[Returnanalytics-commits] r3940 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Aug 12 09:01:10 CEST 2015
Author: dacharya
Date: 2015-08-12 09:01:09 +0200 (Wed, 12 Aug 2015)
New Revision: 3940
Added:
pkg/Dowd/R/FilterStrategyLogNormalVaR.R
Log:
Function FilterStrategyLogNormalVaR added.
Added: pkg/Dowd/R/FilterStrategyLogNormalVaR.R
===================================================================
--- pkg/Dowd/R/FilterStrategyLogNormalVaR.R (rev 0)
+++ pkg/Dowd/R/FilterStrategyLogNormalVaR.R 2015-08-12 07:01:09 UTC (rev 3940)
@@ -0,0 +1,53 @@
+#' Log Normal VaR with filter strategy
+#'
+#' Generates Monte Carlo lognormal VaR with filter portfolio strategy
+#'
+#' @param mu Mean arithmetic return
+#' @param sigma Standard deviation of arithmetic return
+#' @param number.trials Number of trials used in the simulations
+#' @param alpha Participation parameter
+#' @param cl Confidence Level
+#' @param hp Holding Period
+#' @return Lognormal VaR
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Estimates standard error of normal quantile estimate
+#' FilterStrategyLogNormalVaR(0, .2, 100, 1.2, .95, 10)
+#'
+#' @export
+FilterStrategyLogNormalVaR <- function(mu, sigma, number.trials, alpha, cl, hp){
+ N <- 100 # Number of increments, taken as 100
+ dt <- hp/N # Size of time-increment
+ nudt <- (mu - 0.5 * sigma ^ 2) * dt
+ sigmadt <- sigma * sqrt(dt)
+ stock.price <- 1 # Stock price assumed to be investment assumed to be 1
+ lnS <- log(stock.price)
+ M <- number.trials
+ # Stock price simulation process
+ lnSt <- matrix(0,M,N)
+ new.stock.price <- matrix(0,M,N)
+ equity.proportion <- matrix(0,M,N)
+ investment <- matrix(0,M,N)
+ for (i in 1:M) {
+ lnSt[i, 1] <- rnorm(1, lnS + nudt, sigmadt)
+ new.stock.price[i,1] <- exp(lnSt[i,1])
+ for (j in 2:N) {
+ lnSt[i, j] <- rnorm(1, lnSt[i, j-1] + nudt, sigmadt)
+ new.stock.price[i, j] <- exp(lnSt[i, j]) # New stock price
+ equity.proportion[i, j] <- .5 + alpha * (new.stock.price[i, j] -
+ stock.price)/stock.price
+ investment[i, j] <- equity.proportion[i, j] * new.stock.price[i, j] + (1 - equity.proportion[i, j])
+ }
+ }
+ # Profit/Loss calculation
+ profit.or.loss <- double(M)
+ for (i in 1:M) {
+ profit.or.loss[i] <- investment[i,j] - stock.price
+ }
+ y <- HSVaR(profit.or.loss, cl)
+ return(y)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list