[Returnanalytics-commits] r2197 - pkg/PerformanceAnalytics/sandbox/Meucci/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Jul 23 04:42:08 CEST 2012


Author: mkshah
Date: 2012-07-23 04:42:08 +0200 (Mon, 23 Jul 2012)
New Revision: 2197

Added:
   pkg/PerformanceAnalytics/sandbox/Meucci/man/RIEfficientFrontier.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/gaussHermiteMesh.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/hermitePolynomial.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/integrateSubIntervals.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/kernelbw.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/kernelcdf.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/kernelinv.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/kernelpdf.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/normalizeProb.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/private_fun.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/subIntervals.Rd
Modified:
   pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAcombination.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAseparation.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Central2Raw.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMVE.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMoments.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/CondProbViews.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Cumul2Raw.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/DetectOutliersViaMVE.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/EntropyProg.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/GenerateLogNormalDistribution.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/MvnRnd.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/NoisyObservations.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/PanicCopula.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/PartialConfidencePosterior.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/PlotDistributions.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Prior2Posterior.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Raw2Central.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Raw2Cumul.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/RejectOutlier.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/StackedBarChart.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/SummStats.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/Tweak.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/ViewRanking.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/efficientFrontier.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/linreturn.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/pHist.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/robustBayesianPortfolioOptimization.Rd
   pkg/PerformanceAnalytics/sandbox/Meucci/man/std.Rd
Log:
Adding documentation files for new functions and updating comments for other functions

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAcombination.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAcombination.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAcombination.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,38 +1,38 @@
-\name{CMAcombination}
-\alias{CMAcombination}
-\title{CMA combination. Glues an arbitrary copula and arbitrary marginal distributions into a new joint distribution}
-\usage{
-  CMAcombination(x, u, U)
-}
-\arguments{
-  \item{x}{a generic x variable. Note: Linearly spaced 'x'
-  help for coverage when performing linear interpolation}
-
-  \item{u}{The value of the cumulative density function
-  associated with x (parametric or non-parametric)}
-
-  \item{U}{an aribtrary copula. Can take any copula
-  obtained with the separation step (i.e. a set of
-  scenario-probabilities)}
-}
-\value{
-  X a J x N matrix containing the new joint distribution
-  based on the arbitrary copula 'U'
-}
-\description{
-  The combination step starts from arbitrary marginal
-  distributions, and grades distributed according to a
-  chosen arbitrary copula which can, but does not need to,
-  be obtained by seperation. Then this function combines
-  the marginals and copula into a new joint distribution.
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-\references{
-  Meucci A., "New Breed of Copulas for Risk and Portfolio
-  Management", Risk, September 2011 Most recent version of
-  article and code available at
-  \url{http://www.symmys.com/node/335}
-}
-
+\name{CMAcombination}
+\alias{CMAcombination}
+\title{CMA combination. Glues an arbitrary copula and arbitrary marginal distributions into a new joint distribution}
+\usage{
+  CMAcombination(x, u, U)
+}
+\arguments{
+  \item{x}{a generic x variable. Note: Linearly spaced 'x'
+  help for coverage when performing linear interpolation}
+
+  \item{u}{The value of the cumulative density function
+  associated with x (parametric or non-parametric)}
+
+  \item{U}{an aribtrary copula. Can take any copula
+  obtained with the separation step (i.e. a set of
+  scenario-probabilities)}
+}
+\value{
+  X a J x N matrix containing the new joint distribution
+  based on the arbitrary copula 'U'
+}
+\description{
+  The combination step starts from arbitrary marginal
+  distributions, and grades distributed according to a
+  chosen arbitrary copula which can, but does not need to,
+  be obtained by seperation. Then this function combines
+  the marginals and copula into a new joint distribution.
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+\references{
+  Meucci A., "New Breed of Copulas for Risk and Portfolio
+  Management", Risk, September 2011 Most recent version of
+  article and code available at
+  \url{http://www.symmys.com/node/335}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAseparation.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAseparation.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/CMAseparation.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,50 +1,50 @@
-\name{CMAseparation}
-\alias{CMAseparation}
-\title{CMA separation. Decomposes arbitrary joint distributions (scenario-probabilities) into their copula and marginals}
-\usage{
-  CMAseparation(X, p)
-}
-\arguments{
-  \item{X}{A matrix where each row corresponds to a
-  scenario/sample from a joint distribution.  Each column
-  represents the value from a marginal distribution}
-
-  \item{p}{A 1-column matrix of probabilities of the
-  Jth-scenario joint distribution in X}
-}
-\value{
-  xdd a JxN matrix where each column consists of each
-  marginal's generic x values in ascending order
-
-  udd a JxN matrix containing the cumulative probability
-  (cdf) for each marginal by column - it is rescaled by 'l'
-  to be <1 at the far right of the distribution can
-  interpret 'udd' as the probability weighted grade
-  scenarios (see formula 11 in Meucci)
-
-  U a copula (J x N matrix) - the joint distribution of
-  grades defined by feeding the original variables X into
-  their respective marginal CDF
-}
-\description{
-  The CMA separation step attains from the cdf "F" for the
-  marginal "X", the scenario-probabilities representation
-  of the copula (cdf of U: "F") and the inter/extrapolation
-  representation of the marginal CDF's. It seperates this
-  distribution into the pure "individual" information
-  contained in the marginals and the pure "joint"
-  information contained in the copula.
-}
-\details{
-  Separation step of Copula-Marginal Algorithm (CMA)
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-\references{
-  Meucci A., "New Breed of Copulas for Risk and Portfolio
-  Management", Risk, September 2011 Most recent version of
-  article and code available at
-  \url{http://www.symmys.com/node/335}
-}
-
+\name{CMAseparation}
+\alias{CMAseparation}
+\title{CMA separation. Decomposes arbitrary joint distributions (scenario-probabilities) into their copula and marginals}
+\usage{
+  CMAseparation(X, p)
+}
+\arguments{
+  \item{X}{A matrix where each row corresponds to a
+  scenario/sample from a joint distribution.  Each column
+  represents the value from a marginal distribution}
+
+  \item{p}{A 1-column matrix of probabilities of the
+  Jth-scenario joint distribution in X}
+}
+\value{
+  xdd a JxN matrix where each column consists of each
+  marginal's generic x values in ascending order
+
+  udd a JxN matrix containing the cumulative probability
+  (cdf) for each marginal by column - it is rescaled by 'l'
+  to be <1 at the far right of the distribution can
+  interpret 'udd' as the probability weighted grade
+  scenarios (see formula 11 in Meucci)
+
+  U a copula (J x N matrix) - the joint distribution of
+  grades defined by feeding the original variables X into
+  their respective marginal CDF
+}
+\description{
+  The CMA separation step attains from the cdf "F" for the
+  marginal "X", the scenario-probabilities representation
+  of the copula (cdf of U: "F") and the inter/extrapolation
+  representation of the marginal CDF's. It seperates this
+  distribution into the pure "individual" information
+  contained in the marginals and the pure "joint"
+  information contained in the copula.
+}
+\details{
+  Separation step of Copula-Marginal Algorithm (CMA)
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+\references{
+  Meucci A., "New Breed of Copulas for Risk and Portfolio
+  Management", Risk, September 2011 Most recent version of
+  article and code available at
+  \url{http://www.symmys.com/node/335}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/Central2Raw.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/Central2Raw.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/Central2Raw.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,33 +1,33 @@
-\name{Central2Raw}
-\alias{Central2Raw}
-\title{Transforms first n central moments into first n raw moments (first central moment defined as expectation)}
-\usage{
-  Central2Raw(mu)
-}
-\arguments{
-  \item{mu}{a vector of central moments}
-}
-\value{
-  mu_ a vector of non-central moments
-}
-\description{
-  step 2 of projection process: From the central moments of
-  step 1, we compute the non-central moments. To do so we
-  start with the first non-central moment and apply
-  recursively an identity (formula 20)
-}
-\details{
-  \deqn{ \tilde{ \mu }^{ \big(1\big) }_{X} \equiv \mu
-  ^{\big(1\big)}_{X} \\ \tilde{ \mu }^{ \big(n\big) }_{X}
-  \equiv \mu ^{n}_{X} \sum_{k=0}^{n-1} \big(-1\big)^{n-k+1}
-  \mu ^{n-k}_{X} \tilde{ \mu }^{\big(k\big)}_{X} }
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-\references{
-  A. Meucci - "Exercises in Advanced Risk and Portfolio
-  Management". See page 10. Symmys site containing original
-  MATLAB source code \url{http://www.symmys.com}
-}
-
+\name{Central2Raw}
+\alias{Central2Raw}
+\title{Transforms first n central moments into first n raw moments (first central moment defined as expectation)}
+\usage{
+  Central2Raw(mu)
+}
+\arguments{
+  \item{mu}{a vector of central moments}
+}
+\value{
+  mu_ a vector of non-central moments
+}
+\description{
+  step 2 of projection process: From the central moments of
+  step 1, we compute the non-central moments. To do so we
+  start with the first non-central moment and apply
+  recursively an identity (formula 20)
+}
+\details{
+  \deqn{ \tilde{ \mu }^{ \big(1\big) }_{X} \equiv \mu
+  ^{\big(1\big)}_{X} \\ \tilde{ \mu }^{ \big(n\big) }_{X}
+  \equiv \mu ^{n}_{X} \sum_{k=0}^{n-1} \big(-1\big)^{n-k+1}
+  \mu ^{n-k}_{X} \tilde{ \mu }^{\big(k\big)}_{X} }
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+\references{
+  A. Meucci - "Exercises in Advanced Risk and Portfolio
+  Management". See page 10. Symmys site containing original
+  MATLAB source code \url{http://www.symmys.com}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMVE.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMVE.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMVE.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,45 +1,45 @@
-\name{ComputeMVE}
-\alias{ComputeMVE}
-\title{Compute the minimum volume ellipsoid for a given (multi-variate) time-series}
-\usage{
-  ComputeMVE(data)
-}
-\arguments{
-  \item{data}{a matrix time-series of data. Each row is a
-  observation (date). Each column is an asset}
-}
-\value{
-  list a list with MVE_Location a numeric with the location
-  parameter of minimum volume ellipsoid MVE_Dispersion a
-  numeric with the covariance matrix of the minimum volume
-  ellipsoid
-}
-\description{
-  Function computes the minimum volume ellipsoid for a
-  given time series
-}
-\details{
-  via the expectations-minimization algorithm
-
-  \deqn{ w_{t} = \frac{1}{T} , t = 1,...,T \\ m \equiv
-  \frac{1}{ \sum_{s=1}^T w_{s} } \sum_{t=1}^T w_{t} x_{t}
-  \\ S \equiv \sum_{t=1}^T w_{t} \big(x_{t} - m\big)
-  \big(x_{t} - m\big)' \\ Ma_{t}^{2} \equiv \big(x-m\big)'
-  S^{-1} \big(x-m\big), t=1,...,T \\ w_{t} \mapsto w_{t}
-  Ma_{t}^{2} \\ U = \big(x_{1}' - \hat{E}',...,x_{T}' -
-  \hat{E}' \big) \\ \hat{Cov} \equiv \frac{1}{T} U'U }
-
-  The location and scatter parameters that define the
-  ellipsoid are multivariate high-breakdown estimators of
-  location and scatter
-}
-\author{
-  Ram Ahluwalia \email{ram at wingedfootcapital.com}
-}
-\references{
-  \url{http://www.symmys.com/sites/default/files/Risk\%20and\%20Asset\%20Allocation\%20-\%20Springer\%20Quantitative\%20Finance\%20-\%20Estimation.pdf}
-  See Sec. 4.6.1 of "Risk and Asset Allocation" - Springer
-  (2005), by A. Meucci for the theory and the routine
-  implemented below See Meucci script for "ComputeMVE.m"
-}
-
+\name{ComputeMVE}
+\alias{ComputeMVE}
+\title{Compute the minimum volume ellipsoid for a given (multi-variate) time-series}
+\usage{
+  ComputeMVE(data)
+}
+\arguments{
+  \item{data}{a matrix time-series of data. Each row is a
+  observation (date). Each column is an asset}
+}
+\value{
+  list a list with MVE_Location a numeric with the location
+  parameter of minimum volume ellipsoid MVE_Dispersion a
+  numeric with the covariance matrix of the minimum volume
+  ellipsoid
+}
+\description{
+  Function computes the minimum volume ellipsoid for a
+  given time series
+}
+\details{
+  via the expectations-minimization algorithm
+
+  \deqn{ w_{t} = \frac{1}{T} , t = 1,...,T \\ m \equiv
+  \frac{1}{ \sum_{s=1}^T w_{s} } \sum_{t=1}^T w_{t} x_{t}
+  \\ S \equiv \sum_{t=1}^T w_{t} \big(x_{t} - m\big)
+  \big(x_{t} - m\big)' \\ Ma_{t}^{2} \equiv \big(x-m\big)'
+  S^{-1} \big(x-m\big), t=1,...,T \\ w_{t} \mapsto w_{t}
+  Ma_{t}^{2} \\ U = \big(x_{1}' - \hat{E}',...,x_{T}' -
+  \hat{E}' \big) \\ \hat{Cov} \equiv \frac{1}{T} U'U }
+
+  The location and scatter parameters that define the
+  ellipsoid are multivariate high-breakdown estimators of
+  location and scatter
+}
+\author{
+  Ram Ahluwalia \email{ram at wingedfootcapital.com}
+}
+\references{
+  \url{http://www.symmys.com/sites/default/files/Risk\%20and\%20Asset\%20Allocation\%20-\%20Springer\%20Quantitative\%20Finance\%20-\%20Estimation.pdf}
+  See Sec. 4.6.1 of "Risk and Asset Allocation" - Springer
+  (2005), by A. Meucci for the theory and the routine
+  implemented below See Meucci script for "ComputeMVE.m"
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMoments.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMoments.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/ComputeMoments.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,32 +1,32 @@
-\name{ComputeMoments}
-\alias{ComputeMoments}
-\title{Takes a matrix of joint-scenario probability distributions and generates expectations, standard devation, and correlation matrix for the assets}
-\usage{
-  ComputeMoments(X, p)
-}
-\arguments{
-  \item{X}{a matrix of joint-probability scenarios (rows
-  are scenarios, columns are assets)}
-
-  \item{p}{a numeric vector containing the probabilities
-  for each of the scenarios in the matrix X}
-}
-\value{
-  means a numeric vector of the expectations (probability
-  weighted) for each asset
-
-  sd a numeric vector of standard deviations corresponding
-  to the assets in the covariance matrix
-
-  correlationMatrix the correlation matrix resulting from
-  converting the covariance matrix to a correlation matrix
-}
-\description{
-  Takes a matrix of joint-scenario probability
-  distributions and generates expectations, standard
-  devation, and correlation matrix for the assets
-}
-\author{
-  Ram Ahluwalia \email{ram at wingedfootcapital.com}
-}
-
+\name{ComputeMoments}
+\alias{ComputeMoments}
+\title{Takes a matrix of joint-scenario probability distributions and generates expectations, standard devation, and correlation matrix for the assets}
+\usage{
+  ComputeMoments(X, p)
+}
+\arguments{
+  \item{X}{a matrix of joint-probability scenarios (rows
+  are scenarios, columns are assets)}
+
+  \item{p}{a numeric vector containing the probabilities
+  for each of the scenarios in the matrix X}
+}
+\value{
+  means a numeric vector of the expectations (probability
+  weighted) for each asset
+
+  sd a numeric vector of standard deviations corresponding
+  to the assets in the covariance matrix
+
+  correlationMatrix the correlation matrix resulting from
+  converting the covariance matrix to a correlation matrix
+}
+\description{
+  Takes a matrix of joint-scenario probability
+  distributions and generates expectations, standard
+  devation, and correlation matrix for the assets
+}
+\author{
+  Ram Ahluwalia \email{ram at wingedfootcapital.com}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/CondProbViews.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/CondProbViews.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/CondProbViews.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,33 +1,33 @@
-\name{CondProbViews}
-\alias{CondProbViews}
-\title{Input conditional views}
-\usage{
-  CondProbViews(View, X)
-}
-\arguments{
-  \item{View}{TBD}
-
-  \item{X}{TBD}
-}
-\value{
-  A TBD
-
-  b TBD
-
-  g TBD
-}
-\description{
-  statement: View(k).Who (e.g. [1 3])= View(k).Equal (e.g.
-  {[2 3] [1 3 5]}) optional conditional statement:
-  View(k).Cond_Who (e.g. [2])= View(k).Cond_Equal (e.g.
-  {[1]}) amount of stress is quantified as Prob(statement)
-  <= View(k).v if View(k).sgn = 1; Prob(statement) >=
-  View(k).v if View(k).sgn = -1;
-}
-\details{
-  confidence in stress is quantified in View(k).c in (0,1)
-}
-\author{
-  Ram Ahluwalia \email{ram at wingedfootcapital.com}
-}
-
+\name{CondProbViews}
+\alias{CondProbViews}
+\title{Input conditional views}
+\usage{
+  CondProbViews(View, X)
+}
+\arguments{
+  \item{View}{TBD}
+
+  \item{X}{TBD}
+}
+\value{
+  A TBD
+
+  b TBD
+
+  g TBD
+}
+\description{
+  statement: View(k).Who (e.g. [1 3])= View(k).Equal (e.g.
+  {[2 3] [1 3 5]}) optional conditional statement:
+  View(k).Cond_Who (e.g. [2])= View(k).Cond_Equal (e.g.
+  {[1]}) amount of stress is quantified as Prob(statement)
+  <= View(k).v if View(k).sgn = 1; Prob(statement) >=
+  View(k).v if View(k).sgn = -1;
+}
+\details{
+  confidence in stress is quantified in View(k).c in (0,1)
+}
+\author{
+  Ram Ahluwalia \email{ram at wingedfootcapital.com}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/Cumul2Raw.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/Cumul2Raw.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/Cumul2Raw.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,36 +1,36 @@
-\name{Cumul2Raw}
-\alias{Cumul2Raw}
-\title{Transforms cumulants of Y-t into raw moments}
-\usage{
-  Cumul2Raw(ka)
-}
-\arguments{
-  \item{ka}{cumulants of Y}
-}
-\value{
-  mu_ the raw non-central moments of Y
-}
-\description{
-  step 5 of the projection process:
-}
-\details{
-  From the cumulants of Y we compute the raw non-central
-  moments of Y
-
-  We do so recursively by the identity in formula (24)
-  which follows from applying (21) and re-arranging terms
-
-  \deqn{ \tilde{ \mu } ^{ \big(n\big) }_{Y} \equiv \kappa^{
-  \big(n\big) }_{Y} + \sum_{k=1}^{n-1} (n-1)C_{k-1}
-  \kappa_{Y}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{Y} }
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-\references{
-  A. Meucci - "Annualization and General Projection of
-  Skewness, Kurtosis and All Summary Statistics" - formula
-  (24) Symmys site containing original MATLAB source code
-  \url{http://www.symmys.com/node/136}
-}
-
+\name{Cumul2Raw}
+\alias{Cumul2Raw}
+\title{Transforms cumulants of Y-t into raw moments}
+\usage{
+  Cumul2Raw(ka)
+}
+\arguments{
+  \item{ka}{cumulants of Y}
+}
+\value{
+  mu_ the raw non-central moments of Y
+}
+\description{
+  step 5 of the projection process:
+}
+\details{
+  From the cumulants of Y we compute the raw non-central
+  moments of Y
+
+  We do so recursively by the identity in formula (24)
+  which follows from applying (21) and re-arranging terms
+
+  \deqn{ \tilde{ \mu } ^{ \big(n\big) }_{Y} \equiv \kappa^{
+  \big(n\big) }_{Y} + \sum_{k=1}^{n-1} (n-1)C_{k-1}
+  \kappa_{Y}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{Y} }
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+\references{
+  A. Meucci - "Annualization and General Projection of
+  Skewness, Kurtosis and All Summary Statistics" - formula
+  (24) Symmys site containing original MATLAB source code
+  \url{http://www.symmys.com/node/136}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/DetectOutliersViaMVE.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/DetectOutliersViaMVE.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/DetectOutliersViaMVE.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,32 +1,32 @@
-\name{DetectOutliersViaMVE}
-\alias{DetectOutliersViaMVE}
-\title{Use the minimum volume ellipsoid to detect outliers}
-\usage{
-  DetectOutliersViaMVE(corruptSample)
-}
-\arguments{
-  \item{corruptSample}{a matrix of returns with outlier
-  data. Rows are observations, columns are assets.}
-}
-\value{
-  a list containing: plotdata a matrix of data used to plot
-  minimum volume ellipsoid as a function of its length
-  cutofflist an ordering of observations with the highest
-  Mahalanobis distance (i.e. ordering of outliers by their
-  index )#' numOutliers returns the number of outliers
-  based on the slope of the minimum volume ellipsoid as a
-  function of sample data
-}
-\description{
-  See Sec. 4.6.1 of "Risk and Asset Allocation" - Springer
-  (2005), by A. Meucci for the theory and the routine
-  implemented below
-}
-\author{
-  Ram Ahluwalia \email{ram at wingedfootcapital.com}
-}
-\references{
-  \url{http://www.symmys.com} See Meucci script for
-  "S_HighBreakdownMVE.m"
-}
-
+\name{DetectOutliersViaMVE}
+\alias{DetectOutliersViaMVE}
+\title{Use the minimum volume ellipsoid to detect outliers}
+\usage{
+  DetectOutliersViaMVE(corruptSample)
+}
+\arguments{
+  \item{corruptSample}{a matrix of returns with outlier
+  data. Rows are observations, columns are assets.}
+}
+\value{
+  a list containing: plotdata a matrix of data used to plot
+  minimum volume ellipsoid as a function of its length
+  cutofflist an ordering of observations with the highest
+  Mahalanobis distance (i.e. ordering of outliers by their
+  index )#' numOutliers returns the number of outliers
+  based on the slope of the minimum volume ellipsoid as a
+  function of sample data
+}
+\description{
+  See Sec. 4.6.1 of "Risk and Asset Allocation" - Springer
+  (2005), by A. Meucci for the theory and the routine
+  implemented below
+}
+\author{
+  Ram Ahluwalia \email{ram at wingedfootcapital.com}
+}
+\references{
+  \url{http://www.symmys.com} See Meucci script for
+  "S_HighBreakdownMVE.m"
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/EntropyProg.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/EntropyProg.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/EntropyProg.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,88 +1,88 @@
-\name{EntropyProg}
-\alias{EntropyProg}
-\title{Entropy pooling program for blending views on scenarios with a prior scenario-probability distribution}
-\usage{
-  EntropyProg(p, A, b, Aeq, beq)
-}
-\arguments{
-  \item{p}{a vector of initial probabilities based on prior
-  (reference model, empirical distribution, etc.). Sum of
-  'p' must be 1}
-
-  \item{Aeq}{matrix consisting of equality constraints
-  (paired with argument 'beq'). Denoted as 'H' in the
-  Meucci paper. (denoted as 'H' in the "Meucci - Flexible
-  Views Theory & Practice" paper formlua 86 on page 22)}
-
-  \item{beq}{vector corresponding to the matrix of equality
-  constraints (paired with argument 'Aeq'). Denoted as 'h'
-  in the Meucci paper}
-
-  \item{A}{matrix consisting of inequality constraints
-  (paired with argument 'b'). Denoted as 'F' in the Meucci
-  paper}
-
-  \item{b}{vector consisting of inequality constraints
-  (paired with matrix A). Denoted as 'f' in the Meucci
-  paper}
-}
-\value{
-  a list with p_ revised probabilities based on entropy
-  pooling optimizationPerformance a list with status of
-  optimization, value, number of iterations and sum of
-  probabilities.
-}
-\description{
-  Entropy program will change the initial predictive
-  distribution 'p' to a new set 'p_' that satisfies
-  specified moment conditions but changes other propoerties
-  of the new distribution the least by minimizing the
-  relative entropy between the two distributions.
-  Theoretical note: Relative Entropy (Kullback-Leibler
-  information criterion KLIC) is an asymmetric measure.
-}
-\details{
-  We retrieve a new set of probabilities for the
-  joint-scenarios using the Entropy pooling method Of the
-  many choices of 'p' that satisfy the views, we choose 'p'
-  that minimize the entropy or distance of the new
-  probability distribution to the prior joint-scenario
-  probabilities We use Kullback-Leibler divergence or
-  relative entropy dist(p,q): Sum across all scenarios [
-  p-t * ln( p-t / q-t ) ] Therefore we define solution as
-  p* = argmin (choice of p ) [ sum across all scenarios:
-  p-t * ln( p-t / q-t) ], such that 'p' satisfies views.
-  The views modify the prior in a cohrent manner
-  (minimizing distortion) We forumulate the stress tests of
-  the baseline scenarios as linear constraints on yet-to-be
-  defined probabilities Note that the numerical
-  optimization acts on a very limited number of variables
-  equal to the number of views. It does not act directly on
-  the very large number of variables of interest, namely
-  the probabilities of the Monte Carlo scenarios. This
-  feature guarantees the numerical feasability of entropy
-  optimization Note that new probabilities are generated in
-  much the same way that the state-price density modifies
-  objective probabilities of pay-offs to risk-neutral
-  probabilities in contingent-claims asset pricing
-
-  Compute posterior (=change of measure) with Entropy
-  Pooling, as described in
-}
-\author{
-  Ram Ahluwalia \email{ram at wingedfootcapital.com}
-}
-\references{
-  A. Meucci - "Fully Flexible Views: Theory and Practice".
-  See page 22 for illustration of numerical implementation
-  Symmys site containing original MATLAB source code
-  \url{http://www.symmys.com} NLOPT open-source
-  optimization site containing background on algorithms
-  \url{http://ab-initio.mit.edu/wiki/index.php/NLopt} We
-  use the information-theoretic estimator of Kitamur and
-  Stutzer (1997). Reversing 'p' and 'p_' leads to the
-  empirical likelihood" estimator of Qin and Lawless
-  (1994). See Robertson et al, "Forecasting Using Relative
-  Entropy" (2002) for more theory
-}
-
+\name{EntropyProg}
+\alias{EntropyProg}
+\title{Entropy pooling program for blending views on scenarios with a prior scenario-probability distribution}
+\usage{
+  EntropyProg(p, A, b, Aeq, beq)
+}
+\arguments{
+  \item{p}{a vector of initial probabilities based on prior
+  (reference model, empirical distribution, etc.). Sum of
+  'p' must be 1}
+
+  \item{Aeq}{matrix consisting of equality constraints
+  (paired with argument 'beq'). Denoted as 'H' in the
+  Meucci paper. (denoted as 'H' in the "Meucci - Flexible
+  Views Theory & Practice" paper formlua 86 on page 22)}
+
+  \item{beq}{vector corresponding to the matrix of equality
+  constraints (paired with argument 'Aeq'). Denoted as 'h'
+  in the Meucci paper}
+
+  \item{A}{matrix consisting of inequality constraints
+  (paired with argument 'b'). Denoted as 'F' in the Meucci
+  paper}
+
+  \item{b}{vector consisting of inequality constraints
+  (paired with matrix A). Denoted as 'f' in the Meucci
+  paper}
+}
+\value{
+  a list with p_ revised probabilities based on entropy
+  pooling optimizationPerformance a list with status of
+  optimization, value, number of iterations and sum of
+  probabilities.
+}
+\description{
+  Entropy program will change the initial predictive
+  distribution 'p' to a new set 'p_' that satisfies
+  specified moment conditions but changes other propoerties
+  of the new distribution the least by minimizing the
+  relative entropy between the two distributions.
+  Theoretical note: Relative Entropy (Kullback-Leibler
+  information criterion KLIC) is an asymmetric measure.
+}
+\details{
+  We retrieve a new set of probabilities for the
+  joint-scenarios using the Entropy pooling method Of the
+  many choices of 'p' that satisfy the views, we choose 'p'
+  that minimize the entropy or distance of the new
+  probability distribution to the prior joint-scenario
+  probabilities We use Kullback-Leibler divergence or
+  relative entropy dist(p,q): Sum across all scenarios [
+  p-t * ln( p-t / q-t ) ] Therefore we define solution as
+  p* = argmin (choice of p ) [ sum across all scenarios:
+  p-t * ln( p-t / q-t) ], such that 'p' satisfies views.
+  The views modify the prior in a cohrent manner
+  (minimizing distortion) We forumulate the stress tests of
+  the baseline scenarios as linear constraints on yet-to-be
+  defined probabilities Note that the numerical
+  optimization acts on a very limited number of variables
+  equal to the number of views. It does not act directly on
+  the very large number of variables of interest, namely
+  the probabilities of the Monte Carlo scenarios. This
+  feature guarantees the numerical feasability of entropy
+  optimization Note that new probabilities are generated in
+  much the same way that the state-price density modifies
+  objective probabilities of pay-offs to risk-neutral
+  probabilities in contingent-claims asset pricing
+
+  Compute posterior (=change of measure) with Entropy
+  Pooling, as described in
+}
+\author{
+  Ram Ahluwalia \email{ram at wingedfootcapital.com}
+}
+\references{
+  A. Meucci - "Fully Flexible Views: Theory and Practice".
+  See page 22 for illustration of numerical implementation
+  Symmys site containing original MATLAB source code
+  \url{http://www.symmys.com} NLOPT open-source
+  optimization site containing background on algorithms
+  \url{http://ab-initio.mit.edu/wiki/index.php/NLopt} We
+  use the information-theoretic estimator of Kitamur and
+  Stutzer (1997). Reversing 'p' and 'p_' leads to the
+  empirical likelihood" estimator of Qin and Lawless
+  (1994). See Robertson et al, "Forecasting Using Relative
+  Entropy" (2002) for more theory
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/GenerateLogNormalDistribution.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/GenerateLogNormalDistribution.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/GenerateLogNormalDistribution.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,28 +1,28 @@
-\name{GenerateLogNormalDistribution}
-\alias{GenerateLogNormalDistribution}
-\title{Generate arbitrary distribution of a shifted-lognormal invariant}
-\usage{
-  GenerateLogNormalDistribution(J, a, m, s)
-}
-\arguments{
-  \item{J}{a numeric with the number of scenarios}
-
-  \item{a}{a numeric with the location shift parameter.
-  Mean of distribution will be exp(a)}
-
-  \item{m}{log of the mean of the distribution}
-
-  \item{s}{log of the standard deviation of the
-  distribution}
-}
-\value{
-  X a numeric vector with i.i.d. lognormal samples based on
-  parameters J, a, m, and s where X = a + exp( m + s * Z )
-}
-\description{
-  %\deqn{X-t + a ~ LogN(m,s^2)} (formula 14)
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-
+\name{GenerateLogNormalDistribution}
+\alias{GenerateLogNormalDistribution}
+\title{Generate arbitrary distribution of a shifted-lognormal invariant}
+\usage{
+  GenerateLogNormalDistribution(J, a, m, s)
+}
+\arguments{
+  \item{J}{a numeric with the number of scenarios}
+
+  \item{a}{a numeric with the location shift parameter.
+  Mean of distribution will be exp(a)}
+
+  \item{m}{log of the mean of the distribution}
+
+  \item{s}{log of the standard deviation of the
+  distribution}
+}
+\value{
+  X a numeric vector with i.i.d. lognormal samples based on
+  parameters J, a, m, and s where X = a + exp( m + s * Z )
+}
+\description{
+  \deqn{X = a + e^{ m + sZ }} (formula 14)
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/MvnRnd.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/MvnRnd.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/MvnRnd.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,33 +1,33 @@
-\name{MvnRnd}
-\alias{MvnRnd}
-\title{Generates normal simulations whose sample moments match the population moments}
-\usage{
-  MvnRnd(M, S, J)
-}
-\arguments{
-  \item{M}{a numeric indicating the sample first moment of
-  the distribution}
-
-  \item{S}{a covariance matrix}
-
-  \item{J}{a numeric indicating the number of trials}
-}
-\description{
-  Adapted from file 'MvnRnd.m'. Most recent version of
-  article and code available at
-  http://www.symmys.com/node/162 see A. Meucci -
-  "Simulations with Exact Means and Covariances", Risk,
-  July 2009
-}
-\author{
-  Ram Ahluwalia \email{rahluwalia at gmail.com}
-}
-\references{
-  \url{http://www.symmys.com} TODO: Add Schur
-  decomposition. Right now function is only sampling from
-  mvrnorm so sample moments do no match population moments
-  I have sample code commented out below to implement this
-  correctly but I require a function that returns the
-  unitaryMatrix from a Schur decomposition
-}
-
+\name{MvnRnd}
+\alias{MvnRnd}
+\title{Generates normal simulations whose sample moments match the population moments}
+\usage{
+  MvnRnd(M, S, J)
+}
+\arguments{
+  \item{M}{a numeric indicating the sample first moment of
+  the distribution}
+
+  \item{S}{a covariance matrix}
+
+  \item{J}{a numeric indicating the number of trials}
+}
+\description{
+  Adapted from file 'MvnRnd.m'. Most recent version of
+  article and code available at
+  http://www.symmys.com/node/162 see A. Meucci -
+  "Simulations with Exact Means and Covariances", Risk,
+  July 2009
+}
+\author{
+  Ram Ahluwalia \email{rahluwalia at gmail.com}
+}
+\references{
+  \url{http://www.symmys.com} TODO: Add Schur
+  decomposition. Right now function is only sampling from
+  mvrnorm so sample moments do no match population moments
+  I have sample code commented out below to implement this
+  correctly but I require a function that returns the
+  unitaryMatrix from a Schur decomposition
+}
+

Modified: pkg/PerformanceAnalytics/sandbox/Meucci/man/NoisyObservations.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/man/NoisyObservations.Rd	2012-07-23 02:41:05 UTC (rev 2196)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/man/NoisyObservations.Rd	2012-07-23 02:42:08 UTC (rev 2197)
@@ -1,28 +1,31 @@
-\name{NoisyObservations}
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/returnanalytics -r 2197


More information about the Returnanalytics-commits mailing list