[Yuima-commits] r535 - pkg/yuima/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Dec 6 03:56:02 CET 2016


Author: kamatani
Date: 2016-12-06 03:56:02 +0100 (Tue, 06 Dec 2016)
New Revision: 535

Added:
   pkg/yuima/R/lseBayes.R
Log:
add lseBayes.R

Added: pkg/yuima/R/lseBayes.R
===================================================================
--- pkg/yuima/R/lseBayes.R	                        (rev 0)
+++ pkg/yuima/R/lseBayes.R	2016-12-06 02:56:02 UTC (rev 535)
@@ -0,0 +1,1107 @@
+##::quasi-bayes function
+
+#new minusquasilogl "W1","W2" like lse function.
+
+setGeneric("lseBayes",
+function(yuima, start,prior,lower,upper, method="nomcmc",mcmc=1000,rate=1.0,algorithm="randomwalk")
+standardGeneric("lseBayes")
+)
+setMethod("lseBayes", "yuima",
+function(yuima, start,prior,lower,upper, method="nomcmc",mcmc=1000,rate=1.0,algorithm="randomwalk")
+{
+  if(!missing(lower) & !missing(upper)){
+    if(sum(unlist(start)<unlist(lower))+sum(unlist(start)>unlist(upper))>0)
+      yuima.stop("param.init is out of parameter space.")
+  }
+  
+  rcpp <- TRUE
+  
+  joint <- FALSE
+  fixed <- numeric(0)
+  print <- FALSE
+  
+  call <- match.call()
+  
+  if( missing(yuima))
+    yuima.stop("yuima object is missing.")
+  
+  ## param handling
+  
+  ## FIXME: maybe we should choose initial values at random within lower/upper
+  ##        at present, qmle stops	
+  
+  if(missing(lower) || missing(upper)){
+    yuima.stop("lower or upper is missing.")
+  }
+  
+  diff.par <- yuima at model@parameter at diffusion
+  drift.par <- yuima at model@parameter at drift
+  jump.par <- yuima at model@parameter at jump
+  measure.par <- yuima at model@parameter at measure
+  common.par <- yuima at model@parameter at common
+  
+  ## BEGIN Prior construction
+  if(!missing(prior)){
+    priorLower = numeric(0)
+    priorUpper = numeric(0)
+    pdlist <- numeric(length(yuima at model@parameter at all))
+    names(pdlist) <- yuima at model@parameter at all
+    for(i in 1: length(pdlist)){
+      if(prior[[names(pdlist)[i]]]$measure.type=="code"){
+        expr <- prior[[names(pdlist)[i]]]$df
+        code <- suppressWarnings(sub("^(.+?)\\(.+", "\\1", expr, perl=TRUE))
+        args <- unlist(strsplit(suppressWarnings(sub("^.+?\\((.+)\\)", "\\1", expr, perl=TRUE)), ","))
+        pdlist[i] <- switch(code,
+                            dunif=paste("function(z){return(dunif(z, ", args[2], ", ", args[3],"))}"),
+                            dnorm=paste("function(z){return(dnorm(z,", args[2], ", ", args[3], "))}"),
+                            dbeta=paste("function(z){return(dbeta(z, ", args[2], ", ", args[3], "))}"),
+                            dgamma=paste("function(z){return(dgamma(z, ", args[2], ", ", args[3], "))}"),
+                            dexp=paste("function(z){return(dexp(z, ", args[2], "))}")
+        )
+        qf <- switch(code,
+                     dunif=paste("function(z){return(qunif(z, ", args[2], ", ", args[3],"))}"),
+                     dnorm=paste("function(z){return(qnorm(z,", args[2], ", ", args[3], "))}"),
+                     dbeta=paste("function(z){return(qbeta(z, ", args[2], ", ", args[3], "))}"),
+                     dgamma=paste("function(z){return(qgamma(z, ", args[2], ", ", args[3], "))}"),
+                     dexp=paste("function(z){return(qexp(z, ", args[2], "))}")
+        )
+        priorLower = append(priorLower,eval(parse("text"=qf))(0.00))
+        priorUpper = append(priorUpper,eval(parse("text"=qf))(1.00))
+        
+        
+      }
+      
+    }
+    if(sum(unlist(lower)<priorLower) + sum(unlist(upper)>priorUpper) > 0){
+      yuima.stop("lower&upper of prior are out of parameter space.")
+    }
+    
+    names(lower) <- names(pdlist)
+    names(upper) <- names(pdlist)
+    
+    
+    
+    pd <- function(param){
+      value <- 1
+      for(i in 1:length(pdlist)){
+        value <- value*eval(parse(text=pdlist[[i]]))(param[[i]])
+      }
+      return(value)
+    }
+  }else{
+    pd <- function(param) return(1)
+  }
+  ## END Prior construction
+  
+  if(!is.list(start) || (sum(unlist(start)<unlist(lower))+sum(unlist(start)>unlist(upper))>0)){
+    #cannot use "missing(start)"
+    start <- lower
+    start[1:length(start)] <- runif(length(start),unlist(lower),unlist(upper))
+    #yuima.warn("param.init is out of parameter space.redefigned init by runif.")
+  }
+  
+  JointOptim <- joint
+  if(length(common.par)>0){
+    JointOptim <- TRUE
+    yuima.warn("Drift and diffusion parameters must be different. Doing
+               joint estimation, asymptotic theory may not hold true.")
+  }
+  
+  
+  if(length(jump.par)+length(measure.par)>0)
+    yuima.stop("Cannot estimate the jump models, yet")
+  
+  
+  fullcoef <- NULL
+  
+  if(length(diff.par)>0)
+    fullcoef <- diff.par
+  
+  if(length(drift.par)>0)
+    fullcoef <- c(fullcoef, drift.par)
+  
+  npar <- length(fullcoef)
+  
+  fixed.par <- names(fixed)
+  
+  if (any(!(fixed.par %in% fullcoef))) 
+    yuima.stop("Some named arguments in 'fixed' are not arguments to the supplied yuima model")
+  
+  nm <- names(start)
+  oo <- match(nm, fullcoef)
+  if(any(is.na(oo))) 
+    yuima.stop("some named arguments in 'start' are not arguments to the supplied yuima model")
+  start <- start[order(oo)]
+  if(!missing(prior)){
+    pdlist <- pdlist[order(oo)]
+  }
+  nm <- names(start)
+  
+  idx.diff <- match(diff.par, nm)
+  idx.drift <- match(drift.par, nm)
+  idx.fixed <- match(fixed.par, nm)
+  tmplower <- as.list( rep( -Inf, length(nm)))
+  names(tmplower) <- nm	
+  if(!missing(lower)){
+    idx <- match(names(lower), names(tmplower))
+    if(any(is.na(idx)))
+      yuima.stop("names in 'lower' do not match names fo parameters")
+    tmplower[ idx ] <- lower	
+  }
+  lower <- tmplower
+  
+  tmpupper <- as.list( rep( Inf, length(nm)))
+  names(tmpupper) <- nm	
+  if(!missing(upper)){
+    idx <- match(names(upper), names(tmpupper))
+    if(any(is.na(idx)))
+      yuima.stop("names in 'lower' do not match names fo parameters")
+    tmpupper[ idx ] <- upper	
+  }
+  upper <- tmpupper
+  
+  
+  
+  
+  d.size <- yuima at model@equation.number
+  n <- length(yuima)[1]
+  
+  G <- rate
+  if(G<=0 || G>1){
+    yuima.stop("rate G should be 0 < G <= 1")
+  }
+  n_0 <- floor(n^G)
+  if(n_0 < 2) n_0 <- 2
+  
+  #######data is reduced to n_0 before qmle(16/11/2016)
+  env <- new.env()
+  #assign("X",  yuima at data@original.data[1:n_0,], envir=env)
+  assign("X",  as.matrix(onezoo(yuima))[1:n_0,], envir=env)
+  assign("deltaX",  matrix(0, n_0 - 1, d.size), envir=env)
+  assign("crossdx",matrix(0,n_0 - 1,d.size*d.size),envir=env) ####(deltaX)%*%t(deltaX).this is used in W1.
+  assign("time", as.numeric(index(yuima at data@zoo.data[[1]])), envir=env)
+  
+  assign("Cn.r", rep(1,n_0 - 1), envir=env)
+  
+  for(t in 1:(n_0 - 1)){
+    env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
+    env$crossdx[t,] <- as.vector(tcrossprod(env$deltaX[t,]))
+  }
+  
+  assign("h", deltat(yuima at data@zoo.data[[1]]), envir=env)
+  
+  mle <- qmle(yuima, "start"=start, "lower"=lower,"upper"=upper, "method"="L-BFGS-B",rcpp=rcpp)
+  
+  
+ 
+  integ <- function(idx.fixed=NULL,f=f,start=start,par=NULL,hessian=FALSE,upper,lower){
+    if(length(idx.fixed)==0){
+      intf <- adaptIntegrate(f,lowerLimit=lower,upperLimit=upper,fDim=(length(upper)+1))$integral
+    }else{
+      intf <- adaptIntegrate(f,lowerLimit=lower[-idx.fixed],upperLimit=upper[-idx.fixed],fDim=(length(upper[-idx.fixed])+1))$integral
+    }
+    return(intf[-1]/intf[1])
+  }
+  mcinteg <- function(idx.fixed=NULL,f=f,p,start=start,par=NULL,hessian=FALSE,upper,lower,mean,vcov,mcmc){
+    if(length(idx.fixed)==0){
+      intf <- mcIntegrate(f,p,lowerLimit=lower,upperLimit=upper,mean,vcov,mcmc)
+    }else{
+      intf <- mcIntegrate(f,p,lowerLimit=lower[-idx.fixed],upperLimit=upper[-idx.fixed],mean[-idx.fixed],vcov[-idx.fixed,-idx.fixed],mcmc)
+    }
+    return(intf)
+  }
+  
+  mcIntegrate <- function(f,p, lowerLimit, upperLimit,mean,vcov,mcmc){
+    
+    if(algorithm=="randomwalk"){
+      x_c <- mean
+      p_c <- p(mean)
+      val <- f(x_c)
+      
+      if(length(mean)>1){
+        x <- rmvnorm(mcmc-1,mean,vcov)
+        q <- dmvnorm(x,mean,vcov)
+        q_c <- dmvnorm(mean,mean,vcov) 
+      }else{
+        x <- rnorm(mcmc-1,mean,sqrt(vcov))
+        q <- dnorm(x,mean,sqrt(vcov))
+        q_c <- dnorm(mean,mean,sqrt(vcov)) 
+      }
+      
+      for(i in 1:(mcmc-1)){
+        if(length(mean)>1){x_n <- x[i,]}else{x_n <- x[i]}
+        if(sum(x_n<lowerLimit)==0 & sum(x_n>upperLimit)==0){
+          q_n <- q[i]
+          p_n <- p(x_n)
+          #u <- runif(1)
+          #a <- (p_n*q_c)/(p_c*q_n)
+          u <- log(runif(1))
+          a <- p_n-p_c+log(q_c/q_n)
+          if(u<a){
+            p_c <- p_n
+            q_c <- q_n
+            x_c <- x_n
+          }
+        }
+        val <- val+f(x_c)
+      }
+      return(unlist(val/mcmc))
+    }
+    else if(algorithm=="MpCN"){
+      x_n <- mean
+      val <- mean
+      logLik_old <- p(mean)+0.5*length(mean)*log(sqnorm(x_n-mean))
+      
+      for(i in 1:(mcmc-1)){
+        #browser()
+        prop <- makeprop(mean,x_n,unlist(lowerLimit),unlist(upperLimit))
+        logLik_new <- p(mean)+0.5*length(mean)*log(sqnorm(prop-mean))
+        u <- log(runif(1))
+        if( logLik_new-logLik_old > u){
+          x_n <- prop
+          logLik_old <- logLik_new
+        }
+        val <- val+f(x_n)
+      }
+      return(unlist(val/mcmc))
+    }
+  }
+  
+  
+  #print(mle at coef)
+  tmpW1 <- minusquasilogl_W1(yuima=yuima, param=mle at coef, print=print, env,rcpp=rcpp)
+  tmpW2 <- minusquasilogl_W2(yuima=yuima, param=mle at coef, print=print, env,rcpp=rcpp)
+  
+  g <- function(p,fixed,idx.fixed){
+    mycoef <- mle at coef
+    if(length(idx.fixed)>0){
+      mycoef[-idx.fixed] <- p
+      mycoef[idx.fixed] <- fixed
+    }else{
+      names(mycoef) <- nm
+    }
+
+    if(sum(idx.diff==idx.fixed)>0){
+      return(c(1,p)*exp(-minusquasilogl_W1(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW1)*pd(param=mycoef))
+    }else{
+      return(c(1,p)*exp(-minusquasilogl_W2(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW2)*pd(param=mycoef))
+    }
+    
+  }
+  
+  pg <- function(p,fixed,idx.fixed){
+    mycoef <- start
+    if(length(idx.fixed)>0){
+      mycoef[-idx.fixed] <- p
+      mycoef[idx.fixed] <- fixed
+    }else{
+      names(mycoef) <- nm
+    }
+    
+    if(sum(idx.diff==idx.fixed)>0){
+      return(-minusquasilogl_W1(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW1+log(pd(param=mycoef)))#log
+    }else{
+      return(-minusquasilogl_W2(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW2+log(pd(param=mycoef)))#log
+    }
+  }
+  
+  idf <- function(p){return(p)}
+  
+  #	 fj <- function(p) {
+  #		 mycoef <- as.list(p)
+  #		 names(mycoef) <- nm
+  #		 mycoef[fixed.par] <- fixed
+  #		 minusquasilogl(yuima=yuima, param=mycoef, print=print, env)
+  #	 }
+  
+  oout <- NULL
+  HESS <- matrix(0, length(nm), length(nm))
+  colnames(HESS) <- nm
+  rownames(HESS) <- nm
+  HaveDriftHess <- FALSE
+  HaveDiffHess <- FALSE
+  if(length(start)){
+    #		if(JointOptim){ ### joint optimization
+    #			if(length(start)>1){ #multidimensional optim
+    #				oout <- optim(start, fj, method = method, hessian = TRUE, lower=lower, upper=upper)
+    #				HESS <- oout$hessian
+    #				HaveDriftHess <- TRUE
+    #				HaveDiffHess <- TRUE
+    #			} else { ### one dimensional optim
+    #				opt1 <- optimize(f, ...) ## an interval should be provided
+    #				opt1 <- list(par=integ(f=f,upper=upper,lower=lower,fDim=length(lower)+1),objective=0)
+    #               oout <- list(par = opt1$minimum, value = opt1$objective)
+    #			} ### endif( length(start)>1 )
+    #		} else {  ### first diffusion, then drift
+    theta1 <- NULL
+    
+    old.fixed <- fixed 
+    old.start <- start
+    
+    if(length(idx.diff)>0){
+      ## DIFFUSION ESTIMATIOn first
+      old.fixed <- fixed
+      old.start <- start
+      new.start <- start[idx.diff] # considering only initial guess for diffusion
+      new.fixed <- fixed
+      if(length(idx.drift)>0)	
+        new.fixed[nm[idx.drift]] <- start[idx.drift]
+      fixed <- new.fixed
+      fixed.par <- names(fixed)
+      idx.fixed <- match(fixed.par, nm)
+      names(new.start) <- nm[idx.diff]
+      mydots <- as.list(call)[-(1:2)]
+      mydots$fixed <- NULL
+      mydots$fn <- as.name("f")
+      mydots$start <- NULL
+      mydots$par <- unlist(new.start)
+      mydots$hessian <- FALSE
+      mydots$upper <- unlist( upper[ nm[idx.diff] ])
+      mydots$lower <- unlist( lower[ nm[idx.diff] ])
+      f <- function(p){return(g(p,fixed,idx.fixed))}
+      pf <- function(p){return(pg(p,fixed,idx.fixed))}
+      if(length(mydots$par)>1){
+        #			 oout <- do.call(optim, args=mydots)
+        if(method=="mcmc"){
+          oout <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle at coef,vcov=diag(diag(mle at vcov)),mcmc=mcmc))
+        }else{
+          oout <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower,start=start))
+        }
+      } else {
+        mydots$f <- mydots$fn
+        mydots$fn <- NULL
+        mydots$par <- NULL
+        mydots$hessian <- NULL	
+        mydots$method <- NULL	
+        mydots$interval <- as.numeric(c(unlist(lower[diff.par]),unlist(upper[diff.par]))) 
+        mydots$lower <- NULL	
+        mydots$upper <- NULL	
+        #			 opt1 <- do.call(optimize, args=mydots)
+        if(method=="mcmc"){
+          opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle at coef,vcov=diag(diag(mle at vcov)),mcmc=mcmc))
+        }else{
+          opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
+        }
+        theta1 <- opt1$minimum
+        names(theta1) <- diff.par
+        #			 oout <- list(par = theta1, value = opt1$objective) 
+        oout <- list(par=theta1,value=0)
+      }
+      theta1 <- oout$par
+      #names(theta1) <- nm[idx.diff]
+      names(theta1) <- diff.par
+    } ## endif(length(idx.diff)>0)
+    
+    theta2 <- NULL
+    
+    if(length(idx.drift)>0){
+      ## DRIFT estimation with first state diffusion estimates
+      fixed <- old.fixed
+      start <- old.start
+      new.start <- start[idx.drift] # considering only initial guess for drift
+      new.fixed <- fixed
+      new.fixed[names(theta1)] <- theta1
+      fixed <- new.fixed
+      fixed.par <- names(fixed)
+      idx.fixed <- match(fixed.par, nm)
+      names(new.start) <- nm[idx.drift]
+      
+      mydots <- as.list(call)[-(1:2)]
+      mydots$fixed <- NULL
+      mydots$fn <- as.name("f")
+      mydots$start <- NULL
+      mydots$par <- unlist(new.start)
+      mydots$hessian <- FALSE
+      mydots$upper <- unlist( upper[ nm[idx.drift] ])
+      mydots$lower <- unlist( lower[ nm[idx.drift] ])
+      f <- function(p){return(g(p,fixed,idx.fixed))}
+      pf <- function(p){return(pg(p,fixed,idx.fixed))}
+      
+      if(length(mydots$par)>1){
+        #			  oout1 <- do.call(optim, args=mydots)
+        if(method=="mcmc"){
+          oout1 <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle at coef,vcov=diag(diag(mle at vcov)),mcmc=mcmc))
+        }else{
+          oout1 <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
+        }
+      } else {
+        mydots$f <- mydots$fn
+        mydots$fn <- NULL
+        mydots$par <- NULL
+        mydots$hessian <- NULL	
+        mydots$method <- NULL	
+        mydots$interval <- as.numeric(c(lower[drift.par],upper[drift.par])) 
+        #				opt1 <- do.call(optimize, args=mydots)
+        if(method=="mcmc"){
+          opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle at coef,vcov=diag(diag(mle at vcov)),mcmc=mcmc))
+        }else{
+          opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
+        }
+        theta2 <- opt1$minimum
+        names(theta2) <- drift.par
+        oout1 <- list(par = theta2, value = as.numeric(opt1$objective)) 	
+      }
+      theta2 <- oout1$par
+    } ## endif(length(idx.drift)>0)
+    oout1 <- list(par=  c(theta1, theta2))
+    names(oout1$par) <- c(diff.par,drift.par)
+    oout <- oout1
+    
+    #		} ### endif JointOptim
+  } else {
+    list(par = numeric(0L), value = f(start))
+  }
+  
+  
+  fDrift <- function(p) {
+    mycoef <- as.list(p)
+    names(mycoef) <- drift.par
+    mycoef[diff.par] <- coef[diff.par]
+    minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
+  }
+  
+  fDiff <- function(p) {
+    mycoef <- as.list(p)
+    names(mycoef) <- diff.par
+    mycoef[drift.par] <- coef[drift.par]
+    minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
+  }
+  
+  coef <- oout$par
+  control=list()
+  par <- coef
+  names(par) <- c(diff.par, drift.par)
+  nm <- c(diff.par, drift.par)
+  
+  #	 print(par)
+  #	 print(coef)
+  conDrift <- list(trace = 5, fnscale = 1, 
+                   parscale = rep.int(5, length(drift.par)), 
+                   ndeps = rep.int(0.001, length(drift.par)), maxit = 100L, 
+                   abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1, 
+                   beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5, 
+                   factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
+  conDiff <- list(trace = 5, fnscale = 1, 
+                  parscale = rep.int(5, length(diff.par)), 
+                  ndeps = rep.int(0.001, length(diff.par)), maxit = 100L, 
+                  abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1, 
+                  beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5, 
+                  factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
+  
+  #	 nmsC <- names(con)
+  #	 if (method == "Nelder-Mead") 
+  #	 con$maxit <- 500
+  #	 if (method == "SANN") {
+  #		 con$maxit <- 10000
+  #		 con$REPORT <- 100
+  #	 }
+  #	 con[(namc <- names(control))] <- control
+  #	 if (length(noNms <- namc[!namc %in% nmsC])) 
+  #	 warning("unknown names in control: ", paste(noNms, collapse = ", "))
+  #	 if (con$trace < 0) 
+  #	 warning("read the documentation for 'trace' more carefully")
+  #	 else if (method == "SANN" && con$trace && as.integer(con$REPORT) == 
+  #			  0) 
+  #	 stop("'trace != 0' needs 'REPORT >= 1'")
+  #	 if (method == "L-BFGS-B" && any(!is.na(match(c("reltol", 
+  #													"abstol"), namc)))) 
+  #	 warning("method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol'")
+  #	 npar <- length(par)
+  #	 if (npar == 1 && method == "Nelder-Mead") 
+  #	 warning("one-diml optimization by Nelder-Mead is unreliable: use optimize")
+  #	 
+  if(!HaveDriftHess & (length(drift.par)>0)){
+    #hess2 <- .Internal(optimhess(coef[drift.par], fDrift, NULL, conDrift))
+    hess2 <- optimHess(coef[drift.par], fDrift, NULL, control=conDrift)
+    HESS[drift.par,drift.par] <- hess2	 
+  }
+  
+  if(!HaveDiffHess  & (length(diff.par)>0)){
+    #hess1 <- .Internal(optimhess(coef[diff.par], fDiff, NULL, conDiff))
+    hess1 <- optimHess(coef[diff.par], fDiff, NULL, control=conDiff)
+    HESS[diff.par,diff.par] <- hess1	 
+  }
+  
+  oout$hessian <- HESS
+  
+  vcov <- if (length(coef)) 
+    solve(oout$hessian)
+  else matrix(numeric(0L), 0L, 0L)
+  
+  mycoef <- as.list(coef)
+  names(mycoef) <- nm
+  mycoef[fixed.par] <- fixed
+  
+  min <- minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
+  
+  new("mle", call = call, coef = coef, fullcoef = unlist(mycoef), 
+      #       vcov = vcov, min = min, details = oout, minuslogl = minusquasilogl, 
+      vcov = vcov,  details = oout, 
+      method = method)
+  }
+)
+minusquasilogl_W1 <- function(yuima, param, print=FALSE, env,rcpp=T){ #new logl estimates volatility
+  
+  diff.par <- yuima at model@parameter at diffusion
+  
+  drift.par <- yuima at model@parameter at drift
+  if(0){
+    if(length(yuima at model@info at scale.par)!=0){
+      xinit.par <- yuima at model@parameter at xinit
+    }
+  }
+  
+  
+  if(0 && length(yuima at model@info at lin.par)==0
+     && length(yuima at model@parameter at jump)!=0){
+    diff.par<-yuima at model@parameter at jump
+    # measure.par<-yuima at model@parameter at measure
+  }
+  
+  if(0 && length(yuima at model@info at lin.par)==0
+     && length(yuima at model@parameter at measure)!=0){
+    measure.par<-yuima at model@parameter at measure
+  }
+  
+  # 24/12
+  if(0 && length(yuima at model@info at lin.par)>0  ){
+    yuima.warn("carma(p,q): the case of lin.par will be implemented as soon as")
+    return(NULL)
+  }
+  
+  if(0){
+    xinit.par <- yuima at model@parameter at xinit
+  }
+  
+  
+  drift.par <- yuima at model@parameter at drift
+  
+  fullcoef <- NULL
+  
+  if(length(diff.par)>0)
+    fullcoef <- diff.par
+  
+  if(length(drift.par)>0)
+    fullcoef <- c(fullcoef, drift.par)
+  
+  if(0){
+    if(length(xinit.par)>0)
+      fullcoef <- c(fullcoef, xinit.par)
+  }
+  
+  if(0 && (length(yuima at model@parameter at measure)!=0))
+    fullcoef<-c(fullcoef, measure.par)
+  
+  if(0){
+    if("mean.noise" %in% names(param)){
+      mean.noise<-"mean.noise"
+      fullcoef <- c(fullcoef, mean.noise)
+      NoNeg.Noise<-TRUE
+    }
+  }
+  
+  
+  npar <- length(fullcoef)
+  
+  nm <- names(param)
+  oo <- match(nm, fullcoef)
+  
+  if(any(is.na(oo)))
+    yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
+  param <- param[order(oo)]
+  nm <- names(param)
+  
+  idx.diff <- match(diff.par, nm)
+  idx.drift <- match(drift.par, nm)
+  
+  
+  if(0){
+    idx.xinit <-as.integer(na.omit(match(xinit.par, nm)))
+  }
+  
+  h <- env$h
+  
+  Cn.r <- env$Cn.r
+  
+  theta1 <- unlist(param[idx.diff])
+  theta2 <- unlist(param[idx.drift])
+  
+  
+  n.theta1 <- length(theta1)
+  n.theta2 <- length(theta2)
+  n.theta <- n.theta1+n.theta2
+  
+  
+  if(0){
+    theta3 <- unlist(param[idx.xinit])
+    n.theta3 <- length(theta3)
+    n.theta <- n.theta1+n.theta2+n.theta3
+  }
+  
+  
+  d.size <- yuima at model@equation.number
+  
+  
+  n <- length(yuima)[1]
+  
+  
+  if (0){
+    # 24/12
+    d.size <-1
+    # We build the two step procedure as described in
+    #  if(length(yuima at model@info at scale.par)!=0){
+    prova<-as.numeric(param)
+    #names(prova)<-fullcoef[oo]
+    names(prova)<-names(param)
+    param<-prova[c(length(prova):1)]
+    time.obs<-env$time.obs
+    y<-as.numeric(env$X)
+    u<-env$h
+    p<-env$p
+    q<-env$q
+    #         p<-yuima at model@info at p
+    ar.par <- yuima at model@info at ar.par
+    name.ar<-paste0(ar.par, c(1:p))
+    # 	  q <- yuima at model@info at q
+    ma.par <- yuima at model@info at ma.par
+    name.ma<-paste0(ma.par, c(0:q))
+    if (length(yuima at model@info at loc.par)==0){
+      
+      a<-param[name.ar]
+      #        a_names<-names(param[c(1:p)])
+      #        names(a)<-a_names
+      b<-param[name.ma]
+      #        b_names<-names(param[c((p+1):(length(param)-p+1))])
+      #        names(b)<-b_names
+      if(length(yuima at model@info at scale.par)!=0){
+        if(length(b)==1){
+          b<-1
+        } else{
+          indx_b0<-paste0(yuima at model@info at ma.par,"0",collapse="")
+          b[indx_b0]<-1
+        }
+        sigma<-tail(param,1)
+      }else {sigma<-1}
+      NoNeg.Noise<-FALSE
+      if(0){
+        if("mean.noise" %in% names(param)){
+          
+          NoNeg.Noise<-TRUE
+        }
+      }
+      if(NoNeg.Noise==TRUE){
+        if (length(b)==p){
+          #mean.noise<-param[mean.noise]
+          # Be useful for carma driven by a no negative levy process
+          mean.y<-mean(y)
+          #mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
+          #param[mean.noise]<-mean.y/(tail(b,n=1)/tail(a,n=1)*sigma)
+        }else{
+          mean.y<-0
+        }
+        y<-y-mean.y
+      }
+      # V_inf0<-matrix(diag(rep(1,p)),p,p)
+      V_inf0<-env$V_inf0
+      p<-env$p
+      q<-env$q
+      strLog<-yuima.carma.loglik1(y, u, a, b, sigma,time.obs,V_inf0,p,q)
+    }else if (!rcpp){
+      # 01/01
+      #          ar.par <- yuima at model@info at ar.par
+      #          name.ar<-paste0(ar.par, c(1:p))
+      a<-param[name.ar]
+      #          ma.par <- yuima at model@info at ma.par
+      #          q <- yuima at model@info at q
+      name.ma<-paste0(ma.par, c(0:q))
+      b<-param[name.ma]
+      if(length(yuima at model@info at scale.par)!=0){
+        if(length(b)==1){
+          b<-1
+        } else{
+          indx_b0<-paste0(yuima at model@info at ma.par,"0",collapse="")
+          b[indx_b0]<-1
+        }
+        scale.par <- yuima at model@info at scale.par
+        sigma <- param[scale.par]
+      } else{sigma <- 1}
+      loc.par <- yuima at model@info at loc.par
+      mu <- param[loc.par]
+      
+      NoNeg.Noise<-FALSE
+      if(0){
+        if("mean.noise" %in% names(param)){
+          
+          NoNeg.Noise<-TRUE
+        }
+      }
+      
+      # Lines 883:840 work if we have a no negative noise
+      if(0&&(NoNeg.Noise==TRUE)){
+        if (length(b)==p){
+          mean.noise<-param[mean.noise]
+          # Be useful for carma driven by levy process
+          #   mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
+          mean.y<-mean(y-mu)
+          
+        }else{
+          mean.y<-0
+        }
+        y<-y-mean.y
+      }
+      
+      
+      y.start <- y-mu
+      #V_inf0<-matrix(diag(rep(1,p)),p,p)
+      V_inf0<-env$V_inf0
+      p<-env$p
+      q<-env$q
+      strLog<-yuima.carma.loglik1(y.start, u, a, b, sigma,time.obs,V_inf0,p,q)
+    }
+    
+    QL<-strLog$loglikCdiag
+    #       }else {
+    #         yuima.warn("carma(p,q): the scale parameter is equal to 1. We will implemented as soon as possible")
+    #         return(NULL)
+    #     }
+  } else {
+    drift_name <- yuima at model@drift
+    diffusion_name <- yuima at model@diffusion
+    ####data <- yuima at data@original.data
+    data <- env$X
+    
+    thetadim <- length(yuima at model@parameter at all)
+    
+    noise_number <- yuima at model@noise.number
+    
+    assign(yuima at model@time.variable,env$time[-length(env$time)])
+    for(i in 1:d.size) assign(yuima at model@state.variable[i], data[-length(data[,1]),i])
+    for(i in 1:thetadim) assign(names(param)[i], param[[i]])
+    
+    d_b <- NULL
+    for(i in 1:d.size){
+      if(length(eval(drift_name[[i]]))==(length(data[,1])-1)){
+        d_b[[i]] <- drift_name[[i]] #this part of model includes "x"(state.variable)
+      }
+      else{
+        if(is.na(c(drift_name[[i]][2]))){ #ex. yuima at model@drift=expression(0) (we hope "expression((0))")
+          drift_name[[i]] <- parse(text=paste(sprintf("(%s)", drift_name[[i]])))[[1]]
+        }
+        d_b[[i]] <- parse(text=paste("(",drift_name[[i]][2],")*rep(1,length(data[,1])-1)",sep=""))
+        #vectorization
+      }
+    }
+    
+    v_a<-matrix(list(NULL),d.size,noise_number)
+    for(i in 1:d.size){
+      for(j in 1:noise_number){
+        if(length(eval(diffusion_name[[i]][[j]]))==(length(data[,1])-1)){
+          v_a[[i,j]] <- diffusion_name[[i]][[j]] #this part of model includes "x"(state.variable)
+        }
+        else{
+          if(is.na(c(diffusion_name[[i]][[j]][2]))){
+            diffusion_name[[i]][[j]] <- parse(text=paste(sprintf("(%s)", diffusion_name[[i]][[j]])))[[1]]
+          }
+          v_a[[i,j]] <- parse(text=paste("(",diffusion_name[[i]][[j]][2],")*rep(1,length(data[,1])-1)",sep=""))
+          #vectorization
+        }
+      }
+    }
+    
+    dx_set <- as.matrix((data-rbind(numeric(d.size),as.matrix(data[-length(data[,1]),])))[-1,])
+    crossdx_set <- env$crossdx
+    
+    drift_set <- diffusion_set <- NULL
+    #for(i in 1:thetadim) assign(names(param)[i], param[[i]])
+    for(i in 1:d.size) drift_set <- cbind(drift_set,eval(d_b[[i]]))
+    for(i in 1:noise_number){
+      for(j in 1:d.size) diffusion_set <- cbind(diffusion_set,eval(v_a[[j,i]]))
+    }
+    QL <- W1(crossdx_set,drift_set,diffusion_set,env$h)*(-0.5*env$h*env$h)
+  }
+  
+  
+  if(!is.finite(QL)){
+    yuima.warn("quasi likelihood is too small to calculate.")
+    return(1e10)
+  }
+  if(print==TRUE){
+    yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
+  }
+  if(is.infinite(QL)) return(1e10)
+  return(as.numeric(-QL))
+  
+}
+
+minusquasilogl_W2 <- function(yuima, param, print=FALSE, env,rcpp=T){#new logl estimates drift
+  
+  diff.par <- yuima at model@parameter at diffusion
+  
+  drift.par <- yuima at model@parameter at drift
+  if(0){
+    if(length(yuima at model@info at scale.par)!=0){
+      xinit.par <- yuima at model@parameter at xinit
+    }
+  }
+  
+  
+  if(0 && length(yuima at model@info at lin.par)==0
+     && length(yuima at model@parameter at jump)!=0){
+    diff.par<-yuima at model@parameter at jump
+    # measure.par<-yuima at model@parameter at measure
+  }
+  
+  if(0 && length(yuima at model@info at lin.par)==0
+     && length(yuima at model@parameter at measure)!=0){
+    measure.par<-yuima at model@parameter at measure
+  }
+  
+  # 24/12
+  if(0 && length(yuima at model@info at lin.par)>0  ){
+    yuima.warn("carma(p,q): the case of lin.par will be implemented as soon as")
+    return(NULL)
+  }
+  
+  if(0){
+    xinit.par <- yuima at model@parameter at xinit
+  }
+  
+  
+  drift.par <- yuima at model@parameter at drift
+  
+  fullcoef <- NULL
+  
+  if(length(diff.par)>0)
+    fullcoef <- diff.par
+  
+  if(length(drift.par)>0)
+    fullcoef <- c(fullcoef, drift.par)
+  
+  if(0){
+    if(length(xinit.par)>0)
+      fullcoef <- c(fullcoef, xinit.par)
+  }
+  
+  if(0 && (length(yuima at model@parameter at measure)!=0))
+    fullcoef<-c(fullcoef, measure.par)
+  
+  if(0){
+    if("mean.noise" %in% names(param)){
+      mean.noise<-"mean.noise"
+      fullcoef <- c(fullcoef, mean.noise)
+      NoNeg.Noise<-TRUE
+    }
+  }
+  
+  
+  npar <- length(fullcoef)
+  
+  nm <- names(param)
+  oo <- match(nm, fullcoef)
+  
+  if(any(is.na(oo)))
+    yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
+  param <- param[order(oo)]
+  nm <- names(param)
+  
+  idx.diff <- match(diff.par, nm)
+  idx.drift <- match(drift.par, nm)
+  
+  
+  if(0){
+    idx.xinit <-as.integer(na.omit(match(xinit.par, nm)))
+  }
+  
+  h <- env$h
+  
+  Cn.r <- env$Cn.r
+  
+  theta1 <- unlist(param[idx.diff])
+  theta2 <- unlist(param[idx.drift])
+  
+  
+  n.theta1 <- length(theta1)
+  n.theta2 <- length(theta2)
+  n.theta <- n.theta1+n.theta2
+  
+  
+  if(0){
+    theta3 <- unlist(param[idx.xinit])
+    n.theta3 <- length(theta3)
+    n.theta <- n.theta1+n.theta2+n.theta3
+  }
+  
+  
+  d.size <- yuima at model@equation.number
+  
+  
+  n <- length(yuima)[1]
+  
+  
+  if (0){
+    # 24/12
+    d.size <-1
+    # We build the two step procedure as described in
+    #  if(length(yuima at model@info at scale.par)!=0){
+    prova<-as.numeric(param)
+    #names(prova)<-fullcoef[oo]
+    names(prova)<-names(param)
+    param<-prova[c(length(prova):1)]
+    time.obs<-env$time.obs
+    y<-as.numeric(env$X)
+    u<-env$h
+    p<-env$p
+    q<-env$q
+    #         p<-yuima at model@info at p
+    ar.par <- yuima at model@info at ar.par
+    name.ar<-paste0(ar.par, c(1:p))
+    # 	  q <- yuima at model@info at q
+    ma.par <- yuima at model@info at ma.par
+    name.ma<-paste0(ma.par, c(0:q))
+    if (length(yuima at model@info at loc.par)==0){
+      
+      a<-param[name.ar]
+      #        a_names<-names(param[c(1:p)])
+      #        names(a)<-a_names
+      b<-param[name.ma]
+      #        b_names<-names(param[c((p+1):(length(param)-p+1))])
+      #        names(b)<-b_names
+      if(length(yuima at model@info at scale.par)!=0){
+        if(length(b)==1){
+          b<-1
+        } else{
+          indx_b0<-paste0(yuima at model@info at ma.par,"0",collapse="")
+          b[indx_b0]<-1
+        }
+        sigma<-tail(param,1)
+      }else {sigma<-1}
+      NoNeg.Noise<-FALSE
+      if(0){
+        if("mean.noise" %in% names(param)){
+          
+          NoNeg.Noise<-TRUE
+        }
+      }
+      if(NoNeg.Noise==TRUE){
+        if (length(b)==p){
+          #mean.noise<-param[mean.noise]
+          # Be useful for carma driven by a no negative levy process
+          mean.y<-mean(y)
+          #mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
+          #param[mean.noise]<-mean.y/(tail(b,n=1)/tail(a,n=1)*sigma)
+        }else{
+          mean.y<-0
+        }
+        y<-y-mean.y
+      }
+      # V_inf0<-matrix(diag(rep(1,p)),p,p)
+      V_inf0<-env$V_inf0
+      p<-env$p
+      q<-env$q
+      strLog<-yuima.carma.loglik1(y, u, a, b, sigma,time.obs,V_inf0,p,q)
+    }else if (!rcpp){
+      # 01/01
+      #          ar.par <- yuima at model@info at ar.par
+      #          name.ar<-paste0(ar.par, c(1:p))
+      a<-param[name.ar]
+      #          ma.par <- yuima at model@info at ma.par
+      #          q <- yuima at model@info at q
+      name.ma<-paste0(ma.par, c(0:q))
+      b<-param[name.ma]
+      if(length(yuima at model@info at scale.par)!=0){
+        if(length(b)==1){
+          b<-1
+        } else{
+          indx_b0<-paste0(yuima at model@info at ma.par,"0",collapse="")
+          b[indx_b0]<-1
+        }
+        scale.par <- yuima at model@info at scale.par
+        sigma <- param[scale.par]
+      } else{sigma <- 1}
+      loc.par <- yuima at model@info at loc.par
+      mu <- param[loc.par]
+      
+      NoNeg.Noise<-FALSE
+      if(0){
+        if("mean.noise" %in% names(param)){
+          
+          NoNeg.Noise<-TRUE
+        }
+      }
+      
+      # Lines 883:840 work if we have a no negative noise
+      if(0&&(NoNeg.Noise==TRUE)){
+        if (length(b)==p){
+          mean.noise<-param[mean.noise]
+          # Be useful for carma driven by levy process
+          #   mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
+          mean.y<-mean(y-mu)
+          
+        }else{
+          mean.y<-0
+        }
+        y<-y-mean.y
+      }
+      
+      
+      y.start <- y-mu
+      #V_inf0<-matrix(diag(rep(1,p)),p,p)
+      V_inf0<-env$V_inf0
+      p<-env$p
+      q<-env$q
+      strLog<-yuima.carma.loglik1(y.start, u, a, b, sigma,time.obs,V_inf0,p,q)
+    }
+    
+    QL<-strLog$loglikCdiag
+    #       }else {
+    #         yuima.warn("carma(p,q): the scale parameter is equal to 1. We will implemented as soon as possible")
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/yuima -r 535


More information about the Yuima-commits mailing list