[Yuima-commits] r501 - pkg/yuima/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Oct 29 23:07:13 CEST 2016


Author: lorenzo
Date: 2016-10-29 23:07:13 +0200 (Sat, 29 Oct 2016)
New Revision: 501

Modified:
   pkg/yuima/R/qmle.R
   pkg/yuima/R/simulateForPpr.R
Log:


Modified: pkg/yuima/R/qmle.R
===================================================================
--- pkg/yuima/R/qmle.R	2016-10-29 21:03:26 UTC (rev 500)
+++ pkg/yuima/R/qmle.R	2016-10-29 21:07:13 UTC (rev 501)
@@ -123,6 +123,15 @@
 
 qmle <- function(yuima, start, method="BFGS", fixed = list(), print=FALSE,
                  lower, upper, joint=FALSE, Est.Incr="NoIncr",aggregation=TRUE, threshold=NULL,rcpp=FALSE, ...){
+  if(Est.Incr=="Carma.Inc"){
+    Est.Incr<-"Incr"
+  }
+  if(Est.Incr=="Carma.Par"){
+    Est.Incr<-"NoIncr"
+  }
+  if(Est.Incr=="Carma.IncPar"){
+    Est.Incr<-"IncrPar"
+  }
   if(is(yuima at model, "yuima.carma")){
     NoNeg.Noise<-FALSE
     cat("\nStarting qmle for carma ... \n")
@@ -1402,7 +1411,7 @@
     #     cov[unique(c(measure.par)),unique(c(measure.par))]<-dummycovCarmaNoise
 
     #    carma_final_res<-list(mle=final_res,Incr=inc.levy,model=yuima)
-    if(Est.Incr=="Carma.IncPar"){
+    if(Est.Incr=="Carma.IncPar"||Est.Incr=="IncrPar"){
       #inc.levy.fin<-zoo(inc.levy,tt,frequency=1/env$h)
       inc.levy.fin<-zoo(inc.levy,tt[(1+length(tt)-length(inc.levy)):length(tt)])
       carma_final_res<-new("yuima.carma.qmle", call = call, coef = coef, fullcoef = unlist(coef),
@@ -1411,7 +1420,7 @@
                            model = yuima at model, nobs=yuima.nobs,
                            logL.Incr = tryCatch(-result.Lev$value,error=function(theta){NULL}))
     }else{
-      if(Est.Incr=="Carma.Par"){
+      if(Est.Incr=="Carma.Par"||Est.Incr=="NoIncr"){
         carma_final_res<-new("mle", call = call, coef = coef, fullcoef = unlist(coef),
                              vcov = cov, min = min, details = oout, minuslogl = minusquasilogl,
                              method = method, nobs=yuima.nobs)

Modified: pkg/yuima/R/simulateForPpr.R
===================================================================
--- pkg/yuima/R/simulateForPpr.R	2016-10-29 21:03:26 UTC (rev 500)
+++ pkg/yuima/R/simulateForPpr.R	2016-10-29 21:07:13 UTC (rev 501)
@@ -51,6 +51,60 @@
                increment.L = increment.L, method = method, hurst = hurst,
                methodfGn = methodfGn, sampling = sampling,
                subsampling = subsampling){
+  ROLDVER<-TRUE
+  if(ROLDVER){
+    object <- aux.simulatPprROldVersion(object, nsim = nsim, seed = seed,
+                                          xinit = xinit, true.parameter = true.parameter,
+                                          space.discretized = space.discretized, increment.W = increment.W,
+                                          increment.L = increment.L, method = method, hurst = hurst,
+                                          methodfGn = methodfGn, sampling = sampling,
+                                          subsampling = subsampling)
+  }else{
+    object <- aux.simulatPprROldNew(object, nsim = nsim, seed = seed,
+                                        xinit = xinit, true.parameter = true.parameter,
+                                        space.discretized = space.discretized, increment.W = increment.W,
+                                        increment.L = increment.L, method = method, hurst = hurst,
+                                        methodfGn = methodfGn, sampling = sampling,
+                                        subsampling = subsampling)
+  }
+  return(object)
+}
+
+aux.simulatPprROldNew<-function(object, nsim = nsim, seed = seed,
+                          xinit = xinit, true.parameter = true.parameter,
+                          space.discretized = space.discretized, increment.W = increment.W,
+                          increment.L = increment.L, method = method, hurst = hurst,
+                          methodfGn = methodfGn, sampling = sampling,
+                          subsampling = subsampling){
+
+  # We need an expression for the evaluation of the hazard
+  is(object)
+  yuimaPpr<-object
+
+  envPpr <- list()
+
+  dY <- paste0("d",yuimaPpr at Ppr@var.dx)
+  Time <- sampling at grid[[1]]
+
+  IntKernExpr<- function(Kern,dy){
+    dum<-paste(Kern,dy,sep="*")
+    dum<-paste0(dum, collapse = " + ")
+    dum <- paste0("sum( ", dum, " )")
+    return(parse(text = dum))
+  }
+  IntegKern <- lapply(yuimaPpr at Kernel@Integrand at IntegrandList,IntKernExpr,dY)
+
+
+  return(NULL)
+}
+
+
+aux.simulatPprROldVersion <- function(object, nsim = nsim, seed = seed,
+                                      xinit = xinit, true.parameter = true.parameter,
+                                      space.discretized = space.discretized, increment.W = increment.W,
+                                      increment.L = increment.L, method = method, hurst = hurst,
+                                      methodfGn = methodfGn, sampling = sampling,
+                                      subsampling = subsampling){
   Time <- sampling at Terminal
   numbVardx <- length(object at Ppr@var.dx)
   numbCountVar <- length(object at Ppr@counting.var)
@@ -70,60 +124,60 @@
   assign("t",object at gFun@param at time.var, envir = my.env)
 
 
- nameu <- object at gFun@param at time.var
- assign("dt",sampling at delta, envir = my.env)
+  nameu <- object at gFun@param at time.var
+  assign("dt",sampling at delta, envir = my.env)
 
- if(is.null(increment.W)){
-   dimW <- length(object at model@diffusion[[1]])
-   W <- matrix(rnorm(dimW*sampling at n,mean=0,sd= sqrt(sampling at delta)),nrow=dimW,ncol=sampling at n)
- }
- Condcovariate <- TRUE
- if(is.null(increment.L)){
-   dimL <- length(object at model@jump.coeff[[1]])
-   L <- matrix(0,nrow=dimL,ncol=sampling at n)
-   Condcovariate <- FALSE
-   # if(length(object at Ppr@covariates)!=0)
-   #    Condcovariate <- TRUE
-   cond <- !(object at model@solve.variable %in% object at Ppr@counting.var)
-   if(any(cond)){
-     Condcovariate <- TRUE
-   }
-   dimMd <- length(object at model@solve.variable)
-   dumMod <- setModel(drift = rep("0",dimMd),
-                      diffusion = matrix("0",dimMd,1),
-                      jump.coeff = diag("1",dimMd,dimMd),
-                      measure = object at Ppr@Info.measure$measure,
-                      measure.type = object at Ppr@Info.measure$type,
-                      solve.variable = object at model@solve.variable)
-   if(length(object at model@parameter at measure)!=0){
-     simMod <- simulate(object = dumMod,
-                        true.parameter = true.parameter[object at model@parameter at measure],
-                        sampling = sampling)
-   }else{
-     simMod <- simulate(object = dumMod,
-                        sampling = sampling)
-   }
+  if(is.null(increment.W)){
+    dimW <- length(object at model@diffusion[[1]])
+    W <- matrix(rnorm(dimW*sampling at n,mean=0,sd= sqrt(sampling at delta)),nrow=dimW,ncol=sampling at n)
+  }
+  Condcovariate <- TRUE
+  if(is.null(increment.L)){
+    dimL <- length(object at model@jump.coeff[[1]])
+    L <- matrix(0,nrow=dimL,ncol=sampling at n)
+    Condcovariate <- FALSE
+    # if(length(object at Ppr@covariates)!=0)
+    #    Condcovariate <- TRUE
+    cond <- !(object at model@solve.variable %in% object at Ppr@counting.var)
+    if(any(cond)){
+      Condcovariate <- TRUE
+    }
+    dimMd <- length(object at model@solve.variable)
+    dumMod <- setModel(drift = rep("0",dimMd),
+                       diffusion = matrix("0",dimMd,1),
+                       jump.coeff = diag("1",dimMd,dimMd),
+                       measure = object at Ppr@Info.measure$measure,
+                       measure.type = object at Ppr@Info.measure$type,
+                       solve.variable = object at model@solve.variable)
+    if(length(object at model@parameter at measure)!=0){
+      simMod <- simulate(object = dumMod,
+                         true.parameter = true.parameter[object at model@parameter at measure],
+                         sampling = sampling)
+    }else{
+      simMod <- simulate(object = dumMod,
+                         sampling = sampling)
+    }
 
-   L <- t(diff(simMod at data@original.data))
- }
+    L <- t(diff(simMod at data@original.data))
+  }
 
   assign("Condcovariate",Condcovariate, envir = my.env)
   assign("W", W, envir = my.env)
 
 
- rownames(L)<- object at model@solve.variable
+  rownames(L)<- object at model@solve.variable
 
- assign("L", L, envir = my.env)
+  assign("L", L, envir = my.env)
 
- assign("All.labKern",object at Kernel@variable.Integral,envir = my.env)
- assign("All.labgFun",object at gFun@param,envir = my.env)
+  assign("All.labKern",object at Kernel@variable.Integral,envir = my.env)
+  assign("All.labgFun",object at gFun@param,envir = my.env)
 
 
 
- Fun1 <- function(u,env){
-   part <- seq(0,u,by=env$dt)
-   env$t<-part[-length(part)]
-   if(Condcovariate){
+  Fun1 <- function(u,env){
+    part <- seq(0,u,by=env$dt)
+    env$t<-part[-length(part)]
+    if(Condcovariate){
       yuima<- object at model
       for(i in c(1:length(object at Ppr@covariates))){
         assign(object at Ppr@covariates[i],
@@ -140,8 +194,8 @@
         #   sum(yuima at solve.variable!=object at Ppr@covariates), dim(Linc)[2])
         Linc[yuima at solve.variable!=object at Ppr@covariates,] <- 0
         DumUnderlMod <- simulate(yuima, true.parameter = true.parameter,
-                          increment.L = env$L[,c(1:(length(part)-1))],
-                          sampling = setSampling(Terminal = u, n= (length(part)-1)))
+                                 increment.L = env$L[,c(1:(length(part)-1))],
+                                 sampling = setSampling(Terminal = u, n= (length(part)-1)))
 
 
         for(i in c(1:length(object at Ppr@covariates))){
@@ -149,77 +203,77 @@
           assign(object at Ppr@covariates[i], as.numeric(VariableDum), envir = env)
         }
       }
-   }
-   (log(env$U)+sum(eval(env$gFun,envir = env)*env$dt))^2
- }
+    }
+    (log(env$U)+sum(eval(env$gFun,envir = env)*env$dt))^2
+  }
 
- Fun2 <- function(u,env){
-   u <- max(env$old_u,u)
-   dumpart <- seq(0,env$old_u, by=env$dt)
-   part <- seq(env$old_u,u,by=env$dt)
-   t_k <- env$t
-   env$t<-part[-length(part)]
-   if(u>=sampling at Terminal){
-     # Think a better solution
-     my.env$utrue<-u
-     return(0)
-   }
-   if(Condcovariate){
-     LevIncr <- env$L[, length(dumpart)+c(1:(length(env$t)))]
-     LevIncr[object at Ppr@counting.var,]<-0
-     yuima<- object at model
-     xinit<- numeric(length(object at Ppr@covariates))
-     names(xinit)<- object at Ppr@covariates
-     for(i in c(1:length(object at Ppr@covariates))){
+  Fun2 <- function(u,env){
+    u <- max(env$old_u,u)
+    dumpart <- seq(0,env$old_u, by=env$dt)
+    part <- seq(env$old_u,u,by=env$dt)
+    t_k <- env$t
+    env$t<-part[-length(part)]
+    if(u>=sampling at Terminal){
+      # Think a better solution
+      my.env$utrue<-u
+      return(0)
+    }
+    if(Condcovariate){
+      LevIncr <- env$L[, length(dumpart)+c(1:(length(env$t)))]
+      LevIncr[object at Ppr@counting.var,]<-0
+      yuima<- object at model
+      xinit<- numeric(length(object at Ppr@covariates))
+      names(xinit)<- object at Ppr@covariates
+      for(i in c(1:length(object at Ppr@covariates))){
         xinit[i] <- env[[object at Ppr@covariates[i]]]
-     }
+      }
 
-     xinitCount <- numeric(length(object at Ppr@counting.var))
-     names(xinitCount) <- object at Ppr@counting.var
-     for(i in c(1:length(xinitCount))){
-       xinitCount[i] <- tail(env[[object at Ppr@counting.var[i]]],n = 1)
-     }
-     xinit <- c(xinit,xinitCount)
-     if(part[length(part)]-part[1]!=0){
-     DumVarCov  <- simulate(yuima,
-              true.parameter = true.parameter,
-              increment.L = LevIncr,
-              sampling =  setSampling(Terminal = (part[length(part)]-part[1]),
-                n = dim(LevIncr)[2]),
-              xinit=xinit[yuima at solve.variable])
-     for(i in c(1:length(object at Ppr@covariates))){
-       VariableDum <- DumVarCov at data@original.data[,yuima at solve.variable==object at Ppr@covariates[i]]
-       assign(object at Ppr@covariates[i], as.numeric(VariableDum), envir = env)
-     }
-     }else{
-       for(i in c(1:length(object at Ppr@covariates))){
-         VariableDum <- xinit[yuima at solve.variable==object at Ppr@covariates[i]]
-         assign(object at Ppr@covariates[i], as.numeric(VariableDum), envir = env)
-       }
-     }
-     #Insert Here simulation Covariate
-   }
-   integG <-sum(eval(env$gFun,envir = env)*env$dt)
-   env$s <- unique(c(env$s,t_k))[-length(env$s)]
-   dumt <- env$t
-   num <- length(env$Kern)
-   integKer <- 0
-   for(j in c(1:length(dumt))){
-     env$t <- dumt[j]
-     dumKernInt <- 0
-     for(i in c(1:num)){
-       lab.dx <- env$All.labKern at var.dx[i]
-       dumKernInt <- dumKernInt+sum(eval(env$Kern,envir=env)*diff(eval(env[[lab.dx]])))
-     }
-     integKer <- integKer + dumKernInt
-   }
-   NewTerm <- 0
-   if(env$Condcovariate){
-     ## Insert Her
-   }
-   my.env$utrue<-u
-   (log(env$U)+ integG + integKer+NewTerm)^2
- }
+      xinitCount <- numeric(length(object at Ppr@counting.var))
+      names(xinitCount) <- object at Ppr@counting.var
+      for(i in c(1:length(xinitCount))){
+        xinitCount[i] <- tail(env[[object at Ppr@counting.var[i]]],n = 1)
+      }
+      xinit <- c(xinit,xinitCount)
+      if(part[length(part)]-part[1]!=0){
+        DumVarCov  <- simulate(yuima,
+                               true.parameter = true.parameter,
+                               increment.L = LevIncr,
+                               sampling =  setSampling(Terminal = (part[length(part)]-part[1]),
+                                                       n = dim(LevIncr)[2]),
+                               xinit=xinit[yuima at solve.variable])
+        for(i in c(1:length(object at Ppr@covariates))){
+          VariableDum <- DumVarCov at data@original.data[,yuima at solve.variable==object at Ppr@covariates[i]]
+          assign(object at Ppr@covariates[i], as.numeric(VariableDum), envir = env)
+        }
+      }else{
+        for(i in c(1:length(object at Ppr@covariates))){
+          VariableDum <- xinit[yuima at solve.variable==object at Ppr@covariates[i]]
+          assign(object at Ppr@covariates[i], as.numeric(VariableDum), envir = env)
+        }
+      }
+      #Insert Here simulation Covariate
+    }
+    integG <-sum(eval(env$gFun,envir = env)*env$dt)
+    env$s <- unique(c(env$s,t_k))[-length(env$s)]
+    dumt <- env$t
+    num <- length(env$Kern)
+    integKer <- 0
+    for(j in c(1:length(dumt))){
+      env$t <- dumt[j]
+      dumKernInt <- 0
+      for(i in c(1:num)){
+        lab.dx <- env$All.labKern at var.dx[i]
+        dumKernInt <- dumKernInt+sum(eval(env$Kern,envir=env)*diff(eval(env[[lab.dx]])))
+      }
+      integKer <- integKer + dumKernInt
+    }
+    NewTerm <- 0
+    if(env$Condcovariate){
+      ## Insert Her
+    }
+    my.env$utrue<-u
+    (log(env$U)+ integG + integKer+NewTerm)^2
+  }
 
 
   u <- numeric(length = numbCountVar)
@@ -261,10 +315,10 @@
   rownames(X_mat) <- object at model@solve.variable
 
   dummyX <- simulate(object at model, true.parameter = true.parameter,
-           increment.W = if(is.matrix(W[,1:pos])){W[,1:pos]}else{t(as.matrix(W[,1:pos]))},
-           increment.L = if(is.matrix(dL[,1:pos])){dL[,1:pos]}else{t(as.matrix(dL[,1:pos]))},
-           sampling = setSampling(Terminal = t_1,
-                                  n = t_1/sampling at delta))
+                     increment.W = if(is.matrix(W[,1:pos])){W[,1:pos]}else{t(as.matrix(W[,1:pos]))},
+                     increment.L = if(is.matrix(dL[,1:pos])){dL[,1:pos]}else{t(as.matrix(dL[,1:pos]))},
+                     sampling = setSampling(Terminal = t_1,
+                                            n = t_1/sampling at delta))
   X_mat[,1:pos] <- t(dummyX at data@original.data)[,-1]
 
   t_jump <- t_1
@@ -323,7 +377,7 @@
       while(my.env$utrue<oldt_1){
         assign("U",runif(1),envir = my.env)
         optim((t_1+2*my.env$dt),Fun2,method = "Nelder-Mead",
-                   env=my.env)$par
+              env=my.env)$par
         u[i] <- as.numeric(my.env$utrue)
       }
     }
@@ -343,47 +397,47 @@
 
       #if(t_1!=sampling at Terminal){
 
-          pos <- min(pos,dim(L)[2])
-          JUMP[namesContVarJump, pos] <- L[namesContVarJump, pos]
-          dL[object at Ppr@counting.var,c((pos0+1):pos)]<-JUMP[object at Ppr@counting.var,c((pos0+1):pos)]
-          aa<-setSampling(Terminal = (t_1-my.env$old_u),
-                          n = length((pos0+1):pos))
-          dummyX <- simulate(object at model, true.parameter = true.parameter,
-                             increment.W = if(is.matrix(W[,(pos0+1):pos])){W[,(pos0+1):pos]}else{t(as.matrix(W[,(pos0+1):pos]))},
-                             increment.L = if(is.matrix(dL[,(pos0+1):pos])){dL[,(pos0+1):pos]}else{t(as.matrix(dL[,(pos0+1):pos]))},
-                             sampling = aa,
-                             xinit=X_mat[,(pos0)])
-          X_mat[,(pos0+1):pos] <- t(dummyX at data@original.data)[,-1]
-          if(length(object at Kernel@variable.Integral at var.dx)==1){
-            Comulat.dx <- apply(t(X_mat[object at Kernel@variable.Integral at var.dx,
-                                        c((pos0+1):pos)]), 1, diff)
-          }else{
-            Comulat.dx <- apply(t(X_mat[object at Kernel@variable.Integral at var.dx,
-                                      c((pos0+1):pos)]), 2, diff)
-          }
-          if(!is.matrix(Comulat.dx)){
-            Comulat.dx <-t(as.matrix(Comulat.dx))
-          }
+      pos <- min(pos,dim(L)[2])
+      JUMP[namesContVarJump, pos] <- L[namesContVarJump, pos]
+      dL[object at Ppr@counting.var,c((pos0+1):pos)]<-JUMP[object at Ppr@counting.var,c((pos0+1):pos)]
+      aa<-setSampling(Terminal = (t_1-my.env$old_u),
+                      n = length((pos0+1):pos))
+      dummyX <- simulate(object at model, true.parameter = true.parameter,
+                         increment.W = if(is.matrix(W[,(pos0+1):pos])){W[,(pos0+1):pos]}else{t(as.matrix(W[,(pos0+1):pos]))},
+                         increment.L = if(is.matrix(dL[,(pos0+1):pos])){dL[,(pos0+1):pos]}else{t(as.matrix(dL[,(pos0+1):pos]))},
+                         sampling = aa,
+                         xinit=X_mat[,(pos0)])
+      X_mat[,(pos0+1):pos] <- t(dummyX at data@original.data)[,-1]
+      if(length(object at Kernel@variable.Integral at var.dx)==1){
+        Comulat.dx <- apply(t(X_mat[object at Kernel@variable.Integral at var.dx,
+                                    c((pos0+1):pos)]), 1, diff)
+      }else{
+        Comulat.dx <- apply(t(X_mat[object at Kernel@variable.Integral at var.dx,
+                                    c((pos0+1):pos)]), 2, diff)
+      }
+      if(!is.matrix(Comulat.dx)){
+        Comulat.dx <-t(as.matrix(Comulat.dx))
+      }
 
-        Index <- matrix(c(1:prod(object at Kernel@Integrand at dimIntegrand)),
+      Index <- matrix(c(1:prod(object at Kernel@Integrand at dimIntegrand)),
                       nrow = object at Kernel@Integrand at dimIntegrand[1],
                       ncol = object at Kernel@Integrand at dimIntegrand[2])
-        assign(object at Kernel@variable.Integral at var.time,
-               sampling at grid[[1]][c((pos0+1):(pos))],
+      assign(object at Kernel@variable.Integral at var.time,
+             sampling at grid[[1]][c((pos0+1):(pos))],
              envir = my.env)
-        assign(object at gFun@param at time.var, t_1, envir = my.env)
-        for(i in c(1:object at Kernel@Integrand at dimIntegrand[2])){
+      assign(object at gFun@param at time.var, t_1, envir = my.env)
+      for(i in c(1:object at Kernel@Integrand at dimIntegrand[2])){
 
-          assign(object at Kernel@variable.Integral at var.dx[i],
+        assign(object at Kernel@variable.Integral at var.dx[i],
                as.numeric(Comulat.dx[,i]),
                envir = my.env)
-        }
-        pos0<-pos
-        assign("pos0", pos, envir = my.env)
-        assign("old_u",t_1, envir = my.env)
+      }
+      pos0<-pos
+      assign("pos0", pos, envir = my.env)
+      assign("old_u",t_1, envir = my.env)
 
-        #}
-      }
+      #}
+    }
     assign("L",dL,envir = my.env)
   }
   X_mat[namesContVarJump,pos]<-X_mat[namesContVarJump,pos]
@@ -401,28 +455,28 @@
   mynewincr <- if(is.matrix(res.dum$X_mat)){t(as.matrix(apply(cbind(0,res.dum$X_mat),1,diff)))}else{apply(cbind(0,res.dum$X_mat),1,diff)}
 
   interResMod <- simulate(object = dummy.mod,
-                       true.parameter = true.parameter,
-                       sampling = sampling,
-                       increment.L = mynewincr)
+                          true.parameter = true.parameter,
+                          sampling = sampling,
+                          increment.L = mynewincr)
 
-  resGfun<-new("yuima.Output",
-           Output = object at gFun,
-             yuima=setYuima(model=dummy.mod,sampling = sampling))
+  resGfun<-new("yuima.Map",
+               Output = object at gFun,
+               yuima=setYuima(model=dummy.mod,sampling = sampling))
 
   interResGfun <- simulate(object = resGfun,
-                       true.parameter = true.parameter,
-                       sampling = sampling,
-                       increment.L = mynewincr)
+                           true.parameter = true.parameter,
+                           sampling = sampling,
+                           increment.L = mynewincr)
   dummyObject <- object at Kernel
   dummyObject at variable.Integral@out.var <-object at Ppr@additional.info
   resInt <- new("yuima.Integral",
-     Integral = dummyObject,
-     yuima = setYuima(model=dummy.mod,sampling = sampling))
+                Integral = dummyObject,
+                yuima = setYuima(model=dummy.mod,sampling = sampling))
 
   interResInt <- simulate(object = resInt,
-                           true.parameter = true.parameter,
-                           sampling = sampling,
-                           increment.L = mynewincr)
+                          true.parameter = true.parameter,
+                          sampling = sampling,
+                          increment.L = mynewincr)
   DataIntensity <- interResGfun at data@original.data + interResInt at data@original.data
   InterMDia<-zoo(interResMod at data@original.data, order.by = index(DataIntensity))
   Alldata <-merge(InterMDia,DataIntensity)
@@ -437,11 +491,9 @@
   # }
   object at data<-setData(Alldata)
   return(object)
-  }
+}
 
 
-
-
 # simOzaki.aux<-function(gFun,a,cCoeff, Time, numJump){
 #   t_k<-0
 #   N<-0



More information about the Yuima-commits mailing list