[Returnanalytics-commits] r3939 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Aug 11 09:41:31 CEST 2015
Author: dacharya
Date: 2015-08-11 09:41:31 +0200 (Tue, 11 Aug 2015)
New Revision: 3939
Added:
pkg/Dowd/R/VarianceCovarianceVaR.R
Log:
Function VarianceCovarianceVaR added
Added: pkg/Dowd/R/VarianceCovarianceVaR.R
===================================================================
--- pkg/Dowd/R/VarianceCovarianceVaR.R (rev 0)
+++ pkg/Dowd/R/VarianceCovarianceVaR.R 2015-08-11 07:41:31 UTC (rev 3939)
@@ -0,0 +1,84 @@
+#' @title Variance-covariance VaR for normally distributed returns
+#'
+#' @description Estimates the variance-covariance VaR of a
+#' portfolio assuming individual asset returns are normally distributed,
+#' for specified confidence level and holding period.
+#'
+#' @param vc.matrix Assumed variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar or vector
+#' @param hp Holding period and is scalar or vector
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#'
+#' @examples
+#'
+#' # Variance-covariance VaR for randomly generated portfolio
+#' vc.matrix <- matrix(rnorm(16),4,4)
+#' mu <- rnorm(4)
+#' positions <- c(5,2,6,10)
+#' cl <- .95
+#' hp <- 280
+#' VarianceCovarianceVaR(vc.matrix, mu, positions, cl, hp)
+#'
+#' @seealso AdjustedVarianceCovarianceVaR
+#' @export
+VarianceCovarianceVaR <- function(vc.matrix, mu, positions, cl, hp){
+
+ # Check that confidence level is read as a row vector
+ cl <- as.matrix(cl)
+ if (dim(cl)[1] > dim(cl)[2]){
+ cl <- t(cl)
+ }
+
+ # Check that hp is read as a column vector
+ hp <- as.matrix(hp)
+ if (dim(hp)[1] < dim(hp)[2]){
+ hp <- t(hp)
+ }
+
+ # Check that positions vector is read as a scalar or row vector
+ positions <- as.matrix(positions)
+ if (dim(positions)[1] > dim(positions)[2]){
+ positions <- t(positions)
+ }
+
+ # Check that expected returns vector is read as a scalar or row vector
+ mu <- as.matrix(mu)
+ if (dim(mu)[1] > dim(mu)[2]){
+ mu <- t(mu)
+ }
+
+ # Check that dimensions are correct
+ if (max(dim(mu)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+ vc.matrix <- as.matrix(vc.matrix)
+ if (max(dim(vc.matrix)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (cl >= 1){
+ stop("Confidence level must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level must be greater than 0");
+ }
+ if (hp <= 0){
+ stop("Holding period must be greater than 0");
+ }
+
+ # VaR estimation
+ VaR <- matrix(0, length(cl), length(hp))
+ for (i in 1:length(cl)) {
+ for (j in 1:length(hp)) {
+ VaR[i, j] <- - mu %*% t(positions) * hp[j] - qnorm(1-cl[i], 0, 1) * (positions %*% vc.matrix %*% t(positions)) * sqrt(hp[j])
+ }
+ }
+ y <- t(VaR)
+ return(y)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list