[Eventstudies-commits] r114 - pkg/vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Aug 6 13:08:14 CEST 2013
Author: vikram
Date: 2013-08-06 13:08:14 +0200 (Tue, 06 Aug 2013)
New Revision: 114
Modified:
pkg/vignettes/eventstudies.Rnw
Log:
Added some code in vignette and minor modifications
Modified: pkg/vignettes/eventstudies.Rnw
===================================================================
--- pkg/vignettes/eventstudies.Rnw 2013-08-06 08:58:42 UTC (rev 113)
+++ pkg/vignettes/eventstudies.Rnw 2013-08-06 11:08:14 UTC (rev 114)
@@ -115,7 +115,7 @@
\section{Software approach} \label{s:approach}
The package offers the following functionalities:
- \item Models for calculating returns. These include:
+ Models for calculating returns. These include:
\begin{itemize}
\item Excess returns model
\item Market residual model
@@ -189,14 +189,22 @@
regressand <- cbind(Company_A,Company_B,Company_C)
## AMM output
-of <- AMM(amm.type="all",rj=Company_A,
- nlags=NA,
- verbose=TRUE,
- dates= as.Date(c("2005-01-15","2006-01-07","2007-01-06",
- "2008-01-05","2009-01-03")),
- rM1=NIFTY_INDEX, others=INRUSD,
- switch.to.innov=TRUE, rM1purge=TRUE, nlags=1)
+## With no structural break dates: dates=NULL
+result1 <- AMM(amm.type="all",rj=y3c3$Company_A,
+ verbose=TRUE,
+ dates= NULL,
+ rM1=y3c3$NIFTY_INDEX, others=y3c3$INRUSD,
+ switch.to.innov=TRUE, rM1purge=TRUE, nlags=1)
+## With AMM different structural periods
+result2 <- AMM(amm.type="all",rj=Company_A,
+ nlags=NA,
+ verbose=TRUE,
+ dates= as.Date(c("2005-01-15","2006-01-07","2007-01-06",
+ "2008-01-05","2009-01-03")),
+ rM1=NIFTY_INDEX, others=INRUSD,
+ switch.to.innov=TRUE, rM1purge=TRUE, nlags=1)
+
@
\subsection{Converting physical dates to event frame}
The first step towards event study analysis is to convert the physical
@@ -230,7 +238,7 @@
In this example, es.w contains the returns in event-time form for all
the stocks. In this you only get variables for whom all data is
-avaialable.
+available.
\subsection{Remapping event frame}
In event study analysis the variable of interest is cumulative
@@ -274,7 +282,7 @@
\subsubsection{Wilcoxon signed rank tests}
It is a non-parametric inference test to compute confidence interval.
<<>>=
-result <- inference.bootstrap(es.w=es.cs, to.plot=TRUE)
+result <- inference.wilcox(es.w=es.cs, to.plot=TRUE)
@
\begin{figure}[t]
\begin{center}
@@ -327,24 +335,6 @@
cn.names <- which(colnames(all.data)%in%c("nifty","inr"))
stock.data <- all.data[,-cn.names]
-of <- AMM(amm.type="residual",rj=y3c3$Company_A,
- verbose=TRUE,
- dates= as.Date(c("2005-01-15","2006-01-07","2007-01-06",
- "2008-01-05","2009-01-03")),
- rM1=y3c3$NIFTY_INDEX, others=y3c3$INRUSD,
- switch.to.innov=TRUE, rM1purge=TRUE, nlags=1)
-
-of1 <- AMM(amm.type="all",rj=y3c3$Company_A,
- verbose=TRUE,
- dates= NULL,
- rM1=y3c3$NIFTY_INDEX, others=y3c3$INRUSD,
- switch.to.innov=TRUE, rM1purge=TRUE, nlags=1)
-
-
-of.r <- AMM(amm.type="residual", rj=stock.data[,1:5],verbose=TRUE, dates=NULL,
- rM1=all.data$nifty, others=all.data$inr, switch.to.innov=TRUE,
- rM1purge=TRUE, nlags=1)
-
es.amm <- eventstudy(inputData = stock.data,
eventList = SplitDates,
width = 10, to.remap = TRUE, remap = "cumsum",
More information about the Eventstudies-commits
mailing list