[Yuima-commits] r539 - pkg/yuima/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Dec 6 03:59:14 CET 2016
Author: kamatani
Date: 2016-12-06 03:59:14 +0100 (Tue, 06 Dec 2016)
New Revision: 539
Modified:
pkg/yuima/man/adaBayes.Rd
Log:
Modified: pkg/yuima/man/adaBayes.Rd
===================================================================
--- pkg/yuima/man/adaBayes.Rd 2016-12-06 02:58:33 UTC (rev 538)
+++ pkg/yuima/man/adaBayes.Rd 2016-12-06 02:59:14 UTC (rev 539)
@@ -4,61 +4,78 @@
\title{Adaptive Bayes estimator for the parameters in sde model}
\description{Adaptive Bayes estimator for the parameters in a specific type of sde.}
\usage{
-adaBayes(yuima, start, prior, lower, upper, method = "nomcmc")
+adaBayes(yuima, start, prior, lower, upper, method = "mcmc", mcmc = 1000, rate =1, rcpp = TRUE, algorithm = "randomwalk")
}
\arguments{
\item{yuima}{a 'yuima' object.}
- \item{start}{ initial suggestion for parameter values }
- \item{prior}{ a list of prior distributions for the parameters [function].}
+ \item{start}{initial suggestion for parameter values }
+ \item{prior}{a list of prior distributions for the parameters specified by 'code'. Currently, dunif(z, min, max), dnorm(z, mean, sd), dbeta(z, shape1, shape2), dgamma(z, shape, rate) are available. }
\item{lower}{a named list for specifying lower bounds of parameters}
\item{upper}{a named list for specifying upper bounds of parameters}
- \item{method}{ \code{nomcmc} requires package \code{cubature} }
+ \item{method}{\code{nomcmc} requires package \code{cubature} }
+ \item{mcmc}{number of iteration of Markov chain Monte Carlo method}
+ \item{rate}{a thinning parameter. Only the first n^rate observation will be used for inference. }
+ \item{rcpp}{Logical value. If \code{rcpp = TRUE} (default), Rcpp code will be performed. Otherwise, usual R code will be performed. }
+ \item{algorithm}{Logical value when \code{method = mcmc}. If \code{algorithm = randomwalk} (default), the random-walk Metropolis algorithm will be performed. If \code{algorithm = MpCN}, the Mixed preconditioned Crank-Nicolson algorithm will be performed.}
}
\details{
- Calculate the values of the parameters theta1 and theta2. When the quasi-likelihood is too large for the given data, the integral in the Bayes estimator may diverge. For such a case, offset values for the parameters can be specified not to diverge.}
+Calculate the Bayes estimator for stochastic processes by using the quasi-likelihood function. The calculation is performed by the Markov chain Monte Carlo method. Currently, the Random-walk Metropolis algorithm and the Mixed preconditioned Crank-Nicolson algorithm is implemented.}
\value{
\item{vector}{a vector of the paramter estimate}
}
-\author{The YUIMA Project Team}
+\author{Kengo Kamatani with YUIMA project Team}
\note{
- This routine is not stable and accurate. Dr.Kamatani is now working for improvements.
+\code{algorithm = nomcmc} is unstable.
}
\references{
Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431-479.
Uchida, M., & Yoshida, N. (2014). Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statistical Inference for Stochastic Processes, 17(2), 181-219.
+
+Kamatani, K. (2017). Ergodicity of Markov chain Monte Carlo with reversible proposal. Journal of Applied Probability, 54(2).
}
\examples{
set.seed(123)
-ymodel <- setModel(drift="(-1)*theta2*x", diffusion="sqrt(theta1^2+1)",
- time.variable="t", state.variable="x", solve.variable="x")
-n <- 500
-h <- 1/((n)^(2/3))
-ysamp <- setSampling(Terminal=(n)^(1/3), n=n)
-yuima <- setYuima(model=ymodel, sampling=ysamp)
-param.true <- list(theta2=0.3, theta1=0.5)
-yuima <- simulate(yuima, xinit=1, true.parameter=param.true)
+b <- c("-theta1*x1+theta2*sin(x2)+50","-theta3*x2+theta4*cos(x1)+25")
+a <- matrix(c("4+theta5","1","1","2+theta6"),2,2)
-prior.theta1 <- function(theta2)
- 1*(theta2 > 0 & theta2 < 1)
+true = list(theta1 = 0.5, theta2 = 5,theta3 = 0.3,
+ theta4 = 5, theta5 = 1, theta6 = 1)
+lower = list(theta1=0.1,theta2=0.1,theta3=0,
+ theta4=0.1,theta5=0.1,theta6=0.1)
+upper = list(theta1=1,theta2=10,theta3=0.9,
+ theta4=10,theta5=10,theta6=10)
+start = list(theta1=runif(1),
+ theta2=rnorm(1),
+ theta3=rbeta(1,1,1),
+ theta4=rnorm(1),
+ theta5=rgamma(1,1,1),
+ theta6=rexp(1))
-prior.theta2 <- function(theta1)
- 1*(theta1 > 0 & theta1 < 1)
+yuimamodel <- setModel(drift=b,diffusion=a,state.variable=c("x1", "x2"),solve.variable=c("x1","x2"))
+yuimasamp <- setSampling(Terminal=50,n=50*10)
+yuima <- setYuima(model = yuimamodel, sampling = yuimasamp)
+yuima <- simulate(yuima, xinit = c(100,80),
+ true.parameter = true,sampling = yuimasamp)
-prior <- list(theta2=list(measure.type="code",df="dunif(z,0,1)"),
-theta1=list(measure.type="code",df="dunif(z,0,1)"))
+prior <-
+ list(
+ theta1=list(measure.type="code",df="dunif(z,0,1)"),
+ theta2=list(measure.type="code",df="dnorm(z,0,1)"),
+ theta3=list(measure.type="code",df="dbeta(z,1,1)"),
+ theta4=list(measure.type="code",df="dgamma(z,1,1)"),
+ theta5=list(measure.type="code",df="dnorm(z,0,1)"),
+ theta6=list(measure.type="code",df="dnorm(z,0,1)")
+ )
-param.init <- list(theta2=0.35,theta1=0.52)
-lower = c(0,0)
-upper=c(1,1)
-
-bayes1 <- adaBayes(yuima, start=param.init, prior=prior, method="nomcmc")
-bayes1 at coef
-
-mle1 <- qmle(yuima, start=param.init, lower=list(theta1=0,theta2=0),
- upper=list(theta1=1,theta2=1), method="L-BFGS-B")
-mle1 at coef
+set.seed(123)
+mle <- qmle(yuima, start = start, lower = lower, upper = upper, method = "L-BFGS-B",rcpp=TRUE)
+print(mle at coef)
+bayes <- adaBayes(yuima, start=start, prior=prior,
+ method="mcmc",
+ mcmc=1000,rcpp=TRUE, lower = lower, upper = upper)
+print(bayes at coef)
}
\keyword{ts}
More information about the Yuima-commits
mailing list