[Lme4-commits] r1599 - in pkg/lme4Eigen: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Feb 13 18:47:32 CET 2012


Author: dmbates
Date: 2012-02-13 18:47:32 +0100 (Mon, 13 Feb 2012)
New Revision: 1599

Removed:
   pkg/lme4Eigen/R/lme4Eigen-package.R
Modified:
   pkg/lme4Eigen/DESCRIPTION
   pkg/lme4Eigen/R/AllClass.R
   pkg/lme4Eigen/man/merMod-class.Rd
Log:
Leave data set documentation in the man directory only.  Change aliases in documentation to S3 methods where appropriate.


Modified: pkg/lme4Eigen/DESCRIPTION
===================================================================
--- pkg/lme4Eigen/DESCRIPTION	2012-02-10 23:41:09 UTC (rev 1598)
+++ pkg/lme4Eigen/DESCRIPTION	2012-02-13 17:47:32 UTC (rev 1599)
@@ -40,7 +40,6 @@
     'AllGeneric.R'
     'GHrule.R'
     'jml.R'
-    'lme4Eigen-package.R'
     'lmer.R'
     'lmList.R'
     'mlirt.R'

Modified: pkg/lme4Eigen/R/AllClass.R
===================================================================
--- pkg/lme4Eigen/R/AllClass.R	2012-02-10 23:41:09 UTC (rev 1598)
+++ pkg/lme4Eigen/R/AllClass.R	2012-02-13 17:47:32 UTC (rev 1599)
@@ -849,13 +849,13 @@
 ##' 
 ##' @name merMod-class
 ##' @aliases merMod-class lmerMod-class glmerMod-class nlmerMod-class
-##' anova,merMod-method coef,merMod-method deviance,merMod-method
-##' fitted,merMod-method formula,merMod-method logLik,merMod-method
-##' model.frame,merMod-method model.matrix,merMod-method print,merMod-method
-##' show,merMod-method simulate,merMod-method summary,merMod-method
-##' terms,merMod-method update,merMod-method VarCorr,merMod-method
-##' vcov,merMod-method print,summary.mer-method show,summary.mer-method
-##' summary,summary.mer-method vcov,summary.mer-method
+##' anova.merMod coef.merMod deviance.merMod
+##' fitted.merMod formula.merMod logLik.merMod
+##' model.frame.merMod model.matrix.merMod print.merMod
+##' show.merMod simulate.merMod summary.merMod
+##' terms.merMod update.merMod VarCorr.merMod
+##' vcov.merMod print.summary.mer show.summary.mer
+##' summary.summary.mer vcov.summary.mer
 ##' @docType class
 ##' @section Objects from the Class: Objects are created by calls to
 ##' \code{\link{lmer}}, \code{\link{glmer}} or \code{\link{nlmer}}.

Deleted: pkg/lme4Eigen/R/lme4Eigen-package.R
===================================================================
--- pkg/lme4Eigen/R/lme4Eigen-package.R	2012-02-10 23:41:09 UTC (rev 1598)
+++ pkg/lme4Eigen/R/lme4Eigen-package.R	2012-02-13 17:47:32 UTC (rev 1599)
@@ -1,478 +0,0 @@
-### roxygen2 documentation for data sets in the package
-
-##' Breakage angle of chocolate cakes
-##' 
-##' Data on the breakage angle of chocolate cakes made with three different
-##' recipes and baked at six different temperatures.  This is a split-plot
-##' design with the recipes being whole-units and the different temperatures
-##' being applied to sub-units (within replicates). The experimental notes
-##' suggest that the replicate numbering represents temporal ordering.
-##' 
-##' The \code{replicate} factor is nested within the \code{recipe} factor, and
-##' \code{temperature} is nested within \code{replicate}.
-##' 
-##' @name cake
-##' @docType data
-##' @format A data frame with 270 observations on the following 5 variables.
-##'   \describe{
-##'     \item{\code{replicate}}{a factor with levels \code{1} to \code{15}}
-##'     \item{\code{recipe}}{a factor with levels \code{A}, \code{B} and \code{C}}
-##'     \item{\code{temperature}}{an ordered factor with levels \code{175}
-##'       < \code{185} < \code{195} < \code{205} < \code{215} < \code{225}}
-##'     \item{\code{angle}}{a numeric vector giving the angle at which the
-##'       cake broke.}
-##'     \item{\code{temp}}{numeric value of the baking temperature (degrees F).}
-##'   }
-##' @references Cook, F. E. (1938) \emph{Chocolate cake, I. Optimum baking
-##'   temperature}. Master's Thesis, Iowa State College.
-##' 
-##'   Cochran, W. G., and Cox, G. M. (1957) \emph{Experimental designs}, 2nd Ed.
-##'   New York, John Wiley \& Sons.
-##' 
-##'   Lee, Y., Nelder, J. A., and Pawitan, Y. (2006) \emph{Generalized linear
-##'   models with random effects. Unified analysis via H-likelihood}. Boca Raton,
-##'   Chapman and Hall/CRC.
-##' @source Original data were presented in Cook (1938), and reported in Cochran
-##'    and Cox (1957, p. 300).  Also cited in Lee, Nelder and Pawitan (2006).
-##' @keywords datasets
-##' @examples
-##' str(cake)
-##' ## 'temp' is continuous, 'temperature' an ordered factor with 6 levels
-##' 
-##' fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML= FALSE)
-##' print(fm1, corr=FALSE)
-##' fm2 <- lmer(angle ~ recipe + temperature + (1|recipe:replicate), cake, REML= FALSE)
-##' print(fm2, corr=FALSE)
-##' fm3 <- lmer(angle ~ recipe + temp        + (1|recipe:replicate), cake, REML= FALSE)
-##' fm3
-##' 
-##' ## and now "choose" :
-##' anova(fm3, fm2, fm1)
-##' 
-NULL
-
-##' Contagious bovine pleuropneumonia
-##' 
-##' Contagious bovine pleuropneumonia (CBPP) is a major disease of cattle in
-##' Africa, caused by a mycoplasma.  This dataset describes the serological
-##' incidence of CBPP in zebu cattle during a follow-up survey implemented in 15
-##' commercial herds located in the Boji district of Ethiopia.  The goal of the
-##' survey was to study the within-herd spread of CBPP in newly infected herds.
-##' Blood samples were quarterly collected from all animals of these herds to
-##' determine their CBPP status.  These data were used to compute the
-##' serological incidence of CBPP (new cases occurring during a given time
-##' period).  Some data are missing (lost to follow-up).
-##' 
-##' Serological status was determined using a competitive enzyme-linked
-##' immuno-sorbent assay (cELISA).
-##' 
-##' @name cbpp
-##' @docType data
-##' @format A data frame with 56 observations on the following 4 variables.
-##'   \describe{
-##'     \item{\code{herd}}{A factor identifying the herd (1 to 15).}
-##'     \item{\code{incidence}}{The number of new serological cases for a
-##'       given herd and time period.}
-##'     \item{\code{size}}{A numeric vector describing herd size at the
-##'       beginning of a given time period.}
-##'     \item{\code{period}}{A factor with levels \code{1} to \code{4}.}
-##'   }
-##' @source Lesnoff, M., Laval, G., Bonnet, P., Abdicho, S., Workalemahu, A.,
-##' Kifle, D., Peyraud, A., Lancelot, R., Thiaucourt, F. (2004) Within-herd
-##' spread of contagious bovine pleuropneumonia in Ethiopian highlands.
-##' \emph{Preventive Veterinary Medicine} \bold{64}, 27--40.
-##' @keywords datasets
-##' @examples
-##' 
-##' ## response as a matrix
-##' (m1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
-##'              cbpp, binomial, nAGQ=25L))
-##' ## response as a vector of probabilities and usage of argument "weights"
-##' m1p <- glmer(incidence / size ~ period + (1 | herd), weights = size,
-##'              cbpp, binomial, nAGQ=25L)
-##' ## Confirm that these are equivalent:
-##' stopifnot(all.equal(fixef(m1), fixef(m1p), tol = 1e-5),
-##'           all.equal(ranef(m1), ranef(m1p), tol = 1e-5),
-##'           TRUE)
-##' ## Can this section be moved to a test file?  I don't think it belongs in an example. DB
-##' for(m in c(m1, m1p)) {
-##'     cat("-------\n\nCall: ",
-##'         paste(format(getCall(m)), collapse="\n"), "\n")
-##'     print(logLik(m)); cat("AIC:", AIC(m), "\n") ; cat("BIC:", BIC(m),"\n")
-##' }
-##' stopifnot(all.equal(logLik(m1), logLik(m1p), tol = 1e-5),
-##'           all.equal(AIC(m1),    AIC(m1p),    tol = 1e-5),
-##'           all.equal(BIC(m1),    BIC(m1p),    tol = 1e-5))
-##' 
-##' ## GLMM with individual-level variability (accounting for overdispersion)
-##' cbpp$obs <- 1:nrow(cbpp)
-##' (m2 <- glmer(cbind(incidence, size - incidence) ~ period +
-##'     (1 | herd) +  (1|obs),
-##'               family = binomial, data = cbpp))
-##' 
-##' 
-NULL
-
-##' Yield of dyestuff by batch
-##' 
-##' The \code{Dyestuff} data frame provides the yield of dyestuff (Naphthalene
-##' Black 12B) from 5 different preparations from each of 6 different batchs of
-##' an intermediate product (H-acid).  The \code{Dyestuff2} data were generated
-##' data in the same structure but with a large residual variance relative to
-##' the batch variance.
-##' 
-##' The \code{Dyestuff} data are described in Davies and Goldsmith (1972) as
-##' coming from \dQuote{an investigation to find out how much the variation from
-##' batch to batch in the quality of an intermediate product (H-acid)
-##' contributes to the variation in the yield of the dyestuff (Naphthalene Black
-##' 12B) made from it.  In the experiment six samples of the intermediate,
-##' representing different batches of works manufacture, were obtained, and five
-##' preparations of the dyestuff were made in the laboratory from each sample.
-##' The equivalent yield of each preparation as grams of standard colour was
-##' determined by dye-trial.}
-##' 
-##' The \code{Dyestuff2} data are described in Box and Tiao (1973) as
-##' illustrating \dQuote{ the case where between-batches mean square is less
-##' than the within-batches mean square.  These data had to be constructed for
-##' although examples of this sort undoubtably occur in practice, they seem to
-##' be rarely published.}
-##' 
-##' @name Dyestuff
-##' @aliases Dyestuff Dyestuff2
-##' @docType data
-##' @format Data frames, each with 30 observations on the following 2 variables.
-##'   \describe{
-##'     \item{\code{Batch}}{a factor indicating the batch of the
-##'       intermediate product from which the preparation was created.}
-##'     \item{\code{Yield}}{the yield of dyestuff from the preparation
-##'       (grams of standard color).}
-##'   }
-##' @source O.L. Davies and P.L. Goldsmith (eds), \emph{Statistical Methods in
-##' Research and Production, 4th ed.}, Oliver and Boyd, (1972), section 6.4
-##' 
-##' G.E.P. Box and G.C. Tiao, \emph{Bayesian Inference in Statistical Analysis},
-##' Addison-Wesley, (1973), section 5.1.2
-##' @keywords datasets
-##' @examples
-##' 
-##' \dontshow{ # useful for the lme4-authors --- development, debugging, etc:
-##'  commandArgs()[-1]
-##'  if(FALSE) ## R environment variables:
-##'  local({ ne <- names(e <- Sys.getenv())
-##'          list(R    = e[grep("^R", ne)],
-##'               "_R" = e[grep("^_R",ne)]) })
-##'  Sys.getenv("R_ENVIRON")
-##'  Sys.getenv("R_PROFILE")
-##'  cat("R_LIBS:\n"); (RL <- strsplit(Sys.getenv("R_LIBS"), ":")[[1]])
-##'  nRL <- normalizePath(RL)
-##'  cat("and extra .libPaths():\n")
-##'  .libPaths()[is.na(match(.libPaths(), nRL))]
-##' 
-##'  sessionInfo()
-##'  pkgI <- function(pkgname) {
-##'    pd <- packageDescription(pkgname)
-##'    cat(sprintf("%s -- built: %s\n%*s -- dir  : %s\n",
-##'                pkgname, pd$Built, nchar(pkgname), "",
-##'                dirname(dirname(attr(pd, "file")))))
-##'  }
-##'  pkgI("Matrix")
-##'  pkgI("Rcpp")
-##'  pkgI("RcppEigen")
-##'  pkgI("minqa")
-##'  pkgI("lme4Eigen")
-##' }
-##' str(Dyestuff)
-##' dotplot(reorder(Batch, Yield) ~ Yield, Dyestuff,
-##'         ylab = "Batch", jitter.y = TRUE, aspect = 0.3,
-##'         type = c("p", "a"))
-##' dotplot(reorder(Batch, Yield) ~ Yield, Dyestuff2,
-##'         ylab = "Batch", jitter.y = TRUE, aspect = 0.3,
-##'         type = c("p", "a"))
-##' (fm1 <- lmer(Yield ~ 1|Batch, Dyestuff))
-##' (fm2 <- lmer(Yield ~ 1|Batch, Dyestuff2))
-##' 
-NULL
-
-##' Sparse Gauss-Hermite quadrature grids
-##'
-##' \code{GQN} contains the non-redundant quadrature nodes and weights for
-##' integration of a scalar function of a \code{d}-dimensional argument with
-##' respect to the density function of the \code{d}-dimensional Gaussian
-##' density function.  These are stored in a list of lists.  The outer list
-##' is indexed by the dimension, \code{d}, in the range of 1 to 20.  The inner
-##' list is indexed by \code{k}, the order of the quadrature.
-##'
-##' @note These are only the non-redundant nodes.  To regenerate the whole
-##' array of nodes, all possible permutations of axes and all possible
-##' combinations of \eqn{\pm 1}{+/- 1} must be applied to the axes.
-##' The function \code{\link{GQdk}} reproduces the entire array of nodes.
-##' @seealso \code{\link{GQdk}}
-##' @name GQN
-##' @docType data
-##' @format A list of lists.
-##' @examples
-##' GQN[[3]][[5]]
-##'
-NULL
-
-##' University Lecture/Instructor Evaluations by Students at ETH
-##' 
-##' University lecture evaluations by students at ETH Zurich, anonymized for
-##' privacy protection.  This is an interesting \dQuote{medium} sized example of
-##' a \emph{partially} nested mixed effect model.
-##' 
-##' The main goal of the survey is to find \dQuote{the best liked prof},
-##' according to the lectures given.  Statistical analysis of such data has been
-##' the basis for a (student) jury selecting the final winners.
-##' 
-##' The present data set has been anonymized and slightly simplified on purpose.
-##' 
-##' @name InstEval
-##' @docType data
-##' @format A data frame with 73421 observations on the following 7 variables.
-##'   \describe{
-##'     \item{\code{s}}{a factor with levels \code{1:2972} denoting
-##'       individual students.}
-##'     \item{\code{d}}{a factor with 1128 levels from \code{1:2160}, denoting
-##'       individual professors or lecturers.}% ("d": \dQuote{Dozierende} in German)
-##'     \item{\code{studage}}{an ordered factor with levels \code{2} <
-##'       \code{4} < \code{6} < \code{8}, denoting student's \dQuote{age}
-##'       measured in the \emph{semester} number the student has been enrolled.}
-##'     \item{\code{lectage}}{an ordered factor with 6 levels, \code{1} <
-##'       \code{2} < ... < \code{6}, measuring how many semesters back the
-##'       lecture rated had taken place.}
-##'     \item{\code{service}}{a binary factor with levels \code{0} and
-##'       \code{1}; a lecture is a \dQuote{service}, if held for a
-##'       different department than the lecturer's main one.}
-##'     \item{\code{dept}}{a factor with 14 levels from \code{1:15}, using a
-##'       random code for the department of the lecture.}
-##' 
-##'     \item{\code{y}}{a numeric vector of \emph{ratings} of lectures by
-##'       the students, using the discrete scale \code{1:5}, with meanings
-##'       of \sQuote{poor} to \sQuote{very good}.}
-##'   }
-##'   Each observation is one student's rating for a specific lecture
-##'   (of one lecturer, during one semester in the past).
-##' @keywords datasets
-##' @examples
-##' 
-##' str(InstEval)
-##' 
-##' head(InstEval, 16)
-##' xtabs(~ service + dept, InstEval)
-##' 
-NULL
-
-##' Paste strength by batch and cask
-##' 
-##' Strength of a chemical paste product; its quality depending on the delivery
-##' batch, and the cask within the delivery.
-##' 
-##' The data are described in Davies and Goldsmith (1972) as coming from
-##' \dQuote{ deliveries of a chemical paste product contained in casks where, in
-##' addition to sampling and testing errors, there are variations in quality
-##' between deliveries \dots{} As a routine, three casks selected at random from
-##' each delivery were sampled and the samples were kept for reference. \dots{}
-##' Ten of the delivery batches were sampled at random and two analytical tests
-##' carried out on each of the 30 samples}.
-##' 
-##' @name Pastes
-##' @docType data
-##' @format A data frame with 60 observations on the following 4 variables.
-##'   \describe{
-##'     \item{\code{strength}}{paste strength.}
-##'     \item{\code{batch}}{delivery batch from which the sample was
-##'       sample.  A factor with 10 levels: \sQuote{A} to \sQuote{J}.}
-##'     \item{\code{cask}}{cask within the delivery batch from which the
-##'       sample was chosen.  A factor with 3 levels: \sQuote{a} to
-##'       \sQuote{c}.}
-##'     \item{\code{sample}}{the sample of paste whose strength was assayed,
-##'       two assays per sample. A factor with 30 levels: \sQuote{A:a} to
-##'       \sQuote{J:c}.}
-##'   }
-##' @source O.L. Davies and P.L. Goldsmith (eds), \emph{Statistical Methods in
-##' Research and Production, 4th ed.}, Oliver and Boyd, (1972), section 6.5
-##' @keywords datasets
-##' @examples
-##' str(Pastes)
-##' dotplot(cask ~ strength | reorder(batch, strength), Pastes,
-##'         strip = FALSE, strip.left = TRUE, layout = c(1, 10),
-##'         ylab = "Cask within batch",
-##'         xlab = "Paste strength", jitter.y = TRUE)
-##' ## Modifying the factors to enhance the plot
-##' Pastes <- within(Pastes, batch <- reorder(batch, strength))
-##' Pastes <- within(Pastes, sample <- reorder(reorder(sample, strength),
-##'           as.numeric(batch)))
-##' dotplot(sample ~ strength | batch, Pastes,
-##'         strip = FALSE, strip.left = TRUE, layout = c(1, 10),
-##'         scales = list(y = list(relation = "free")),
-##'         ylab = "Sample within batch",
-##'         xlab = "Paste strength", jitter.y = TRUE)
-##' ## Four equivalent models differing only in specification
-##' (fm1 <- lmer(strength ~ (1|batch) + (1|sample), Pastes))
-##' (fm2 <- lmer(strength ~ (1|batch/cask), Pastes))
-##' (fm3 <- lmer(strength ~ (1|batch) + (1|batch:cask), Pastes))
-##' (fm4 <- lmer(strength ~ (1|batch/sample), Pastes))
-##' ## fm4 results in redundant labels on the sample:batch interaction
-##' head(ranef(fm4)[[1]])
-##' ## compare to fm1
-##' head(ranef(fm1)[[1]])
-##' ## This model is different and NOT appropriate for these data
-##' (fm5 <- lmer(strength ~ (1|batch) + (1|cask), Pastes))
-##' 
-##' L <- getME(fm1, "L")
-##' Matrix::image(L, sub = "Structure of random effects interaction in pastes model")
-##' 
-NULL
-
-##' Variation in penicillin testing
-##' 
-##' Six samples of penicillin were tested using the \emph{B. subtilis} plate
-##' method on each of 24 plates.  The response is the diameter (mm) of the zone
-##' of inhibition of growth of the organism.
-##' 
-##' The data are described in Davies and Goldsmith (1972) as coming from an
-##' investigation to \dQuote{assess the variability between samples of
-##' penicillin by the \emph{B. subtilis} method.  I this test method a
-##' bulk-innoculated nutrient agar medium is poured into a Petri dish of
-##' approximately 90 mm. diameter, known as a plate.  When the medium has set,
-##' six small hollow cylinders or pots (about 4 mm. in diameter) are cemented
-##' onto the surface at equally spaced intervals.  A few drops of the penicillin
-##' solutions to be compared are placed in the respective cylinders, and the
-##' whole plate is placed in an incubator for a given time.  Penicillin diffuses
-##' from the pots into the agar, and this produces a clear circular zone of
-##' inhibition of growth of the organisms, which can be readily measured.  The
-##' diameter of the zone is related in a known way to the concentration of
-##' penicillin in the solution.}
-##' 
-##' @name Penicillin
-##' @docType data
-##' @format A data frame with 144 observations on the following 3 variables.
-##'   \describe{
-##'     \item{\code{diameter}}{diameter (mm) of the zone of inhibition of
-##'       the growth of the organism.}
-##'     \item{\code{plate}}{assay plate.  A factor with levels \sQuote{a} to
-##'       \sQuote{x}.}
-##'     \item{\code{sample}}{penicillin sample.  A factor with levels
-##'       \sQuote{A} to \sQuote{F}.}
-##'   }
-##' @source O.L. Davies and P.L. Goldsmith (eds), \emph{Statistical Methods in
-##' Research and Production, 4th ed.}, Oliver and Boyd, (1972), section 6.6
-##' @keywords datasets
-##' @examples
-##' 
-##' str(Penicillin)
-##' dotplot(reorder(plate, diameter) ~ diameter, Penicillin, groups = sample,
-##'         ylab = "Plate", xlab = "Diameter of growth inhibition zone (mm)",
-##'         type = c("p", "a"), auto.key = list(columns = 3, lines = TRUE,
-##'         title = "Penicillin sample"))
-##' (fm1 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin))
-##' 
-##' L <- getME(fm1, "L")
-##' Matrix::image(L, main = "L",
-##'               sub = "Penicillin: Structure of random effects interaction")
-##' 
-NULL
-
-##' Reaction times in a sleep deprivation study
-##' 
-##' The average reaction time per day for subjects in a sleep deprivation study.
-##' On day 0 the subjects had their normal amount of sleep.  Starting that night
-##' they were restricted to 3 hours of sleep per night.  The observations
-##' represent the average reaction time on a series of tests given each day to
-##' each subject.
-##' 
-##' These data are from the study described in Belenky et al. (2003), for the
-##' sleep-deprived group and for the first 10 days of the study, up to the
-##' recovery period.
-##' 
-##' @name sleepstudy
-##' @docType data
-##' @format A data frame with 180 observations on the following 3 variables.
-##'   \describe{
-##'     \item{\code{Reaction}}{Average reaction time (ms)}
-##'     \item{\code{Days}}{Number of days of sleep deprivation}
-##'     \item{\code{Subject}}{Subject number on which the observation was made.}
-##'   }
-##' @references Gregory Belenky, Nancy J. Wesensten, David R. Thorne, Maria L.
-##' Thomas, Helen C. Sing, Daniel P. Redmond, Michael B. Russo and Thomas J.
-##' Balkin (2003) Patterns of performance degradation and restoration during
-##' sleep restriction and subsequent recovery: a sleep dose-response study.
-##' \emph{Journal of Sleep Research} \bold{12}, 1--12.
-##' @keywords datasets
-##' @examples
-##' 
-##' str(sleepstudy)
-##' xyplot(Reaction ~ Days | Subject, sleepstudy, type = c("g","p","r"),
-##'        index = function(x,y) coef(lm(y ~ x))[1],
-##'        xlab = "Days of sleep deprivation",
-##'        ylab = "Average reaction time (ms)", aspect = "xy")
-##' (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
-##' (fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy))
-##' 
-NULL
-
-
-##' Verbal Aggression item responses
-##' 
-##' These are the item responses to a questionaire on verbal aggression.  These
-##' data are used throughout De Boeck and Wilson, \emph{Explanatory Item
-##' Response Models} (Springer, 2004) to illustrate various forms of item
-##' response models.
-##' 
-##' 
-##' @name VerbAgg
-##' @docType data
-##' @format A data frame with 7584 observations on the following 13 variables.
-##'   \describe{
-##'     \item{\code{Anger}}{the subject's Trait Anger score as measured on
-##'       the State-Trait Anger Expression Inventory (STAXI)}
-##'     \item{\code{Gender}}{the subject's gender - a factor with levels
-##'       \code{M} and \code{F}}
-##'     \item{\code{item}}{the item on the questionaire, as a factor}
-##'     \item{\code{resp}}{the subject's response to the item - an ordered
-##'       factor with levels \code{no} < \code{perhaps} < \code{yes}}
-##'     \item{\code{id}}{the subject identifier, as a factor}
-##'     \item{\code{btype}}{behavior type - a factor with levels
-##'       \code{curse}, \code{scold} and \code{shout}}
-##'     \item{\code{situ}}{situation type - a factor with levels
-##'       \code{other} and \code{self} indicating other-to-blame and self-to-blame}
-##'     \item{\code{mode}}{behavior mode - a factor with levels \code{want}
-##'       and \code{do}}
-##'     \item{\code{r2}}{dichotomous version of the response - a factor with
-##'       levels \code{N} and \code{Y}}
-##'   }
-##' @references De Boeck and Wilson (2004), \emph{Explanatory Item Response
-##' Models}, Springer.
-##' @source \url{http://bear.soe.berkeley.edu/EIRM/}
-##' @keywords datasets
-##' @examples
-##' 
-##' str(VerbAgg)
-##' ## Show how  r2 := h(resp) is defined:
-##' with(VerbAgg, stopifnot( identical(r2, {
-##'      r <- factor(resp, ordered=FALSE); levels(r) <- c("N","Y","Y"); r})))
-##' 
-##' xtabs(~ item + resp, VerbAgg)
-##' xtabs(~ btype + resp, VerbAgg)
-##' round(100 * ftable(prop.table(xtabs(~ situ + mode + resp, VerbAgg), 1:2), 1))
-##' person <- unique(subset(VerbAgg, select = c(id, Gender, Anger)))
-##' if (require(lattice)) {   # is this necessary when the package depends on lattice?
-##'     densityplot(~ Anger, person, groups = Gender, auto.key = list(columns = 2),
-##'                 xlab = "Trait Anger score (STAXI)")
-##' }
-##' 
-##' \dontrun{## takes about 15 sec
-##' print(fmVA <- glmer(r2 ~ (Anger + Gender + btype + situ)^2 +
-##'                    (1|id) + (1|item), family = binomial, data =
-##'                    VerbAgg), corr=FALSE)
-##' }
-##'                        ## much faster but less accurate
-##' print(fmVA0 <- glmer(r2 ~ (Anger + Gender + btype + situ)^2 +
-##'                     (1|id) + (1|item), family = binomial, data =
-##'                     VerbAgg, nAGQ=0L), corr=FALSE)
-##' 
-NULL
-
-
-

Modified: pkg/lme4Eigen/man/merMod-class.Rd
===================================================================
--- pkg/lme4Eigen/man/merMod-class.Rd	2012-02-10 23:41:09 UTC (rev 1598)
+++ pkg/lme4Eigen/man/merMod-class.Rd	2012-02-13 17:47:32 UTC (rev 1599)
@@ -1,29 +1,29 @@
 \docType{class}
 \name{merMod-class}
-\alias{anova,merMod-method}
-\alias{coef,merMod-method}
-\alias{deviance,merMod-method}
-\alias{fitted,merMod-method}
-\alias{formula,merMod-method}
+\alias{anova.merMod}
+\alias{coef.merMod}
+\alias{deviance.merMod}
+\alias{fitted.merMod}
+\alias{formula.merMod}
 \alias{glmerMod-class}
 \alias{lmerMod-class}
-\alias{logLik,merMod-method}
+\alias{logLik.merMod}
 \alias{merMod-class}
-\alias{model.frame,merMod-method}
-\alias{model.matrix,merMod-method}
+\alias{model.frame.merMod}
+\alias{model.matrix.merMod}
 \alias{nlmerMod-class}
-\alias{print,merMod-method}
-\alias{print,summary.mer-method}
-\alias{show,merMod-method}
-\alias{show,summary.mer-method}
-\alias{simulate,merMod-method}
-\alias{summary,merMod-method}
-\alias{summary,summary.mer-method}
-\alias{terms,merMod-method}
-\alias{update,merMod-method}
-\alias{VarCorr,merMod-method}
-\alias{vcov,merMod-method}
-\alias{vcov,summary.mer-method}
+\alias{print.merMod}
+\alias{print.summary.mer}
+\alias{show.merMod}
+\alias{show.summary.mer}
+\alias{simulate.merMod}
+\alias{summary.merMod}
+\alias{summary.summary.mer}
+\alias{terms.merMod}
+\alias{update.merMod}
+\alias{VarCorr.merMod}
+\alias{vcov.merMod}
+\alias{vcov.summary.mer}
 \title{Class "merMod" of Fitted Mixed-Effect Models}
 \description{
   A mixed-effects model represented as a



More information about the Lme4-commits mailing list