1)
+  sigma <- positions %*% vc.matrix %*% t(positions)/(sum(positions)^2) # Initial 
+  # standard deviation of portfolio returns
+  adjustment <- (1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
+    (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
+  VaR <- - mu %*% t(positions) * hp - (z + adjustment) * sigma * 
+    (sum(positions)^2) * sqrt(hp) # Initial VaR
+  n <- 1000 # Number of slives into which tail is divided
+  cl0 <- cl # Initial confidence level
+  term <- VaR
+  delta.cl <- (1 - cl) / n # Increment to confidence level
+  for (k in 1:(n - 1)) {
+    cl <- cl0 + k * delta.cl # Revised cl
+    z <- qnorm(1 - cl, 0, 1)
+    adjustment=(1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
+      (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
+    term <- term - mu %*% t(positions) * hp - (z + adjustment) * sigma * 
+      (sum(positions)^2) * sqrt(hp)
+  }
+  portfolio.ES <- term/n
+  
+  # Portfolio ES
+  es <- double(length(positions))
+  ies <- double(length(positions))
+  for (j in 1:length(positions)) {
+    x <- positions
+    x[j] <- 0
+    sigma <- x %*% vc.matrix %*% t(x) / (sum(x)^2)
+    term[j] <- - mu %*% t(x) * hp - qnorm(1-cl, 0, 1) * x %*% 
+      vc.matrix %*% t(x) * sqrt(hp)
+    
+    for (k in 1:(n - 1)){
+      cl <- cl0 + k * delta.cl # Revised cl
+      z <- qnorm(1-cl, 0, 1)
+      adjustment=(1 / 6) * (z ^ 2 - 1) * skew + (1 / 24) * (z ^ 3 - 3 * z) * 
+        (kurtosis - 3) - (1 / 36) * (2 * z ^ 3 - 5 * z) * skew ^ 2
+      term[j] <- term[j] - mu %*% t(positions) * hp - (z + adjustment) * 
+        sigma * (sum(positions)^2) * sqrt(hp)
+    }
+    es[j] <- term[j]/n # ES on portfolio minus position j
+    ies [j] <- portfolio.ES - es[j] # Incremental ES
+    
+  }
+  y <- ies
+  return(ies)
+  
+}



More information about the Returnanalytics-commits mailing list