[Returnanalytics-commits] r2917 - in pkg/PerformanceAnalytics/sandbox/Shubhankit: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Aug 28 12:38:55 CEST 2013


Author: shubhanm
Date: 2013-08-28 12:38:55 +0200 (Wed, 28 Aug 2013)
New Revision: 2917

Added:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/chart.AcarSim.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/chart.AcarSim.Rd
Removed:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/table.normDD.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/table.normDD.Rd
Modified:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/AcarSim.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/AcarSim.Rd
Log:
.Rd/R addition for Shane Acar Loss Simulation  chart wrapper

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-28 10:38:55 UTC (rev 2917)
@@ -17,7 +17,6 @@
 ByteCompile: TRUE
 Collate:
     'ACStdDev.annualized.R'
-    'CalmarRatio.Normalized.R'
     'CDDopt.R'
     'CDrawdown.R'
     'chart.Autocorrelation.R'
@@ -27,7 +26,6 @@
     'na.skip.R'
     'Return.GLM.R'
     'table.ComparitiveReturn.GLM.R'
-    'table.normDD.R'
     'table.UnsmoothReturn.R'
     'UnsmoothReturn.R'
     'AcarSim.R'
@@ -37,3 +35,4 @@
     'LoSharpe.R'
     'Return.Okunev.R'
     'se.LoSharpe.R'
+    'chart.AcarSim.R'

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,21 +1,18 @@
 export(AcarSim)
 export(ACStdDev.annualized)
 export(CalmarRatio.Norm)
-export(CalmarRatio.Normalized)
 export(CDD.Opt)
 export(CDDOpt)
 export(CDrawdown)
+export(chart.AcarSim)
 export(chart.Autocorrelation)
 export(EMaxDDGBM)
 export(GLMSmoothIndex)
 export(LoSharpe)
-export(QP.Norm)
 export(Return.GLM)
 export(Return.Okunev)
 export(se.LoSharpe)
 export(SterlingRatio.Norm)
-export(SterlingRatio.Normalized)
 export(table.ComparitiveReturn.GLM)
 export(table.EMaxDDGBM)
-export(table.NormDD)
 export(table.UnsmoothReturn)

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/AcarSim.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/AcarSim.R	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/AcarSim.R	2013-08-28 10:38:55 UTC (rev 2917)
@@ -7,12 +7,12 @@
 #' \emph{two to two} by step of \emph{0.1} . The process has been repeated \bold{six thousand times}.
 #' @details  Unfortunately, there is no \bold{analytical formulae} to establish the maximum drawdown properties under 
 #' the random walk assumption. We should note first that due to its definition, the maximum drawdown 
-#' divided by volatility is an only function of the ratio mean divided by volatility.
+#' divided by volatility can be interpreted as the only function of the ratio mean divided by volatility.
 #' \deqn{MD/[\sigma]= Min (\sum[X(j)])/\sigma = F(\mu/\sigma)}
 #' Where j varies from 1 to n ,which is the number of drawdown's in simulation 
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' asset returns
-#' @author Peter Carl, Brian Peterson, Shubhankit Mohan
+#' @author Shubhankit Mohan
 #' @references Maximum Loss and Maximum Drawdown in Financial Markets,\emph{International Conference Sponsored by BNP and Imperial College on: 
 #' Forecasting Financial Markets, London, United Kingdom, May 1997} \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
 #' @keywords Maximum Loss Simulated Drawdown
@@ -22,7 +22,7 @@
 #' @rdname AcarSim
 #' @export 
 AcarSim <-
-  function(R)
+  function()
   {
     R = checkData(Ra, method="xts")
     # Get dimensions and labels

Deleted: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,139 +0,0 @@
-#' QP function fo calculation of Sharpe Ratio
-#' 
-#' calculate a Normalized Calmar or Sterling reward/risk ratio
-#'  
-#' Normalized Calmar and Sterling Ratios are yet another method of creating a
-#' risk-adjusted measure for ranking investments similar to the
-#' \code{\link{SharpeRatio}}.
-#' 
-#' Both the Normalized Calmar and the Sterling ratio are the ratio of annualized return
-#' over the absolute value of the maximum drawdown of an investment. The
-#' Sterling ratio adds an excess risk measure to the maximum drawdown,
-#' traditionally and defaulting to 10\%.
-#' 
-#' It is also traditional to use a three year return series for these
-#' calculations, although the functions included here make no effort to
-#' determine the length of your series.  If you want to use a subset of your
-#' series, you'll need to truncate or subset the input data to the desired
-#' length.
-#' 
-#' Many other measures have been proposed to do similar reward to risk ranking.
-#' It is the opinion of this author that newer measures such as Sortino's
-#' \code{\link{UpsidePotentialRatio}} or Favre's modified
-#' \code{\link{SharpeRatio}} are both \dQuote{better} measures, and
-#' should be preferred to the Calmar or Sterling Ratio.
-#' 
-#' @aliases Normalized.CalmarRatio Normalized.SterlingRatio
-#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
-#' asset returns
-#' @param scale number of periods in a year (daily scale = 252, monthly scale =
-#' 12, quarterly scale = 4)
-#' @param excess for Sterling Ratio, excess amount to add to the max drawdown,
-#' traditionally and default .1 (10\%)
-#' @author Brian G. Peterson
-#' @seealso 
-#' \code{\link{Return.annualized}}, \cr 
-#' \code{\link{maxDrawdown}}, \cr
-#' \code{\link{SharpeRatio.modified}}, \cr 
-#' \code{\link{UpsidePotentialRatio}}
-#' @references Bacon, Carl. \emph{Magdon-Ismail, M. and Amir Atiya, Maximum drawdown. Risk Magazine, 01 Oct 2004.
-#' @keywords ts multivariate distribution models
-#' @examples
-#' 
-#'     data(managers)
-#'     Normalized.CalmarRatio(managers[,1,drop=FALSE])
-#'     Normalized.CalmarRatio(managers[,1:6]) 
-#'     Normalized.SterlingRatio(managers[,1,drop=FALSE])
-#'     Normalized.SterlingRatio(managers[,1:6])
-#' 
-#' @export 
-#' @rdname CalmarRatio.normalized
-QP.Norm <- function (R, tau,scale = NA)
-{
-  Sharpe= as.numeric(SharpeRatio.annualized(edhec))
-return(.63519+(.5*log(tau))+log(Sharpe))
-}
-
-#' @export 
-CalmarRatio.Normalized <- function (R, tau = 1,scale = NA)
-{ # @author Brian G. Peterson
-  
-  # DESCRIPTION:
-  # Inputs:
-  # Ra: in this case, the function anticipates having a return stream as input,
-  #    rather than prices.
-  # tau : scaled Time in Years
-  # scale: number of periods per year
-  # Outputs:
-  # This function returns a Calmar Ratio
-  
-  # FUNCTION:
-  
-  R = checkData(R)
-  if(is.na(scale)) {
-    freq = periodicity(R)
-    switch(freq$scale,
-           minute = {stop("Data periodicity too high")},
-           hourly = {stop("Data periodicity too high")},
-           daily = {scale = 252},
-           weekly = {scale = 52},
-           monthly = {scale = 12},
-           quarterly = {scale = 4},
-           yearly = {scale = 1}
-    )
-  }
-  Time = nyears(R)
-  annualized_return = Return.annualized(R, scale=scale)
-  drawdown = abs(maxDrawdown(R))
-  result = (annualized_return/drawdown)*(QP.Norm(R,Time)/QP.Norm(R,tau))*(tau/Time)
-  rownames(result) = "Normalized Calmar Ratio"
-  return(result)
-}
-
-#' @export 
-#' @rdname CalmarRatio.normalized
-SterlingRatio.Normalized <-
-  function (R, tau=1,scale=NA, excess=.1)
-  { # @author Brian G. Peterson
-    
-    # DESCRIPTION:
-    # Inputs:
-    # Ra: in this case, the function anticipates having a return stream as input,
-    #    rather than prices.
-    # scale: number of periods per year
-    # Outputs:
-    # This function returns a Sterling Ratio
-    
-    # FUNCTION:
-    Time = nyears(R)
-    R = checkData(R)
-    if(is.na(scale)) {
-      freq = periodicity(R)
-      switch(freq$scale,
-             minute = {stop("Data periodicity too high")},
-             hourly = {stop("Data periodicity too high")},
-             daily = {scale = 252},
-             weekly = {scale = 52},
-             monthly = {scale = 12},
-             quarterly = {scale = 4},
-             yearly = {scale = 1}
-      )
-    }
-    annualized_return = Return.annualized(R, scale=scale)
-    drawdown = abs(maxDrawdown(R)+excess)
-    result = annualized_return/drawdown*(QP.Norm(R,Time)/QP.Norm(R,tau))*(tau/Time)
-    rownames(result) = paste("Normalized Sterling Ratio (Excess = ", round(excess*100,0), "%)", sep="")
-    return(result)
-  }
-
-###############################################################################
-# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
-#
-# Copyright (c) 2004-2013 Peter Carl and Brian G. Peterson
-#
-# This R package is distributed under the terms of the GNU Public License (GPL)
-# for full details see the file COPYING
-#
-# $Id: CalmarRatioNormalized.R 1955 2012-05-23 16:38:16Z braverock $
-#
-###############################################################################

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/chart.AcarSim.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/chart.AcarSim.R	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/chart.AcarSim.R	2013-08-28 10:38:55 UTC (rev 2917)
@@ -0,0 +1,94 @@
+#' @title Acar-Shane Maximum Loss Plot 
+#' 
+#'@description To get some insight on the relationships between maximum drawdown per unit of volatility 
+#'and mean return divided by volatility, we have proceeded to Monte-Carlo simulations.
+#' We have simulated cash flows over a period of 36 monthly returns and measured maximum 
+#'drawdown for varied levels of annualised return divided by volatility varying from minus
+#' \emph{two to two} by step of \emph{0.1} . The process has been repeated \bold{six thousand times}.
+#' @details  Unfortunately, there is no \bold{analytical formulae} to establish the maximum drawdown properties under 
+#' the random walk assumption. We should note first that due to its definition, the maximum drawdown 
+#' divided by volatility is an only function of the ratio mean divided by volatility.
+#' \deqn{MD/[\sigma]= Min (\sum[X(j)])/\sigma = F(\mu/\sigma)}
+#' Where j varies from 1 to n ,which is the number of drawdown's in simulation 
+#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' asset returns
+#' @author Shubhankit Mohan
+#' @references Maximum Loss and Maximum Drawdown in Financial Markets,\emph{International Conference Sponsored by BNP and Imperial College on: 
+#' Forecasting Financial Markets, London, United Kingdom, May 1997} \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
+#' @keywords Maximum Loss Simulated Drawdown
+#' @examples
+#' library(PerformanceAnalytics)
+#' chart.AcarSim(edhec)
+#' @rdname chart.AcarSim
+#' @export 
+chart.AcarSim <-
+  function(R)
+  {
+    R = checkData(Ra, method="xts")
+    # Get dimensions and labels
+    # simulated parameters using edhec data
+    mu=mean(Return.annualized(edhec))
+    monthly=(1+mu)^(1/12)-1
+    sig=StdDev.annualized(edhec[,1])[1];
+    T= 36
+    j=1
+    dt=1/T
+    nsim=6000;
+    thres=4;
+    r=matrix(0,nsim,T+1)
+    monthly = 0
+    r[,1]=monthly;
+    # Sigma 'monthly volatiltiy' will be the varying term
+    ratio= seq(-2, 2, by=.1);
+    len = length(ratio)
+    ddown=array(0, dim=c(nsim,len,thres))
+    fddown=array(0, dim=c(len,thres))
+    Z <- array(0, c(len))
+    for(i in 1:len)
+    {
+      monthly = sig*ratio[i];
+      
+      for(j in 1:nsim)
+      {
+        dz=rnorm(T)
+        
+        # 3 factor due to 36 month time frame investigated in the paper
+        r[j,2:37]=monthly+(sig*dz*sqrt(3*dt))
+        
+        ddown[j,i,1]= ES((r[j,]),.99)
+        ddown[j,i,1][is.na(ddown[j,i,1])] <- 0
+        fddown[i,1]=fddown[i,1]+ddown[j,i,1]
+        ddown[j,i,2]= ES((r[j,]),.95)
+        ddown[j,i,2][is.na(ddown[j,i,2])] <- 0
+        fddown[i,2]=fddown[i,2]+ddown[j,i,2]
+        ddown[j,i,3]= ES((r[j,]),.90)
+        ddown[j,i,3][is.na(ddown[j,i,3])] <- 0
+        fddown[i,3]=fddown[i,3]+ddown[j,i,3]
+        ddown[j,i,4]= ES((r[j,]),.85)
+        ddown[j,i,4][is.na(ddown[j,i,4])] <- 0
+        fddown[i,4]=fddown[i,4]+ddown[j,i,4]
+        assign("last.warning", NULL, envir = baseenv())
+      }
+    }
+    plot(((fddown[,1])/(sig*nsim)),xlab="Annualised Return/Volatility from [-2,2]",ylab="Maximum Drawdown/Volatility",type='o',col="blue")
+    lines(((fddown[,2])/(sig*nsim)),type='o',col="pink")
+    lines(((fddown[,3])/(sig*nsim)),type='o',col="green")
+    lines(((fddown[,4])/(sig*nsim)),type='o',col="red")
+    legend(32,-4, c("%99", "%95", "%90","%85"), col = c("blue","pink","green","red"), text.col= "black",
+           lty = c(2, -1, 1), pch = c(-1, 3, 4), merge = TRUE, bg='gray90')
+    
+    title("Maximum Drawdown/Volatility as a function of Return/Volatility 
+36 monthly returns simulated 6,000 times") 
+  }
+
+###############################################################################
+# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
+#
+# Copyright (c) 2004-2012 Peter Carl and Brian G. Peterson
+#
+# This R package is distributed under the terms of the GNU Public License (GPL)
+# for full details see the file COPYING
+#
+# $Id: AcarSim.R 2163 2012-07-16 00:30:19Z braverock $
+#
+###############################################################################
\ No newline at end of file

Deleted: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/table.normDD.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/table.normDD.R	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/table.normDD.R	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,109 +0,0 @@
-#'@title Generalised Lambda Distribution Simulated Drawdown 
-#'@description When selecting a hedge fund manager, one risk measure investors often
-#' consider is drawdown. How should drawdown distributions look? Carr Futures'
-#' Galen Burghardt, Ryan Duncan and Lianyan Liu share some insights from their
-#'research to show investors how to begin to answer this tricky question
-#'@details  To simulate net asset value (NAV) series where skewness and kurtosis are zero, 
-#' we draw sample returns from a lognormal return distribution. To capture skewness 
-#' and kurtosis, we sample returns from a \bold{generalised \eqn{\lambda} distribution}.The values of 
-#' skewness and excess kurtosis used were roughly consistent with the range of values the paper 
-#' observed for commodity trading advisers in our database. The NAV series is constructed 
-#' from the return series. The simulated drawdowns are then derived and used to produce 
-#' the theoretical drawdown distributions. A typical run usually requires \bold{10,000} 
-#' iterations to produce a smooth distribution.
-#' 
-#' 
-#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
-#' asset returns
-#' @references Burghardt, G., and L. Liu, \emph{ It's the Autocorrelation, Stupid (November 2012) Newedge
-#' working paper.}
-#'  \code{\link[stats]{}} \cr
-#' \url{http://www.amfmblog.com/assets/Newedge-Autocorrelation.pdf}
-#' Burghardt, G., Duncan, R. and L. Liu, \eph{Deciphering drawdown}. Risk magazine, Risk management for investors, September, S16-S20, 2003. \url{http://www.risk.net/data/risk/pdf/investor/0903_risk.pdf}
-#' @author Peter Carl, Brian Peterson, Shubhankit Mohan
-#' @keywords Simulated Drawdown Using Brownian Motion Assumptions
-#' @seealso Drawdowns.R
-#' @rdname table.normDD
-#' @export
-table.NormDD <-
-  function (R,digits =4)
-  {# @author 
-    
-    # DESCRIPTION:
-    # Downside Risk Summary: Statistics and Stylized Facts
-    
-    # Inputs:
-    # R: a regular timeseries of returns (rather than prices)
-    # Output: Table of Estimated Drawdowns 
-    require("gld")
-    
-    y = checkData(R, method = "xts")
-    columns = ncol(y)
-    rows = nrow(y)
-    columnnames = colnames(y)
-    rownames = rownames(y)
-    T= nyears(y);
-    n <- 1000
-    dt <- 1/T;
-    r0 <- 0;
-    s0 <- 1;
-    # for each column, do the following:
-    for(column in 1:columns) {
-      x = y[,column]
-      mu = Return.annualized(x, scale = NA, geometric = TRUE)
-      sig=StdDev.annualized(x)
-      skew = skewness(x)
-      kurt = kurtosis(x)
-      r <- matrix(0,T+1,n)  # matrix to hold short rate paths
-      s <- matrix(0,T+1,n)
-      r[1,] <- r0  
-      s[1,] <- s0
-      drawdown <- matrix(0,n)
-      #  return(Ed)
-      
-      for(j in 1:n){
-        r[2:(T+1),j]= rgl(T,mu,sig,skew,kurt)
-          for(i in 2:(T+1)){
-          
-            dr <- r[i,j]*dt 
-            s[i,j] <- s[i-1,j] + (dr/100)
-        }
-        
-        
-        drawdown[j] = as.numeric(maxdrawdown(s[,j])[1])
-      }
-      z = c((mu*100),
-            (sig*100),
-            ((mean(drawdown))))
-      znames = c(
-        "Annual Returns in %",
-        "Std Devetions in %",
-        "Normalized Drawdown Drawdown in %"
-      )
-      if(column == 1) {
-        resultingtable = data.frame(Value = z, row.names = znames)
-      }
-      else {
-        nextcolumn = data.frame(Value = z, row.names = znames)
-        resultingtable = cbind(resultingtable, nextcolumn)
-      }
-    }
-    colnames(resultingtable) = columnnames
-    ans = base::round(resultingtable, digits)
-    ans
- #   t <- seq(0, T, dt)
-  #  matplot(t, r[1,1:T], type="l", lty=1, main="Short Rate Paths", ylab="rt")
-    
-  }
-
-###############################################################################
-# R (http://r-project.org/) 
-#
-# Copyright (c) 2004-2013 
-#
-# This R package is distributed under the terms of the GNU Public License (GPL)
-# for full details see the file COPYING
-#
-# $Id: EMaxDDGBM
-#
-###############################################################################

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/AcarSim.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/AcarSim.Rd	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/AcarSim.Rd	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,50 +1,50 @@
-\name{AcarSim}
-\alias{AcarSim}
-\title{Acar-Shane Maximum Loss Plot}
-\usage{
-  AcarSim(R)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-}
-\description{
-  To get some insight on the relationships between maximum
-  drawdown per unit of volatility and mean return divided
-  by volatility, we have proceeded to Monte-Carlo
-  simulations. We have simulated cash flows over a period
-  of 36 monthly returns and measured maximum drawdown for
-  varied levels of annualised return divided by volatility
-  varying from minus \emph{two to two} by step of
-  \emph{0.1} . The process has been repeated \bold{six
-  thousand times}.
-}
-\details{
-  Unfortunately, there is no \bold{analytical formulae} to
-  establish the maximum drawdown properties under the
-  random walk assumption. We should note first that due to
-  its definition, the maximum drawdown divided by
-  volatility is an only function of the ratio mean divided
-  by volatility. \deqn{MD/[\sigma]= Min (\sum[X(j)])/\sigma
-  = F(\mu/\sigma)} Where j varies from 1 to n ,which is the
-  number of drawdown's in simulation
-}
-\examples{
-library(PerformanceAnalytics)
-AcarSim(edhec)
-}
-\author{
-  Peter Carl, Brian Peterson, Shubhankit Mohan
-}
-\references{
-  Maximum Loss and Maximum Drawdown in Financial
-  Markets,\emph{International Conference Sponsored by BNP
-  and Imperial College on: Forecasting Financial Markets,
-  London, United Kingdom, May 1997}
-  \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
-}
-\keyword{Drawdown}
-\keyword{Loss}
-\keyword{Maximum}
-\keyword{Simulated}
-
+\name{AcarSim}
+\alias{AcarSim}
+\title{Acar-Shane Maximum Loss Plot}
+\usage{
+  AcarSim()
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  To get some insight on the relationships between maximum
+  drawdown per unit of volatility and mean return divided
+  by volatility, we have proceeded to Monte-Carlo
+  simulations. We have simulated cash flows over a period
+  of 36 monthly returns and measured maximum drawdown for
+  varied levels of annualised return divided by volatility
+  varying from minus \emph{two to two} by step of
+  \emph{0.1} . The process has been repeated \bold{six
+  thousand times}.
+}
+\details{
+  Unfortunately, there is no \bold{analytical formulae} to
+  establish the maximum drawdown properties under the
+  random walk assumption. We should note first that due to
+  its definition, the maximum drawdown divided by
+  volatility can be interpreted as the only function of the
+  ratio mean divided by volatility. \deqn{MD/[\sigma]= Min
+  (\sum[X(j)])/\sigma = F(\mu/\sigma)} Where j varies from
+  1 to n ,which is the number of drawdown's in simulation
+}
+\examples{
+library(PerformanceAnalytics)
+AcarSim(edhec)
+}
+\author{
+  Shubhankit Mohan
+}
+\references{
+  Maximum Loss and Maximum Drawdown in Financial
+  Markets,\emph{International Conference Sponsored by BNP
+  and Imperial College on: Forecasting Financial Markets,
+  London, United Kingdom, May 1997}
+  \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
+}
+\keyword{Drawdown}
+\keyword{Loss}
+\keyword{Maximum}
+\keyword{Simulated}
+

Deleted: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,77 +0,0 @@
-\name{QP.Norm}
-\alias{Normalized.CalmarRatio}
-\alias{Normalized.SterlingRatio}
-\alias{QP.Norm}
-\alias{SterlingRatio.Normalized}
-\title{QP function fo calculation of Sharpe Ratio}
-\usage{
-  QP.Norm(R, tau, scale = NA)
-
-  SterlingRatio.Normalized(R, tau = 1, scale = NA,
-    excess = 0.1)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-
-  \item{scale}{number of periods in a year (daily scale =
-  252, monthly scale = 12, quarterly scale = 4)}
-
-  \item{excess}{for Sterling Ratio, excess amount to add to
-  the max drawdown, traditionally and default .1 (10\%)}
-}
-\description{
-  calculate a Normalized Calmar or Sterling reward/risk
-  ratio
-}
-\details{
-  Normalized Calmar and Sterling Ratios are yet another
-  method of creating a risk-adjusted measure for ranking
-  investments similar to the \code{\link{SharpeRatio}}.
-
-  Both the Normalized Calmar and the Sterling ratio are the
-  ratio of annualized return over the absolute value of the
-  maximum drawdown of an investment. The Sterling ratio
-  adds an excess risk measure to the maximum drawdown,
-  traditionally and defaulting to 10\%.
-
-  It is also traditional to use a three year return series
-  for these calculations, although the functions included
-  here make no effort to determine the length of your
-  series.  If you want to use a subset of your series,
-  you'll need to truncate or subset the input data to the
-  desired length.
-
-  Many other measures have been proposed to do similar
-  reward to risk ranking. It is the opinion of this author
-  that newer measures such as Sortino's
-  \code{\link{UpsidePotentialRatio}} or Favre's modified
-  \code{\link{SharpeRatio}} are both \dQuote{better}
-  measures, and should be preferred to the Calmar or
-  Sterling Ratio.
-}
-\examples{
-data(managers)
-    Normalized.CalmarRatio(managers[,1,drop=FALSE])
-    Normalized.CalmarRatio(managers[,1:6])
-    Normalized.SterlingRatio(managers[,1,drop=FALSE])
-    Normalized.SterlingRatio(managers[,1:6])
-}
-\author{
-  Brian G. Peterson
-}
-\references{
-  Bacon, Carl. \emph{Magdon-Ismail, M. and Amir Atiya,
-  Maximum drawdown. Risk Magazine, 01 Oct 2004.
-}
-\seealso{
-  \code{\link{Return.annualized}}, \cr
-  \code{\link{maxDrawdown}}, \cr
-  \code{\link{SharpeRatio.modified}}, \cr
-  \code{\link{UpsidePotentialRatio}}
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{ts}
-

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/chart.AcarSim.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/chart.AcarSim.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/chart.AcarSim.Rd	2013-08-28 10:38:55 UTC (rev 2917)
@@ -0,0 +1,50 @@
+\name{chart.AcarSim}
+\alias{chart.AcarSim}
+\title{Acar-Shane Maximum Loss Plot}
+\usage{
+  chart.AcarSim(R)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  To get some insight on the relationships between maximum
+  drawdown per unit of volatility and mean return divided
+  by volatility, we have proceeded to Monte-Carlo
+  simulations. We have simulated cash flows over a period
+  of 36 monthly returns and measured maximum drawdown for
+  varied levels of annualised return divided by volatility
+  varying from minus \emph{two to two} by step of
+  \emph{0.1} . The process has been repeated \bold{six
+  thousand times}.
+}
+\details{
+  Unfortunately, there is no \bold{analytical formulae} to
+  establish the maximum drawdown properties under the
+  random walk assumption. We should note first that due to
+  its definition, the maximum drawdown divided by
+  volatility is an only function of the ratio mean divided
+  by volatility. \deqn{MD/[\sigma]= Min (\sum[X(j)])/\sigma
+  = F(\mu/\sigma)} Where j varies from 1 to n ,which is the
+  number of drawdown's in simulation
+}
+\examples{
+library(PerformanceAnalytics)
+chart.AcarSim(edhec)
+}
+\author{
+  Shubhankit Mohan
+}
+\references{
+  Maximum Loss and Maximum Drawdown in Financial
+  Markets,\emph{International Conference Sponsored by BNP
+  and Imperial College on: Forecasting Financial Markets,
+  London, United Kingdom, May 1997}
+  \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
+}
+\keyword{Drawdown}
+\keyword{Loss}
+\keyword{Maximum}
+\keyword{Simulated}
+

Deleted: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/table.normDD.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/table.normDD.Rd	2013-08-28 08:55:04 UTC (rev 2916)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/table.normDD.Rd	2013-08-28 10:38:55 UTC (rev 2917)
@@ -1,56 +0,0 @@
-\name{table.NormDD}
-\alias{table.NormDD}
-\title{Generalised Lambda Distribution Simulated Drawdown}
-\usage{
-  table.NormDD(R, digits = 4)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-}
-\description{
-  When selecting a hedge fund manager, one risk measure
-  investors often consider is drawdown. How should drawdown
-  distributions look? Carr Futures' Galen Burghardt, Ryan
-  Duncan and Lianyan Liu share some insights from their
-  research to show investors how to begin to answer this
-  tricky question
-}
-\details{
-  To simulate net asset value (NAV) series where skewness
-  and kurtosis are zero, we draw sample returns from a
-  lognormal return distribution. To capture skewness and
-  kurtosis, we sample returns from a \bold{generalised
-  \eqn{\lambda} distribution}.The values of skewness and
-  excess kurtosis used were roughly consistent with the
-  range of values the paper observed for commodity trading
-  advisers in our database. The NAV series is constructed
-  from the return series. The simulated drawdowns are then
-  derived and used to produce the theoretical drawdown
-  distributions. A typical run usually requires
-  \bold{10,000} iterations to produce a smooth
-  distribution.
-}
-\author{
-  Peter Carl, Brian Peterson, Shubhankit Mohan
-}
-\references{
-  Burghardt, G., and L. Liu, \emph{ It's the
-  Autocorrelation, Stupid (November 2012) Newedge working
-  paper.} \code{\link[stats]{}} \cr
-  \url{http://www.amfmblog.com/assets/Newedge-Autocorrelation.pdf}
-  Burghardt, G., Duncan, R. and L. Liu, \eph{Deciphering
-  drawdown}. Risk magazine, Risk management for investors,
-  September, S16-S20, 2003.
-  \url{http://www.risk.net/data/risk/pdf/investor/0903_risk.pdf}
-}
-\seealso{
-  Drawdowns.R
-}
-\keyword{Assumptions}
-\keyword{Brownian}
-\keyword{Drawdown}
-\keyword{Motion}
-\keyword{Simulated}
-\keyword{Using}
-



More information about the Returnanalytics-commits mailing list