[Returnanalytics-commits] r2940 - in pkg/PerformanceAnalytics/sandbox/pulkit: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Aug 30 10:39:38 CEST 2013
Author: pulkit
Date: 2013-08-30 10:39:38 +0200 (Fri, 30 Aug 2013)
New Revision: 2940
Modified:
pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R
pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R
pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd
Log:
latex changes
Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R 2013-08-30 08:01:57 UTC (rev 2939)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R 2013-08-30 08:39:38 UTC (rev 2940)
@@ -4,7 +4,7 @@
#'@description
#'The Economic Drawdown Controlled Optimal Portfolio Strategy(EDD-COPS) has
#'the portfolio fraction allocated to single risky asset as:
-#'
+#' \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-EDD(t)}{1-EDD(t)}\biggr]\right\}}
#'
#' The risk free asset accounts for the rest of the portfolio allocation \eqn{x_f = 1 - x_t}.
#'dt<-read.zoo("../data/ret.csv",sep=",",header = TRUE)
Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R 2013-08-30 08:01:57 UTC (rev 2939)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R 2013-08-30 08:39:38 UTC (rev 2940)
@@ -5,11 +5,17 @@
#'The Rolling Economic Drawdown Controlled Optimal Portfolio Strategy(REDD-COPS) has
#'the portfolio fraction allocated to single risky asset as:
#'
-#'
+#' \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
+#
#' The risk free asset accounts for the rest of the portfolio allocation \eqn{x_f = 1 - x_t}.
#'
#' For two risky assets in REDD-COPS,dynamic asset allocation weights are :
-#'
+#'\deqn{\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \frac{1}{1-{\rho}^2}
+#' \left[\begin{array}{c} (\lambda_1 + {1/2}\sigma_1 - \rho.(\lambda_2 + {1/2}\sigma_2
+#' )/\sigma_1) \\ (\lambda_1 + {1/2}\sigma_1 - \rho(\lambda_2 + {1/2}\sigma_2)/\sigma_
+#' 1) \end{array}\right]}
+
+
#'
#'The portion of the risk free asset is \eqn{x_f = 1 - x_1 - x_2}.
#'dt<-read.zoo("../data/ret.csv",sep=",",header = TRUE)
Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd 2013-08-30 08:01:57 UTC (rev 2939)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd 2013-08-30 08:39:38 UTC (rev 2940)
@@ -25,7 +25,9 @@
\description{
The Economic Drawdown Controlled Optimal Portfolio
Strategy(EDD-COPS) has the portfolio fraction allocated
- to single risky asset as:
+ to single risky asset as: \deqn{x_t =
+ Max\left\{0,\biggl(\frac{\lambda/\sigma +
+ 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-EDD(t)}{1-EDD(t)}\biggr]\right\}}
The risk free asset accounts for the rest of the
portfolio allocation \eqn{x_f = 1 - x_t}.
Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd 2013-08-30 08:01:57 UTC (rev 2939)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd 2013-08-30 08:39:38 UTC (rev 2940)
@@ -35,11 +35,18 @@
Portfolio Strategy(REDD-COPS) has the portfolio fraction
allocated to single risky asset as:
+ \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma +
+ 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
The risk free asset accounts for the rest of the
portfolio allocation \eqn{x_f = 1 - x_t}.
For two risky assets in REDD-COPS,dynamic asset
- allocation weights are :
+ allocation weights are : \deqn{\left[\begin{array}{c} x_1
+ \\ x_2 \end{array}\right] = \frac{1}{1-{\rho}^2}
+ \left[\begin{array}{c} (\lambda_1 + {1/2}\sigma_1 -
+ \rho.(\lambda_2 + {1/2}\sigma_2 )/\sigma_1) \\ (\lambda_1
+ + {1/2}\sigma_1 - \rho(\lambda_2 + {1/2}\sigma_2)/\sigma_
+ 1) \end{array}\right]}
The portion of the risk free asset is \eqn{x_f = 1 - x_1
- x_2}. dt<-read.zoo("../data/ret.csv",sep=",",header =
More information about the Returnanalytics-commits
mailing list