[Lme4-commits] r1898 - www/JSS
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu May 24 18:54:27 CEST 2018
Author: bbolker
Date: 2018-05-24 18:54:26 +0200 (Thu, 24 May 2018)
New Revision: 1898
Modified:
www/JSS/glmer.Rnw
Log:
glmer tweaks
Modified: www/JSS/glmer.Rnw
===================================================================
--- www/JSS/glmer.Rnw 2018-02-09 20:33:50 UTC (rev 1897)
+++ www/JSS/glmer.Rnw 2018-05-24 16:54:26 UTC (rev 1898)
@@ -13,10 +13,11 @@
Martin M\"achler\\ETH Zurich
}
\Plainauthor{Steve Walker, Rune Haubo Bojesen Christensen, Douglas Bates, Martin M\"achler, Ben Bolker}
-\title{Fitting generalized liner mixed-effects models using \pkg{lme4}}
+\title{Fitting generalized linear mixed-effects models using \pkg{lme4}}
\Plaintitle{Fitting generalized linear mixed models using lme4}
\Shorttitle{GLMMs with lme4}
\Abstract{%
+
\bmb{abstract goes here}
}
\Keywords{%
@@ -72,8 +73,10 @@
options(width=69, show.signif.stars=FALSE, str=strOptions(strict.width="cut"))
library(knitr)
library(lme4)
+library(lattice)
opts_chunk$set(engine='R',dev='pdf',fig.width=10,
- fig.height=6.5,strip.white=all,
+ error=FALSE, ## stop on error
+ fig.height=6.5,strip.white=TRUE,
cache=TRUE,tidy=FALSE,prompt=TRUE,comment=NA)
@ % $ <- for emacs ESS
\setkeys{Gin}{width=\textwidth}
@@ -145,7 +148,7 @@
The form of the distribution determines the conditional variance,
$\Var(\mc Y|\mc U=\bm u)$, as a function of the conditional mean and,
-possibly, a separate scale factor. (In most cases the conditional
+possibly, a separate scale factor. (In the most common cases the conditional
variance is completely determined by the conditional mean.)
The likelihood of the parameters, given the observed data, is now
@@ -195,7 +198,7 @@
When the conditional density, $\mc U|\mc Y=\yobs$, is multivariate
Gaussian, this conditional mode will also be the conditional mean.
However, for most families used in GLMMs, the mode and the mean need
-not coincide so use the more general term and call $\tilde{\bm
+not coincide so we use a more general term and call $\tilde{\bm
u}_{\beta,\theta}$ the \emph{conditional mode}. We first describe
the numerical methods
for determining the conditional mode using the Penalized Iteratively
@@ -206,7 +209,7 @@
\label{sec:conditionalMode}
The iteratively reweighted least squares (IRLS) algorithm is an
-incredibly efficient method of determining the maximum likelihood
+efficient method of determining the maximum likelihood
estimates of the coefficients in a generalized linear model. We
extend it to a \emph{penalized iteratively reweighted least squares}
(PIRLS) algorithm for determining the conditional mode, $\tilde{\bm
More information about the Lme4-commits
mailing list