[IPSUR-commits] r121 - in pkg/IPSUR: R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jan 5 14:35:08 CET 2010


Author: gkerns
Date: 2010-01-05 14:35:08 +0100 (Tue, 05 Jan 2010)
New Revision: 121

Removed:
   pkg/IPSUR/R/clt.R
   pkg/IPSUR/man/clt.Rd
Log:
will put them right back


Deleted: pkg/IPSUR/R/clt.R
===================================================================
--- pkg/IPSUR/R/clt.R	2010-01-05 13:29:33 UTC (rev 120)
+++ pkg/IPSUR/R/clt.R	2010-01-05 13:35:08 UTC (rev 121)
@@ -1,311 +0,0 @@
-##################################################
-# The Central Limit Theorem                       
-#   want to investigate how the distribution of   
-#   x-bar changes as the sample size gets large   
-
-population <- "rt"       # pop'n distribution is Student's t
-r <- 3                   # degrees of freedom parameter
-
-sample.size <- 2         # sample size
-
-N.iter <- 100000         # number of simulated xbar's
-
-
-clt1 <- function(population = "rt",
-                 r = 3,
-                 sample.size = 2,
-                 N.iter = 100000){
-
-#################################################################
-# initialize variables
-population <- get(population, mode = "function")
-xbar <- rep(0, N.iter)
-graphics.off()
-
-curve( dt(x, df = r ),
-        xlim = c(-5,5),
-        xlab = "Support Set",
-        ylab = "Density",
-        lwd = 2,
-        main = "The Population Distribution \n (while we're waiting)" )
-abline( h = 0 , col = "grey" )
-
-
-########################################
-# Label the plot with mu
-text(   5, 
-        dt(0, df = r )*0.9, 
-        bquote( mu ==.(0) ),
-        cex = 1.5, 
-        pos = 2 )              
-
-# Label the plot with sigma^2
-text(   5, 
-        dt(0, df = r )*0.8, 
-        bquote( sigma^2 ==.(r/(r-2)) ),
-        cex = 1.5, 
-        pos = 2 )
-
-
-#################################################
-# simulate xbar's
-
-xbar <- rowMeans( matrix(population(sample.size * N.iter, df = r),
-                         nrow = N.iter)
-                 )
-
-# Find mean and variance of xbar
-xbar.mean <- round( mean( xbar ), 4)
-xbar.var <- round( var( xbar ), 4)
-
-# window for graph
-low <- xbar.mean - 3*sqrt(xbar.var)
-up <- xbar.mean + 3*sqrt(xbar.var)
-
-dev.new()
-dev.set(3)
-# Draw histogram of simulated x-bars
-hist(   xbar,
-        breaks = 280,
-        xlim = c(low,up),
-        xlab = "",
-        prob = TRUE,
-        main = "Sampling Distribution of X-bar",
-        sub = "Click to see Limiting Normal Density (in red)")
-
-########################################
-# Label the histogram with mean(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar)), 
-        bquote( mean(xbar)==.(xbar.mean) ),
-        cex = 1, 
-        pos = 2 )              
-
-# Label the histogram with var(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.9, 
-        bquote( var(xbar) ==.(xbar.var) ),
-        cex = 1, 
-        pos = 2 )
-        
-# Label the histogram with n
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.8, 
-        bquote( n ==.(sample.size) ),
-        cex = 1.85, 
-        pos = 2 )              
-        
-######################################
-# Draw limiting Normal curve
-z <- locator( n = 1 )      
-curve(  dnorm(x, mean = xbar.mean, sd = sd(xbar)), 
-        lwd = 2,
-        col = "red",
-        add = T )
-}
-
-
-
-
-
-
-
-clt2 <- function(population = "runif",
-                 a = 0,
-                 b = 10,
-                 sample.size = 2,
-                 N.iter = 100000){
-
-#################################################################
-# initialize variables
-population <- get(population, mode = "function")
-xbar <- rep(0, N.iter)
-graphics.off()
-
-curve( dunif(x, min = a, max = b ),
-        xlim = c(a-1,b+1), ylim = c(0, 1.3/(b-a)),
-        xlab = "Support Set",
-        ylab = "Density",
-        lwd = 2,
-        main = "The Population Distribution \n (while we're waiting)" )
-abline( h = 0 , col = "grey" )
-
-
-########################################
-# Label the plot with mu
-text(   (a+b)/2, 
-        0.9/(b-a), 
-        bquote( mu ==.((a+b)/2) ),
-        cex = 1.5, 
-        pos = 1 )              
-
-# Label the plot with sigma^2
-text(   (a+b)/2, 
-        0.8/(b-a), 
-        bquote( sigma^2 ==.( (b-a)^2/12 ) ),
-        cex = 1.5, 
-        pos = 1 )
-        
-
-#############################################
-# simulate xbar's
-xbar <-rowMeans(matrix(population(sample.size * N.iter, min = a, max = b),
-                       nrow = N.iter)
-                )
-
-# Find mean and variance of xbar
-xbar.mean <- round( mean( xbar ), 4)
-xbar.var <- round( var( xbar ), 4)
-
-# window for graph
-low <- xbar.mean - 3*sqrt(xbar.var)
-up <- xbar.mean + 3*sqrt(xbar.var)
-
-dev.new()
-dev.set(3)
-# Draw histogram of simulated x-bars
-hist(   xbar,
-        breaks = 80,
-        xlim = c(low,up),
-        xlab = "",
-        prob = TRUE,
-        main = "Sampling Distribution of X-bar",
-        sub = "Click to see Limiting Normal Density (in red)")
-
-########################################
-# Label the histogram with mean(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar)), 
-        bquote( mean(xbar)==.(xbar.mean) ),
-        cex = 1, 
-        pos = 2 )              
-
-# Label the histogram with var(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.9, 
-        bquote( var(xbar)==.(xbar.var) ),
-        cex = 1, 
-        pos = 2 )
-        
-# Label the histogram with n
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.8, 
-        bquote( n ==.(sample.size) ),
-        cex = 1.85, 
-        pos = 2 )              
-        
-######################################
-# Draw limiting Normal curve
-z <- locator( n = 1 )      
-curve(  dnorm(x, mean = xbar.mean, sd = sd(xbar)), 
-        lwd = 2,
-        col = "red",
-        add = T )
-}
-
-
-clt3 <- function(population = "rgamma",
-                 alpha = 1.21,
-                 theta = 2.37,
-                 sample.size = 2,
-                 N.iter = 100000){
-
-#################################################################
-# initialize variables
-population <- get(population, mode = "function")
-xbar <- rep(0, N.iter)
-graphics.off()
-
-
-curve( dgamma(x, shape = alpha, scale = theta ),
-        xlim = c(0, alpha*theta*(1 + 3*theta)),
-        xlab = "Support Set",
-        ylab = "Density",
-        lwd = 2,
-        main = "The Population Distribution \n (while we're waiting)" )
-abline( h = 0 , col = "grey" )
-
-f = function(x){dgamma(x, shape = alpha, scale = theta )} 
-
-OPT = optimize( f,
-        interval = c(0, alpha*theta*(1 + 3*theta)),
-        maximum = TRUE) 
-
-########################################
-# Label the plot with mu
-text(   alpha*theta*(1 + 2*theta), 
-        (OPT$objective)*0.9, 
-        bquote( mu ==.(alpha*theta )),
-        cex = 1.5, 
-        pos = 1 )              
-
-# Label the plot with sigma^2
-text(   alpha*theta*(1 + 2*theta), 
-        (OPT$objective)*0.8, 
-        bquote( sigma^2 ==.( alpha*theta^2 ) ),
-        cex = 1.5, 
-        pos = 1 )
-        
-
-#############################################
-# simulate xbar's
-xbar <- rowMeans(matrix(population(sample.size * N.iter, shape = alpha, scale = theta),
-                        nrow = N.iter)
-                 )
-
-# Find mean and variance of xbar
-xbar.mean <- round( mean( xbar ), 4)
-xbar.var <- round( var( xbar ), 4)
-
-# window for graph
-low <- xbar.mean - 3*sqrt(xbar.var)
-up <- xbar.mean + 3*sqrt(xbar.var)
-
-dev.new()
-dev.set(3)
-# Draw histogram of simulated x-bars
-hist(   xbar,
-        breaks = 80,
-        xlim = c(low,up),
-        xlab = "",
-        prob = TRUE,
-        main = "Sampling Distribution of X-bar",
-        sub = "Click to see Limiting Normal Density (in red)")
-
-########################################
-# Label the histogram with mean(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar)), 
-        bquote( mean(xbar)==.(xbar.mean) ),
-        cex = 1, 
-        pos = 2 )              
-
-# Label the histogram with var(xbar)
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.9, 
-        bquote( var(xbar)==.(xbar.var) ),
-        cex = 1, 
-        pos = 2 )
-        
-# Label the histogram with n
-text(   up, 
-        dnorm(xbar.mean, mean = xbar.mean, sd = sd(xbar))*0.8, 
-        bquote( n ==.(sample.size) ),
-        cex = 1.85, 
-        pos = 2 )              
-        
-######################################
-# Draw limiting Normal curve
-z = locator( n = 1 )      
-curve(  dnorm(x, mean = xbar.mean, sd = sd(xbar)), 
-        lwd = 2,
-        col = "red",
-        add = T )
-
-}
-
-
-
-
-
-

Deleted: pkg/IPSUR/man/clt.Rd
===================================================================
--- pkg/IPSUR/man/clt.Rd	2010-01-05 13:29:33 UTC (rev 120)
+++ pkg/IPSUR/man/clt.Rd	2010-01-05 13:35:08 UTC (rev 121)
@@ -1,38 +0,0 @@
-\name{The Central Limit Theorem}
-\alias{The Central Limit Theorem}
-\alias{clt1}
-\alias{clt2}
-\alias{clt3}
-
-\title{Investigating the Central Limit Theorem}
-\description{
-  These functions were written for students to investigate the Central Limit Theorem.  For more information, see the exercises at the end of the chapter "Sampling Distributions" in IPSUR.
-}
-
-\usage{
-clt1(population = "rt", r = 3, sample.size = 2, N.iter = 100000)
-clt2(population = "runif", a = 0, b = 10, sample.size = 2, N.iter = 100000)
-clt3(population = "rgamma", alpha = 1.21, theta = 2.37, sample.size = 2, N.iter = 100000)
-}
-
-\arguments{
-  \item{population}{the name of a population distribution, in its random generator form.}
-  \item{sample.size}{the sample size.}
-  \item{N.iter}{the number of samples desired.}
-  \item{r}{the degrees of freedom for Student's t distribution.}
-  \item{a}{the minimum value of a continuous uniform distribution.}
-  \item{b}{the maximum value of a continuous uniform distribution.}
-  \item{alpha}{the shape parameter of a gamma distribution.}
-  \item{theta}{the scale parameter of a gamma distribution.}
-}
-
-\details{
- When the functions are called a plot window opens to show a graph of the PDF of the population distribution. On the display are shown numerical values of the population mean and variance. The computer simulates random samples of size \code{sample.size} from the distribution a total of 
-\code{N.iter} times, and sample means are calculated for each sample. Next follows a histogram of the simulated sample means, which closely approximates the sampling distribution of the sample mean.
-Also shown are the sample mean and sample variance of all of the simulated sample means. As a final step, when the user clicks the second plot, a normal curve with the same mean and variance as the simulated sample means is superimposed over the histogram.
-}
-
-
-\author{G. Jay Kerns \email{gkerns at ysu.edu}}
-
-\keyword{misc}



More information about the IPSUR-commits mailing list