[Returnanalytics-commits] r3950 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Aug 13 11:59:29 CEST 2015
Author: dacharya
Date: 2015-08-13 11:59:29 +0200 (Thu, 13 Aug 2015)
New Revision: 3950
Added:
pkg/Dowd/R/NormalESHotspots.R
Log:
Function NormalESHotspot.R added.
Added: pkg/Dowd/R/NormalESHotspots.R
===================================================================
--- pkg/Dowd/R/NormalESHotspots.R (rev 0)
+++ pkg/Dowd/R/NormalESHotspots.R 2015-08-13 09:59:29 UTC (rev 3950)
@@ -0,0 +1,97 @@
+#' @title Hotspots for normal ES
+#'
+#' @description Estimates the ES hotspots (or vector of incremental ESs) for a
+#' portfolio assuming individual asset returns are normally distributed, for
+#' specified confidence level and holding period.
+#'
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#' @return Hotspots for normal ES
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#'
+#' @examples
+#'
+#' # Hotspots for ES for randomly generated portfolio
+#' vc.matrix <- matrix(rnorm(16),4,4)
+#' mu <- rnorm(4,.08,.04)
+#' skew <- .5
+#' kurtosis <- 1.2
+#' positions <- c(5,2,6,10)
+#' cl <- .95
+#' hp <- 280
+#' AdjustedNormalESHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+#'
+#' @export
+NormalESHotspots <- function(vc.matrix, mu, skew, kurtosis, positions,
+ cl, hp){
+
+ # Check that positions vector read as a scalar or row vector
+ positions <- as.matrix(positions)
+ if (dim(positions)[1] > dim(positions)[2]){
+ positions <- t(positions)
+ }
+
+ # Check that expected returns vector is read as a scalar or row vector
+ mu <- as.matrix(mu)
+ if (dim(mu)[1] > dim(mu)[2]){
+ mu <- t(mu)
+ }
+
+ # Check that dimensions are correct
+ if (max(dim(mu)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+ if (max(dim(vc.matrix)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (cl >= 1){
+ stop("Confidence level must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level must be greater than 0");
+ }
+ if (hp <= 0){
+ stop("Holding period must be greater than 0");
+ }
+
+ VaR <- - mu %*% t(positions) * hp - qnorm(1 - cl, 0, 1) *
+ (positions %*% vc.matrix %*% t(positions)) * sqrt(hp) # VaR
+ n <- 1000 # Number of slives into which tail is divided
+ cl0 <- cl # Initial confidence level
+ term <- VaR
+ delta.cl <- (1 - cl) / n # Increment to confidence level
+ for (k in 1:(n - 1)) {
+ cl <- cl0 + k * delta.cl # Revised cl
+ term <- term - mu %*% t(positions) * hp - qnorm(1 - cl, 0, 1) *
+ (positions %*% vc.matrix %*% t(positions)) * sqrt(hp)
+ }
+ portfolio.ES <- term/n
+
+ # Portfolio ES
+ es <- double(length(positions))
+ ies <- double(length(positions))
+ for (j in 1:length(positions)) {
+ x <- positions
+ x[j] <- 0
+ term[j] <- - mu %*% t(x) * hp - qnorm(1-cl, 0, 1) * x %*%
+ vc.matrix %*% t(x) * sqrt(hp)
+
+ for (k in 1:(n - 1)){
+ cl <- cl0 + k * delta.cl # Revised cl
+ term[j] <- term[j] - mu %*% t(x) * hp - qnorm(1-cl, 0, 1) * x %*%
+ vc.matrix %*% t(x) * sqrt(hp)
+ }
+ es[j] <- term[j]/n # ES on portfolio minus position j
+ ies [j] <- portfolio.ES - es[j] # Incremental ES
+
+ }
+ y <- ies
+ return(ies)
+}
More information about the Returnanalytics-commits
mailing list