[Returnanalytics-commits] r2939 - in pkg/PerformanceAnalytics/sandbox/pulkit: R man vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Aug 30 10:01:57 CEST 2013


Author: pulkit
Date: 2013-08-30 10:01:57 +0200 (Fri, 30 Aug 2013)
New Revision: 2939

Modified:
   pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/REM.R
   pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/rollEconomicMax.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/REDDCOPS.Rnw
Log:
latex changes

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/EDDCOPS.R	2013-08-30 08:01:57 UTC (rev 2939)
@@ -5,7 +5,6 @@
 #'The  Economic Drawdown Controlled Optimal Portfolio Strategy(EDD-COPS) has 
 #'the portfolio fraction allocated to single risky asset as:
 #'
-#' \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-EDD(t)}{1-EDD(t)}\biggr]\right\}}
 #' 
 #' The risk free asset accounts for the rest of the portfolio allocation \eqn{x_f = 1 - x_t}.
 #'dt<-read.zoo("../data/ret.csv",sep=",",header = TRUE)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/REDDCOPS.R	2013-08-30 08:01:57 UTC (rev 2939)
@@ -5,17 +5,11 @@
 #'The Rolling Economic Drawdown Controlled Optimal Portfolio Strategy(REDD-COPS) has 
 #'the portfolio fraction allocated to single risky asset as:
 #'
-#' \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
 #' 
 #' The risk free asset accounts for the rest of the portfolio allocation \eqn{x_f = 1 - x_t}.
 #' 
 #' For two risky assets in REDD-COPS,dynamic asset allocation weights are :
 #' 
-#'\deqn{\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \frac{1}{1-{\rho}^2}
-#'   \left[\begin{array}{c} (\lambda_1 + {1/2}\sigma_1 - \rho.(\lambda_2 + {1/2}\sigma_2
-#'   )/\sigma_1) \\ (\lambda_1 + {1/2}\sigma_1 - \rho(\lambda_2 + {1/2}\sigma_2)/\sigma_
-#'   1) \end{array}\right] Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta
-#'   .\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
 #'  
 #'The portion of the risk free asset is \eqn{x_f = 1 - x_1 - x_2}.
 #'dt<-read.zoo("../data/ret.csv",sep=",",header = TRUE)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/REM.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/REM.R	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/REM.R	2013-08-30 08:01:57 UTC (rev 2939)
@@ -5,7 +5,7 @@
 #'Rolling Economic Max at time t, looking back at portfolio Wealth history
 #'for a rolling window of length H is given by:
 #'
-#'\deqn{REM(t,h)=\max_{t-H \leq s}\[(1+r_f)^{t-s}W_s\]}
+#'\deqn{REM(t,h)=\max_{t-H \leq s}[(1+r_f)^{t-s}W_s]}
 #'
 #'Here rf is the average realized risk free rate over a period of length t-s. If the risk free rate is changing. This is used to compound.
 #'

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd	2013-08-30 08:01:57 UTC (rev 2939)
@@ -27,9 +27,6 @@
   Strategy(EDD-COPS) has the portfolio fraction allocated
   to single risky asset as:
 
-  \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma +
-  1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-EDD(t)}{1-EDD(t)}\biggr]\right\}}
-
   The risk free asset accounts for the rest of the
   portfolio allocation \eqn{x_f = 1 - x_t}.
   dt<-read.zoo("../data/ret.csv",sep=",",header = TRUE)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd	2013-08-30 08:01:57 UTC (rev 2939)
@@ -35,24 +35,12 @@
   Portfolio Strategy(REDD-COPS) has the portfolio fraction
   allocated to single risky asset as:
 
-  \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma +
-  1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
-
   The risk free asset accounts for the rest of the
   portfolio allocation \eqn{x_f = 1 - x_t}.
 
   For two risky assets in REDD-COPS,dynamic asset
   allocation weights are :
 
-  \deqn{\left[\begin{array}{c} x_1 \\ x_2
-  \end{array}\right] = \frac{1}{1-{\rho}^2}
-  \left[\begin{array}{c} (\lambda_1 + {1/2}\sigma_1 -
-  \rho.(\lambda_2 + {1/2}\sigma_2 )/\sigma_1) \\ (\lambda_1
-  + {1/2}\sigma_1 - \rho(\lambda_2 + {1/2}\sigma_2)/\sigma_
-  1) \end{array}\right]
-  Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta
-  .\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
-
   The portion of the risk free asset is \eqn{x_f = 1 - x_1
   - x_2}. dt<-read.zoo("../data/ret.csv",sep=",",header =
   TRUE)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/rollEconomicMax.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/rollEconomicMax.Rd	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/rollEconomicMax.Rd	2013-08-30 08:01:57 UTC (rev 2939)
@@ -24,7 +24,7 @@
   Wealth history for a rolling window of length H is given
   by:
 
-  \deqn{REM(t,h)=\max_{t-H \leq s}\[(1+r_f)^{t-s}W_s\]}
+  \deqn{REM(t,h)=\max_{t-H \leq s}[(1+r_f)^{t-s}W_s]}
 
   Here rf is the average realized risk free rate over a
   period of length t-s. If the risk free rate is changing.

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/REDDCOPS.Rnw
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/REDDCOPS.Rnw	2013-08-30 05:11:46 UTC (rev 2938)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/REDDCOPS.Rnw	2013-08-30 08:01:57 UTC (rev 2939)
@@ -90,15 +90,11 @@
 The Rolling Economic Drawdown Controlled Optimal Portfolio Strategy(REDD-COPS) has 
 the portfolio fraction allocated to single risky asset as:
 
-\deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
- 
+
 The risk free asset accounts for the rest of the portfolio allocation \eqn{x_f = 1 - x_t}.
  
 For two risky assets in REDD-COPS,dynamic asset allocation weights are :
- 
-\deqn{\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \frac{1}{1-{\rho}^2}
-\left[\begin{array}{c} (\lambda_1 + {1/2}\sigma_1 - \rho.(\lambda_2 + {1/2}\sigma_2)/\sigma_1) \\ (\lambda_1 + {1/2}\sigma_1 - \rho(\lambda_2 + {1/2}\sigma_2)/\sigma_1) \end{array}\right] Max\left\{0,\biggl(\frac{\lambda/\sigma + 1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-REDD(t,h)}{1-REDD(t,h)}\biggr]\right\}}
-  
+
 The portion of the risk free asset is \eqn{x_f = 1 - x_1 - x_2}.
 
 \subsection{Usage}



More information about the Returnanalytics-commits mailing list