[Yuima-commits] r64 - pkg/yuimadocs/inst/doc
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sun Mar 7 03:27:00 CET 2010
Author: hinohide
Date: 2010-03-07 03:26:58 +0100 (Sun, 07 Mar 2010)
New Revision: 64
Modified:
pkg/yuimadocs/inst/doc/yuima_5.Rnw
Log:
minor addition on documentation
Modified: pkg/yuimadocs/inst/doc/yuima_5.Rnw
===================================================================
--- pkg/yuimadocs/inst/doc/yuima_5.Rnw 2010-03-07 01:40:57 UTC (rev 63)
+++ pkg/yuimadocs/inst/doc/yuima_5.Rnw 2010-03-07 02:26:58 UTC (rev 64)
@@ -1,96 +1,107 @@
-
-\section{adaBayes}
- adaBayes is a function that computes Bayesian estimators for unknown parameters of
- a stochastic differential equation based on discretely observed data.
-
-\subsection{Bayesian type estimators for the stochastic differential equation}\label{190105-4}
-
-
-Consider a diffusion process $X=(X_t)_{t\in\bbR_+}$ satisfying the
-stochastic differential equation
-\beas
-dX_t=a(X_t,\theta_2)dt+b(X_t,\theta_1)dw_t,
-\sskip X_0=x_0,
-\eeas
-where $w_t$ is an{$r$}-dimensional standard Wiener process
-independent of the initial value $x_0$.
-We suppose that the parameters
-$\theta_1$ and $\theta_2$ are unknown
-but
-$\theta_i\in\Theta_i\subset\bbR^{m_i}$
-for $i=1,2$.
-Also assume that
-$B(x,\theta_1)=bb'(x,\theta_1)$ is elliptic uniformly
-in $(x,\theta_1)$.
-
-In order to estimate the unknown parameters
-with the discrete-time
-observations ${\bf x}_n=(X_{t_i})_{i=0}^n$,
-$t_i=ih$ with $h=h_n$ depending on $n\in\bbN$,
-we use the quasi-likelihood function
-\beas
-p_n({\bf x}_n,\theta)
-&=&\prod_{i=1}^n\frac{1}{(2\pi h)^{d/2}|B(X_{t_{i-1}},\theta_1)|^{1/2}}
-\\&&
-\cdot
-\exp\left(-\frac{1}{2h}
-B(X_{t_{i-1}},\theta_1)^{-1}\left[
-(\Delta_iX-ha(X_{t_{i-1}},\theta_2) )^{\otimes2}\right]\right),
-\eeas
-where $\Delta_iX=X_{t_i}-X_{t_{i-1}}$.
-%
-
-Two approaches are possible.
-One is the quasi-maximum likelihood approach
-and another is the adaptive Bayesian approach.
-
-The quasi-maximum likelihood estimator
-that maximizes $p_n({\bf x}_n,\theta)$
-in $\theta=(\theta_1,\theta_2)\in
-=\overline{\Theta_1\times\Theta_2}$
-is denoted by $\hat{\theta}_{n}=
-(\hat{\theta}_{1,n},\hat{\theta}_{2,n})$.
-
-The adaptive Bayes type estimator is defined as follows.
-First we choose arbitrary value $\theta_2^\star\in\Theta_2$ and
-pretend $\theta_1$ is the unknown parameter to
-make the Bayesian type estimator $\tilde{\theta}_1$ as
-\beas
-\tilde{\theta}_1
-&=&
-\Big[\int_{\Theta_1}p_n({\bf x}_n,(\theta_1,\theta_2^\star))
-\pi_1(\theta_1)d\theta_1 \Big]^{-1}
-\int_{\Theta_1} \theta_1 p_n({\bf x}_n,(\theta_1,\theta_2^\star))
-\pi_1(\theta_1)d\theta_1,
-\eeas
-where
-$\pi_1$ is a prior density on $\Theta_1$.
-According to the asymptotic theory,
-if $\pi_1$ is positive on $\Theta_1$, any function can be used.
-For estimation of $\theta_2$, we use $\tilde{\theta}_1$
-to reform the quasi-likelihood function. That is,
-the Bayes type estimator for $\theta_2$ is defined by
-\beas
-\tilde{\theta}_2
-&=&
-\Big[\int_{\Theta_2}p_n({\bf x}_n,(\tilde{\theta}_1,\theta_2))
-\pi_2(\theta_2)d\theta_2 \Big]^{-1}
-\int_{\Theta_2} \theta_2 p_n({\bf x}_n,(\tilde{\theta}_1,\theta_2))
-\pi_2(\theta_2)d\theta_2,
-\eeas
-where
-$\pi_2$ is a prior density on $\Theta_2$.
-In this way, we obtain the adaptive Bayes type estimator
-$\tilde{\theta}=(\tilde{\theta}_1,\tilde{\theta}_2)$
-for $\theta=(\theta_1,\theta_2)$.
-
-
-The asymptotic behavior of those estimators is known
-in various situations. The results depend on what kind
-asymptotics one considers.
-
-See \cite{yos05}.
-
-
-\subsection{Example}
-
+\section{adaBayes}
+ adaBayes is a function that computes Bayesian estimators for unknown parameters of
+ a stochastic differential equation based on discretely observed data.
+
+\subsection{Bayesian type estimators for the stochastic differential equation}\label{190105-4}
+
+
+Consider a diffusion process $X=(X_t)_{t\in\bbR_+}$ satisfying the
+stochastic differential equation
+\beas
+dX_t=a(X_t,\theta_2)dt+b(X_t,\theta_1)dw_t,
+\sskip X_0=x_0,
+\eeas
+where $w_t$ is an{$r$}-dimensional standard Wiener process
+independent of the initial value $x_0$.
+We suppose that the parameters
+$\theta_1$ and $\theta_2$ are unknown
+but
+$\theta_i\in\Theta_i\subset\bbR^{m_i}$
+for $i=1,2$.
+Also assume that
+$B(x,\theta_1)=bb'(x,\theta_1)$ is elliptic uniformly
+in $(x,\theta_1)$.
+
+In order to estimate the unknown parameters
+with the discrete-time
+observations ${\bf x}_n=(X_{t_i})_{i=0}^n$,
+$t_i=ih$ with $h=h_n$ depending on $n\in\bbN$,
+we use the quasi-likelihood function
+\beas
+p_n({\bf x}_n,\theta)
+&=&\prod_{i=1}^n\frac{1}{(2\pi h)^{d/2}|B(X_{t_{i-1}},\theta_1)|^{1/2}}
+\\&&
+\cdot
+\exp\left(-\frac{1}{2h}
+B(X_{t_{i-1}},\theta_1)^{-1}\left[
+(\Delta_iX-ha(X_{t_{i-1}},\theta_2) )^{\otimes2}\right]\right),
+\eeas
+where $\Delta_iX=X_{t_i}-X_{t_{i-1}}$.
+%
+
+Two approaches are possible.
+One is the quasi-maximum likelihood approach
+and another is the adaptive Bayesian approach.
+
+The quasi-maximum likelihood estimator
+that maximizes $p_n({\bf x}_n,\theta)$
+in $\theta=(\theta_1,\theta_2)\in
+=\overline{\Theta_1\times\Theta_2}$
+is denoted by $\hat{\theta}_{n}=
+(\hat{\theta}_{1,n},\hat{\theta}_{2,n})$.
+
+The adaptive Bayes type estimator is defined as follows.
+First we choose arbitrary value $\theta_2^\star\in\Theta_2$ and
+pretend $\theta_1$ is the unknown parameter to
+make the Bayesian type estimator $\tilde{\theta}_1$ as
+\beas
+\tilde{\theta}_1
+&=&
+\Big[\int_{\Theta_1}p_n({\bf x}_n,(\theta_1,\theta_2^\star))
+\pi_1(\theta_1)d\theta_1 \Big]^{-1}
+\int_{\Theta_1} \theta_1 p_n({\bf x}_n,(\theta_1,\theta_2^\star))
+\pi_1(\theta_1)d\theta_1,
+\eeas
+where
+$\pi_1$ is a prior density on $\Theta_1$.
+According to the asymptotic theory,
+if $\pi_1$ is positive on $\Theta_1$, any function can be used.
+For estimation of $\theta_2$, we use $\tilde{\theta}_1$
+to reform the quasi-likelihood function. That is,
+the Bayes type estimator for $\theta_2$ is defined by
+\beas
+\tilde{\theta}_2
+&=&
+\Big[\int_{\Theta_2}p_n({\bf x}_n,(\tilde{\theta}_1,\theta_2))
+\pi_2(\theta_2)d\theta_2 \Big]^{-1}
+\int_{\Theta_2} \theta_2 p_n({\bf x}_n,(\tilde{\theta}_1,\theta_2))
+\pi_2(\theta_2)d\theta_2,
+\eeas
+where
+$\pi_2$ is a prior density on $\Theta_2$.
+In this way, we obtain the adaptive Bayes type estimator
+$\tilde{\theta}=(\tilde{\theta}_1,\tilde{\theta}_2)$
+for $\theta=(\theta_1,\theta_2)$.
+
+The asymptotic behavior of those estimators is known
+in various situations. The results depend on what kind
+asymptotics one considers.
+
+See \cite{yos05}.
+
+\subsection{Technical Details}
+2010/03/07: Hideitsu Hino wrote\\
+[TBC: Description about ml.ql function. It's possible options. Optim
+function equipped with R which uses ``Nelder-Mead method'' for
+likelihood maximization. By specifying method=''Newton'', we can use
+Newton method for likelihood maximization.]
+
+[TBC: Description about adaBayes function. It's possible options. MCMC.]
+
+[TBC: Return value format of ml.ql and adaBayes. It is in the same form
+to the return value of ``mle'' function. That is, we can apply
+``confint'' to get their confidence intervals.]
+
+
+
+\subsection{Example}
More information about the Yuima-commits
mailing list