[Returnanalytics-commits] r3949 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Aug 13 11:59:09 CEST 2015
Author: dacharya
Date: 2015-08-13 11:59:09 +0200 (Thu, 13 Aug 2015)
New Revision: 3949
Added:
pkg/Dowd/R/NormalVaRHotspots.R
Log:
Function NormalVaRHotspot.R added.
Added: pkg/Dowd/R/NormalVaRHotspots.R
===================================================================
--- pkg/Dowd/R/NormalVaRHotspots.R (rev 0)
+++ pkg/Dowd/R/NormalVaRHotspots.R 2015-08-13 09:59:09 UTC (rev 3949)
@@ -0,0 +1,72 @@
+#' @title Hotspots for normal VaR
+#'
+#' @description Estimates the VaR hotspots (or vector of incremental VaRs) for
+#' a portfolio assuming individual asset returns are normally distributed, for
+#' specified confidence level and holding period.
+#'
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#' @return Hotspots for normal VaR
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#'
+#' @examples
+#'
+#' # Hotspots for ES for randomly generated portfolio
+#' vc.matrix <- matrix(rnorm(16),4,4)
+#' mu <- rnorm(4,.08,.04)
+#' positions <- c(5,2,6,10)
+#' cl <- .95
+#' hp <- 280
+#' NormalVaRHotspots(vc.matrix, mu, positions, cl, hp)
+#'
+#' @export
+NormalVaRHotspots <- function(vc.matrix, mu, positions, cl, hp){
+
+ # Check that positions vector read as a scalar or row vector
+ positions <- as.matrix(positions)
+ if (dim(positions)[1] > dim(positions)[2]){
+ positions <- t(positions)
+ }
+
+ # Check that expected returns vector is read as a scalar or row vector
+ mu <- as.matrix(mu)
+ if (dim(mu)[1] > dim(mu)[2]){
+ mu <- t(mu)
+ }
+
+ # Check that dimensions are correct
+ if (max(dim(mu)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+ vc.matrix <- as.matrix(vc.matrix)
+ if (max(dim(vc.matrix)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (cl >= 1){
+ stop("Confidence level must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level must be greater than 0");
+ }
+ if (hp <= 0){
+ stop("Holding period must be greater than 0");
+ }
+
+ # VaR and ES estimation
+ VaR <- - mu %*% t(positions) * hp - qnorm(1 - cl, 0, 1) * (positions %*% vc.matrix %*% t(positions)) * sqrt(hp) # VaR
+ iVaR <- double(length(positions))
+ for (i in 1:length(positions)){
+ x <- positions
+ x[i] <- 0
+ iVaR[i] <- VaR + mu %*% t(x) %*% hp + qnorm(1 - cl, 0, 1) * (x %*% vc.matrix %*% t(x)) * sqrt(hp)
+ }
+ y <- iVaR
+ return(y)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list