[Eventstudies-commits] r219 - pkg/vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Mar 25 14:42:41 CET 2014
Author: vikram
Date: 2014-03-25 14:42:41 +0100 (Tue, 25 Mar 2014)
New Revision: 219
Modified:
pkg/vignettes/eventstudies.Rnw
Log:
Modified vignette code
Modified: pkg/vignettes/eventstudies.Rnw
===================================================================
--- pkg/vignettes/eventstudies.Rnw 2014-03-25 09:15:27 UTC (rev 218)
+++ pkg/vignettes/eventstudies.Rnw 2014-03-25 13:42:41 UTC (rev 219)
@@ -169,6 +169,12 @@
<<>>=
data(SplitDates)
head(SplitDates)
+data(inr)
+inrusd <- diff(log(inr))*100
+all.data <- merge(StockPriceReturns,nifty.index,inrusd,all=TRUE)
+StockPriceReturns <- all.data[,-which(colnames(all.data)%in%c("nifty.index", "inr"))]
+nifty.index <- all.data$nifty.index
+inrusd <- all.data$inr
@
\subsection{Calculating idiosyncratic returns}
@@ -213,13 +219,6 @@
% AMM model
<<>>= # Create RHS before running lmAMM()
-data(inr)
-inrusd <- diff(log(inr))*100
-all.data <- merge(StockPriceReturns,nifty.index,inrusd,all=TRUE)
-StockPriceReturns <- all.data[,-which(colnames(all.data)%in%c("nifty.index", "inr"))]
-nifty.index <- all.data$nifty.index
-inrusd <- all.data$inr
-
###################
## AMM residuals ##
###################
@@ -238,7 +237,7 @@
## More than one firm
# Extracting and merging
tmp.resid <- sapply(colnames(StockPriceReturns)[1:3],function(y)
- timeseriesAMM(firm.returns=StockPriceReturns[,y],
+ timeseries.lmAMM(firm.returns=StockPriceReturns[,y],
X=regressors,
verbose=FALSE,
nlags=1))
@@ -280,7 +279,7 @@
\textit{inference.bootstrap} performs the bootstrap to generate distribution of $\overline{CR}$. The bootstrap generates confidence interval at 2.5 percent and 97.5 percent for the estimate.
<<>>=
-result <- inference.bootstrap(es.w=es.cs, to.plot=TRUE)
+result <- inference.bootstrap(es.w=es.cs, to.plot=FALSE)
print(result)
@
@@ -291,7 +290,11 @@
\setkeys{Gin}{width=0.8\linewidth}
\setkeys{Gin}{height=0.8\linewidth}
<<fig=TRUE,echo=FALSE>>=
-result <- inference.bootstrap(es.w=es.cs, to.plot=TRUE)
+es.na.btsp <- eventstudy(firm.returns = StockPriceReturns,
+ eventList = SplitDates, width = 10, to.remap = TRUE,
+ remap = "cumsum", inference = TRUE,
+ inference.strategy = "bootstrap", type = "None")
+plot.es(es.na.btsp)
@
\end{center}
\label{fig:one}
@@ -301,8 +304,8 @@
Another non-parametric inference available and is used widely with event study analysis is the Wilcoxon signed rank test. This package provides a wrapper that uses the function \texttt{wilcox.test} in \texttt{stats}.
<<>>=
-result <- inference.wilcox(es.w=es.cs, to.plot=TRUE)
-result
+result <- inference.wilcox(es.w=es.cs, to.plot=FALSE)
+print(result)
@
\begin{figure}[t]
@@ -312,7 +315,11 @@
\setkeys{Gin}{width=0.8\linewidth}
\setkeys{Gin}{height=0.8\linewidth}
<<fig=TRUE,echo=FALSE>>=
-result <- inference.wilcox(es.w=es.cs, to.plot=TRUE)
+es.na.wcx <- eventstudy(firm.returns = StockPriceReturns,
+ eventList = SplitDates, width = 10, to.remap = TRUE,
+ remap = "cumsum", inference = TRUE,
+ inference.strategy = "wilcox", type = "None")
+plot(es.na.wcx)
@
\end{center}
\label{fig:two}
More information about the Eventstudies-commits
mailing list