[Pomp-commits] r1144 - www/vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Mar 16 13:22:00 CET 2015


Author: kingaa
Date: 2015-03-16 13:21:59 +0100 (Mon, 16 Mar 2015)
New Revision: 1144

Modified:
   www/vignettes/getting_started.R
   www/vignettes/getting_started.Rmd
   www/vignettes/getting_started.html
   www/vignettes/pomp.pdf
Log:
- more work on "getting started" vignette

Modified: www/vignettes/getting_started.R
===================================================================
--- www/vignettes/getting_started.R	2015-03-16 12:21:51 UTC (rev 1143)
+++ www/vignettes/getting_started.R	2015-03-16 12:21:59 UTC (rev 1144)
@@ -25,7 +25,6 @@
   )
 
 ## ----prelims,echo=F,cache=F----------------------------------------------
-set.seed(594709947L)
 require(ggplot2)
 require(plyr)
 require(reshape2)
@@ -40,6 +39,15 @@
   scipen=5
   )
 
+## ----parallel,include=FALSE,cache=FALSE----------------------------------
+require(foreach)
+require(doMC)
+options(cores=5)
+registerDoMC()
+set.seed(594709947L,kind="L'Ecuyer")
+mcopts <- list(set.seed=TRUE)
+paropts <- list(.options.multicore=mcopts)
+
 ## ----eval=FALSE----------------------------------------------------------
 ## install.packages("pomp",repos="http://R-Forge.R-Project.org")
 
@@ -210,12 +218,45 @@
 tm <- traj.match(parus,start=c(r=1,K=200,phi=1,N.0=200,sigma=0.5),
                  est=c("r","K","phi"),transform=TRUE)
 signif(coef(tm),3)
+logLik(tm)
 
 ## ----parus-tm-sim1,cache=FALSE-------------------------------------------
 coef(tm,"sigma") <- 0
-sim <- simulate(tm,nsim=10,as.data.frame=TRUE,include.data=TRUE)
-ggplot(data=sim,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
+sim1 <- simulate(tm,nsim=10,as.data.frame=TRUE,include.data=TRUE)
+ggplot(data=sim1,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
   scale_alpha_manual(name="",values=c(`TRUE`=1,`FALSE`=0.2),
                      labels=c(`FALSE`="simulation",`TRUE`="data"))+
   geom_line()
 
+## ----parus-mif,cache=TRUE------------------------------------------------
+mf <- mif(parus,Nmif=50,Np=1000,method="mif2",cooling.fraction=0.8,
+          rw.sd=c(r=0.02,K=0.02,phi=0.02,sigma=0.02),transform=TRUE)
+mf <- mif(mf)
+mle <- coef(mf); mle
+logmeanexp(replicate(5,logLik(pfilter(mf))),se=TRUE)
+sim2 <- simulate(mf,nsim=10,as.data.frame=TRUE,include.data=TRUE)
+ggplot(data=sim2,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
+  scale_alpha_manual(name="",values=c(`TRUE`=1,`FALSE`=0.2),
+                     labels=c(`FALSE`="simulation",`TRUE`="data"))+
+  geom_line()
+
+## ----parus-pmcmc,cache=TRUE----------------------------------------------
+dprior <- Csnippet("
+  lik = dunif(r,0,5,1)+dunif(K,100,800,1)+dunif(phi,0,2,1)+
+    dunif(sigma,0,2,1);
+  lik = (give_log) ? lik : exp(lik);
+  ")
+parus <- pomp(parus,dprior=dprior,paramnames=c("r","K","phi","sigma"))
+pchs <- foreach (i=1:5,.combine=c,
+                 .options.multicore=mcopts) %dopar% {
+  pmcmc(parus,Nmcmc=1000,Np=100,start=mle,
+        proposal=mvn.diag.rw(c(r=0.02,K=0.02,phi=0.02,sigma=0.02)))
+  }
+traces <- conv.rec(pchs,c("r","K","phi"))
+require(coda)
+plot(traces[,"r"])
+plot(traces[,"K"])
+plot(traces[,"phi"])
+gelman.plot(traces)
+gelman.diag(traces)
+

Modified: www/vignettes/getting_started.Rmd
===================================================================
--- www/vignettes/getting_started.Rmd	2015-03-16 12:21:51 UTC (rev 1143)
+++ www/vignettes/getting_started.Rmd	2015-03-16 12:21:59 UTC (rev 1144)
@@ -44,7 +44,6 @@
 
 
 ```{r prelims,echo=F,cache=F}
-set.seed(594709947L)
 require(ggplot2)
 require(plyr)
 require(reshape2)
@@ -59,6 +58,15 @@
   scipen=5
   )
 ```
+```{r parallel,include=FALSE,cache=FALSE}
+require(foreach)
+require(doMC)
+options(cores=5)
+registerDoMC()
+set.seed(594709947L,kind="L'Ecuyer")
+mcopts <- list(set.seed=TRUE)
+paropts <- list(.options.multicore=mcopts)
+```
 
 ## Introduction
 
@@ -426,13 +434,14 @@
 tm <- traj.match(parus,start=c(r=1,K=200,phi=1,N.0=200,sigma=0.5),
                  est=c("r","K","phi"),transform=TRUE)
 signif(coef(tm),3)
+logLik(tm)
 ```
 
 We can simulate the fitted model and compare it against the data.
 ```{r parus-tm-sim1,cache=FALSE}
 coef(tm,"sigma") <- 0
-sim <- simulate(tm,nsim=10,as.data.frame=TRUE,include.data=TRUE)
-ggplot(data=sim,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
+sim1 <- simulate(tm,nsim=10,as.data.frame=TRUE,include.data=TRUE)
+ggplot(data=sim1,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
   scale_alpha_manual(name="",values=c(`TRUE`=1,`FALSE`=0.2),
                      labels=c(`FALSE`="simulation",`TRUE`="data"))+
   geom_line()
@@ -440,8 +449,49 @@
 
 ## Maximizing the likelihood by iterated filtering
 
+Iterated filtering [@Ionides2015; @Ionides2006] is a method for maximizing the likelihood by repeatedly applying a particle filter.  The following codes apply the IF2 algorithm [@Ionides2015].
+```{r parus-mif,cache=TRUE}
+mf <- mif(parus,Nmif=50,Np=1000,method="mif2",cooling.fraction=0.8,
+          rw.sd=c(r=0.02,K=0.02,phi=0.02,sigma=0.02),transform=TRUE)
+mf <- mif(mf)
+mle <- coef(mf); mle
+logmeanexp(replicate(5,logLik(pfilter(mf))),se=TRUE)
+sim2 <- simulate(mf,nsim=10,as.data.frame=TRUE,include.data=TRUE)
+ggplot(data=sim2,mapping=aes(x=time,y=pop,group=sim,alpha=(sim=="data")))+
+  scale_alpha_manual(name="",values=c(`TRUE`=1,`FALSE`=0.2),
+                     labels=c(`FALSE`="simulation",`TRUE`="data"))+
+  geom_line()
+```
+
+The first command runs 50 iterations of the algorithm; the second re-runs the algorithm from where the first run ended up.
+The next line extracts and displays the MLE. 
+The fourth command runs 5 replicate particle filters to compute the log likelihood at the estimated parameters and averages these appropriately to get an estimate of this likelihood and of the standard Monte Carlo error.
+Finally, the above plots the data and 10 simulated realizations of the model process on the same axes.
+
 ## Sampling the posterior using particle Markov chain Monte Carlo
 
+The following codes cause 5 parallel pMCMC chains to be run, beginning at the MLE obtained above.
+```{r parus-pmcmc,cache=TRUE}
+dprior <- Csnippet("
+  lik = dunif(r,0,5,1)+dunif(K,100,800,1)+dunif(phi,0,2,1)+
+    dunif(sigma,0,2,1);
+  lik = (give_log) ? lik : exp(lik);
+  ")
+parus <- pomp(parus,dprior=dprior,paramnames=c("r","K","phi","sigma"))
+pchs <- foreach (i=1:5,.combine=c,
+                 .options.multicore=mcopts) %dopar% {
+  pmcmc(parus,Nmcmc=1000,Np=100,start=mle,
+        proposal=mvn.diag.rw(c(r=0.02,K=0.02,phi=0.02,sigma=0.02)))
+  }
+traces <- conv.rec(pchs,c("r","K","phi"))
+require(coda)
+plot(traces[,"r"])
+plot(traces[,"K"])
+plot(traces[,"phi"])
+gelman.plot(traces)
+gelman.diag(traces)
+```
+
 ## Model checking using probes
 
 ## References

Modified: www/vignettes/getting_started.html
===================================================================
--- www/vignettes/getting_started.html	2015-03-16 12:21:51 UTC (rev 1143)
+++ www/vignettes/getting_started.html	2015-03-16 12:21:59 UTC (rev 1144)
@@ -90,7 +90,7 @@
 </div>
 
 <p>Licensed under the <a href="http://creativecommons.org/licenses/by-nc/3.0">Creative Commons attribution-noncommercial license</a>. Please share and remix noncommercially, mentioning its origin.<br /><img src="" alt="CC-BY_NC" /></p>
-<p>This document was produced using <code>pomp</code> version 0.62.8.</p>
+<p>This document was produced using <code>pomp</code> version 0.63.1.</p>
 <div id="introduction" class="section level2">
 <h2>Introduction</h2>
 <p>This tutorial aims to help you get started using <code>pomp</code> as a suite of tools for analysis of time series data based on dynamical systems models. First, we give some conceptual background regarding the class of models—partially observed Markov processes—that <code>pomp</code> handles. We then discuss some preliminaries: installing the package and so on. Next, using a basic question about ecological population regulation as an example, we load some data and implement some models as <code>R</code> objects of class <code>pomp</code>. Finally, we illustrate some of the package’s capabilities by using its algorithms to fit and compare the models using various inference methods.</p>
@@ -174,7 +174,7 @@
   geom_line()+geom_point()+
   expand_limits(y=0)+
   theme_classic()</code></pre>
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/pomp -r 1144


More information about the pomp-commits mailing list