[Eventstudies-commits] r316 - pkg/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon May 12 09:16:47 CEST 2014
Author: vikram
Date: 2014-05-12 09:16:47 +0200 (Mon, 12 May 2014)
New Revision: 316
Modified:
pkg/R/ees.R
Log:
Added class ees to get.clusters.formatted.output
Modified: pkg/R/ees.R
===================================================================
--- pkg/R/ees.R 2014-05-12 07:06:57 UTC (rev 315)
+++ pkg/R/ees.R 2014-05-12 07:16:47 UTC (rev 316)
@@ -31,7 +31,7 @@
# - Clustered, Un-clustered and Both
#------------------------------------------------------------------
# NOTE:
-summary.ees <- function(input,prob.value){
+summary.ees <- function(input){
no.var <- NCOL(input)
#-----------------------------------------
@@ -59,13 +59,13 @@
event.dist <- attr(input,"extreme.events.distribution")
# Run length distribution
- runlength <- runlength.dist(input,prob.value)
+ runlength <- runlength.dist(input)
# Quantile extreme values
- qnt.values <- quantile.extreme.values(input,prob.value)
+ qnt.values <- quantile.extreme.values(input)
# Yearly distribution of extreme event dates
- yearly.exevent <- yearly.exevent.dist(input,prob.value)
+ yearly.exevent <- yearly.exevent.dist(input)
#---------------------
# Compiling the output
@@ -306,6 +306,8 @@
# Results
attr(tmp.ts, which = "sumstat") <- sumstat(input = event.series)
attr(tmp.ts, which = "extreme.events.distribution") <- extreme.events.distribution(input = event.series, gcf.output = tmp.ts, prob.value = probvalue)
+ attr(tmp.ts, which = "probvalue") <- probvalue
+ class(tmp.ts) <- c("ees","zoo")
return(tmp.ts)
}
@@ -455,7 +457,7 @@
# OUTPUT:
# Yearly distribution of extreme events
#----------------------------
-yearly.exevent.dist <- function(input, prob.value){
+yearly.exevent.dist <- function(input){
mylist <- list()
## Estimating cluster count
tmp.res <- yearly.exevent.summary(input)
@@ -509,7 +511,7 @@
# OUTPUT:
# Lower tail and Upper tail quantile values
#-----------------------------------
-quantile.extreme.values <- function(input, prob.value){
+quantile.extreme.values <- function(input){
# Creating an empty frame
lower.tail.qnt.value <- data.frame(matrix(NA,nrow=1,ncol=6))
upper.tail.qnt.value <- data.frame(matrix(NA,nrow=1,ncol=6))
@@ -561,7 +563,7 @@
# OUTPUT:
# Lower tail and Upper tail Run length distribution
#-----------------------------------
-runlength.dist <- function(input, prob.value){
+runlength.dist <- function(input){
# Finding maximum Run length
# Seed value
More information about the Eventstudies-commits
mailing list