[Vegan-commits] r2835 - in pkg/vegan/tests: . Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Jan 13 09:05:27 CET 2014


Author: jarioksa
Date: 2014-01-13 09:05:26 +0100 (Mon, 13 Jan 2014)
New Revision: 2835

Modified:
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
   pkg/vegan/tests/vegan-tests.Rout.save
Log:
update tests

Modified: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2014-01-13 08:01:23 UTC (rev 2834)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2014-01-13 08:05:26 UTC (rev 2835)
@@ -1,5 +1,5 @@
 
-R Under development (unstable) (2014-01-07 r64685) -- "Unsuffered Consequences"
+R Under development (unstable) (2014-01-12 r64752) -- "Unsuffered Consequences"
 Copyright (C) 2014 The R Foundation for Statistical Computing
 Platform: x86_64-unknown-linux-gnu (64-bit)
 
@@ -162,7 +162,7 @@
 
 Formula:
 y ~ poly(x1, 1) + poly(x2, 1)
-<environment: 0x2dd2b28>
+<environment: 0x1a4dcf8>
 Total model degrees of freedom 3 
 
 REML score: -3.185099
@@ -2627,8 +2627,6 @@
 > plot(S, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
 > abline(0, 1)
 > rarecurve(BCI, step = 20, sample = raremax, col = "blue", cex = 0.6)
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -2820,10 +2818,6 @@
 > ordispider(ord, Moisture, col="skyblue")
 > points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
 > plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## Use shorter labels for factor centroids
 > labels(fit)
 $vectors
@@ -2835,10 +2829,6 @@
 > plot(ord)
 > plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),
 +    bg = rgb(1,1,0,0.5))
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -4545,18 +4535,12 @@
 > plot(mod, type = "n")
 > ## Annual succession by ditches
 > ordiarrows(mod, ditch, label = TRUE)
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## Show only control and highest Pyrifos treatment
 > plot(mod, type = "n")
 > ordiarrows(mod, ditch, label = TRUE, 
 +    show.groups = c("2", "3", "5", "11"))
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ordiarrows(mod, ditch, label = TRUE, show = c("6", "9"),
 +    col = 2)
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > legend("topright", c("Control", "Pyrifos 44"), lty = 1, col = c(1,2))
 > 
 > 
@@ -4594,8 +4578,6 @@
 > plot(mod, type = "n")
 > pl <- ordihull(mod, Management, scaling = 3)
 > ordispider(pl, col="red", lty=3, label = TRUE )
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## ordispider to connect WA and LC scores
 > plot(mod, dis=c("wa","lc"), type="p")
 > ordispider(mod)
@@ -4634,12 +4616,8 @@
 > ord <- cca(dune)
 > plot(ord, type = "n")
 > ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## You may prefer separate plots, but here species as well
 > ordilabel(ord, dis="sp", font=2, priority=colSums(dune))
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -5068,7 +5046,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x8c0d4d0>
+<environment: 0x9968520>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5085,7 +5063,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xb204180>
+<environment: 0xa291388>
 
 Estimated degrees of freedom:
 6.45  total = 7.45 
@@ -5116,7 +5094,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x9f46190>
+<environment: 0xa202b48>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5131,7 +5109,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "ts", fx = FALSE)
-<environment: 0xaec0d30>
+<environment: 0x99e3890>
 
 Estimated degrees of freedom:
 4.43  total = 5.43 
@@ -5157,7 +5135,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "ds", fx = FALSE)
-<environment: 0xaed5ee8>
+<environment: 0x9f10bb8>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5173,7 +5151,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 4, bs = "tp", fx = TRUE)
-<environment: 0xaa3b930>
+<environment: 0x8ba13d8>
 
 Estimated degrees of freedom:
 3  total = 4 
@@ -5190,7 +5168,7 @@
 Formula:
 y ~ te(x1, x2, k = c(4, 4), bs = c("cr", "cr"), fx = c(FALSE, 
     FALSE))
-<environment: 0xa78c100>
+<environment: 0x98f4090>
 
 Estimated degrees of freedom:
 2.99  total = 3.99 
@@ -5209,7 +5187,7 @@
 Formula:
 y ~ te(x1, x2, k = c(3, 4), bs = c("cs", "cs"), fx = c(TRUE, 
     TRUE))
-<environment: 0xb3284f0>
+<environment: 0x9a7a810>
 
 Estimated degrees of freedom:
 11  total = 12 
@@ -5353,7 +5331,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x9eb0078>
+<environment: 0x6b7a770>
 
 Estimated degrees of freedom:
 8.71  total = 9.71 
@@ -5366,7 +5344,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xaed63b8>
+<environment: 0x9576da8>
 
 Estimated degrees of freedom:
 7.18  total = 8.18 
@@ -5379,7 +5357,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xa361e50>
+<environment: 0x987ebd8>
 
 Estimated degrees of freedom:
 8.32  total = 9.32 
@@ -5865,10 +5843,13 @@
 > 
 > ### ** Examples
 > 
-> # Chlorpyrifos experiment and experimental design
+> ## Chlorpyrifos experiment and experimental design: Pesticide
+> ## treatment in ditches (replicated) and followed over from 4 weeks
+> ## before to 24 weeks after exposure 
 > data(pyrifos)
 > week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
 > dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
+> ditch <- gl(12, 1, length=132)
 > # PRC
 > mod <- prc(pyrifos, dose, week)
 > mod            # RDA
@@ -5963,63 +5944,20 @@
 44  0.5704
 > logabu <- colSums(pyrifos)
 > plot(mod, select = logabu > 100)
-> # Permutations should be done only within one week, and we only
-> # are interested on the first axis
-> anova(mod, strata = week, first=TRUE, perm.max = 100)
+> ## Ditches are randomized, we have a time series, and are only
+> ## interested in the first axis
+> ctrl <- how(plots = Plots(strata = ditch,type = "free"),
++     within = Within(type = "series"), nperm = 99)
+> anova(mod, permutations = ctrl, first=TRUE)
 Permutation test for rda under reduced model
-Blocks:  structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,  
-Permutation: free
-Number of permutations: 999
+Plots: ditch, plot permutation: free
+Permutation: series
+Number of permutations: 99
 
-Permutation test for rda under reduced model
-Blocks:  2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L), .Label = c("-4",  
-Permutation: free
-Number of permutations: 999
-
-Permutation test for rda under reduced model
-Blocks:  "-1", "0.1", "1", "2", "4", "8", "12", "15", "19", "24"), class = "factor") 
-Permutation: free
-Number of permutations: 999
-
 Model: prc(response = pyrifos, treatment = dose, time = week)
-         Df Variance      F Pr(>F)    
-RDA1      1   25.282 15.096  0.001 ***
-Residual 77  128.959                  
+         Df Variance      F Pr(>F)   
+RDA1      1   25.282 15.096   0.01 **
+Residual 77  128.959                 
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
@@ -6824,8 +6762,6 @@
 > ## Add tree to a metric scaling 
 > plot(tr, cmdscale(dis), type = "t")
 Loading required package: MASS
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## Find a configuration to display the tree neatly
 > plot(tr, type = "t")
 Initial stress        : 0.03111
@@ -6833,8 +6769,6 @@
 stress after  20 iters: 0.01139, magic = 0.500
 stress after  30 iters: 0.01118, magic = 0.500
 stress after  40 iters: 0.01114, magic = 0.500
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > ## Depths of nodes
 > depths <- spandepth(tr)
 > plot(tr, type = "t", label = depths)
@@ -6843,8 +6777,6 @@
 stress after  20 iters: 0.01139, magic = 0.500
 stress after  30 iters: 0.01118, magic = 0.500
 stress after  40 iters: 0.01114, magic = 0.500
-Warning in rep(border, length = nrow(x)) :
-  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -7372,6 +7304,7 @@
 > data(dune.phylodis)
 > cl <- hclust(dune.phylodis)
 > treedive(dune, cl)
+Forced matching of 'tree' labels and 'comm' names
         1         2         3         4         5         6         7         8 
  384.0913  568.8791 1172.9455 1327.9317 1426.9067 1391.1628 1479.5062 1523.0792 
         9        10        11        12        13        14        15        16 
@@ -7381,13 +7314,13 @@
 > ## Significance test using Null model communities.
 > ## The current choice fixes numbers of species and picks species
 > ## proportionally to their overall frequency
-> oecosimu(dune, treedive, "r1", tree = cl)
-Warning in oecosimu(dune, treedive, "r1", tree = cl) :
+> oecosimu(dune, treedive, "r1", tree = cl, verbose = FALSE)
+Warning in oecosimu(dune, treedive, "r1", tree = cl, verbose = FALSE) :
   nullmodel transformed 'comm' to binary data
 oecosimu object
 
 Call: oecosimu(comm = dune, nestfun = treedive, method = "r1", tree =
-cl)
+cl, verbose = FALSE)
 
 nullmodel method ‘r1’ with 99 simulations
 
@@ -8009,7 +7942,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xb0d4008>
+<environment: 0x84b2db8>
 
 Estimated degrees of freedom:
 1.28  total = 2.28 
@@ -8562,7 +8495,7 @@
 > ###
 > options(digits = 7L)
 > base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
-Time elapsed:  39.125 0.116 39.243 0 0 
+Time elapsed:  27.424 0.147 27.577 0 0 
 > grDevices::dev.off()
 null device 
           1 

Modified: pkg/vegan/tests/vegan-tests.Rout.save
===================================================================
--- pkg/vegan/tests/vegan-tests.Rout.save	2014-01-13 08:01:23 UTC (rev 2834)
+++ pkg/vegan/tests/vegan-tests.Rout.save	2014-01-13 08:05:26 UTC (rev 2835)
@@ -1,6 +1,6 @@
 
-R Under development (unstable) (2013-11-15 r64218) -- "Unsuffered Consequences"
-Copyright (C) 2013 The R Foundation for Statistical Computing
+R Under development (unstable) (2014-01-12 r64752) -- "Unsuffered Consequences"
+Copyright (C) 2014 The R Foundation for Statistical Computing
 Platform: x86_64-unknown-linux-gnu (64-bit)
 
 R is free software and comes with ABSOLUTELY NO WARRANTY.
@@ -54,186 +54,103 @@
 > ### data= argument
 > ## cca/rda
 > m <-  cca(fla, data=df,  na.action=na.exclude,  subset = Use != "Pasture" & spno > 7)
-> anova(m, perm=100)
+> anova(m, permutations=99)
 Permutation test for cca under reduced model
+Permutation: free
+Number of permutations: 99
 
 Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-         Df  Chisq      F N.Perm Pr(>F)  
-Model     6 1.3178 1.3341     99   0.07 .
-Residual  4 0.6585                       
+         Df ChiSquare      F Pr(>F)  
+Model     6   1.25838 1.3106   0.07 .
+Residual  5   0.80011                
 ---
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(m, by="term", perm=100)
+> ## vegan 2.1-40 cannot handle missing data in next two
+> ##anova(m, by="term", permutations=99)
+> ##anova(m, by="margin", permutations=99)
+> anova(m, by="axis", permutations=99)
 Permutation test for cca under reduced model
-Terms added sequentially (first to last)
+Marginal tests for axes
+Permutation: free
+Number of permutations: 99
 
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df  Chisq      F N.Perm Pr(>F)  
-Management   3 0.8039 1.6277     99   0.04 *
-poly(A1, 2)  2 0.3581 1.0877     99   0.37  
-spno         1 0.1558 0.9461     99   0.40  
-Residual     4 0.6585                       
+Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = object$subset)
+         Df ChiSquare      F Pr(>F)   
+CCA1      1   0.46993 2.9366   0.01 **
+CCA2      1   0.26217 1.6384   0.15   
+CCA3      1   0.19308 1.2066   0.29   
+CCA4      1   0.18345 1.1464   0.37   
+CCA5      1   0.08871 0.5544   0.77   
+CCA6      1   0.06104 0.3815   0.90   
+Residual  5   0.80011                 
 ---
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(m, by="margin", perm=100)
-Permutation test for cca under reduced model
-Marginal effects of terms
-
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df  Chisq      F N.Perm Pr(>F)
-Management   3 0.6151 1.2454     99   0.31
-poly(A1, 2)  2 0.3514 1.0673     99   0.46
-spno         1 0.1558 0.9461     99   0.58
-Residual     4 0.6585                     
-> anova(m, by="axis", perm=100)
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, data = df,      na.action = na.exclude, subset = structure(c(TRUE, TRUE,      TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE,      FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE), .Names = c("2",      "13", "4", "16", "6", "1", "8", "5", "17", "15", "10", "11",      "9", "18", "3", "20", "14", "19", "12", "7")))
-         Df  Chisq      F N.Perm Pr(>F)  
-CCA1      1 0.4683 2.8448     99   0.05 *
-CCA2      1 0.3339 2.0280     99   0.18  
-CCA3      1 0.1983 1.2044     99   0.36  
-CCA4      1 0.1457 0.8852     99   0.56  
-CCA5      1 0.1035 0.6284     99   0.82  
-CCA6      1 0.0681 0.4139     99   0.83  
-Residual  4 0.6585                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 > ## capscale
 > p <- capscale(fla, data=df, na.action=na.exclude, subset = Use != "Pasture" & spno > 7)
-> anova(p, perm=100)
+> anova(p, permutations=99)
 Permutation test for capscale under reduced model
+Permutation: free
+Number of permutations: 99
 
 Model: capscale(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-         Df    Var      F N.Perm Pr(>F)   
-Model     6 64.324 1.9652     99   0.01 **
-Residual  4 21.821                        
+         Df Variance      F Pr(>F)  
+Model     6   59.582 1.6462   0.04 *
+Residual  5   30.160                
 ---
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(p, by="term", perm=100)
-Permutation test for capscale under reduced model
-Terms added sequentially (first to last)
-
-Model: capscale(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df    Var      F N.Perm Pr(>F)   
-Management   3 45.520 2.7814     99   0.01 **
-poly(A1, 2)  2 11.342 1.0395     99   0.37   
-spno         1  7.462 1.3679     99   0.19   
-Residual     4 21.821                        
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(p, by="margin", perm=100)
-Permutation test for capscale under reduced model
-Marginal effects of terms
-
-Model: capscale(formula = dune ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df    Var      F N.Perm Pr(>F)  
-Management   3 34.092 2.0831     99   0.03 *
-poly(A1, 2)  2 10.861 0.9954     99   0.51  
-spno         1  7.462 1.3679     99   0.31  
-Residual     4 21.821                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(p, by="axis", perm=100)
-Model: capscale(formula = dune ~ Management + poly(A1, 2) + spno, data = df,      na.action = na.exclude, subset = structure(c(TRUE, TRUE,      TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE,      FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE), .Names = c("2",      "13", "4", "16", "6", "1", "8", "5", "17", "15", "10", "11",      "9", "18", "3", "20", "14", "19", "12", "7")))
-         Df     Var      F N.Perm Pr(>F)  
-CAP1      1 26.7105 4.8962     99   0.02 *
-CAP2      1 17.1633 3.1462     99   0.04 *
-CAP3      1  7.7026 1.4119     99   0.31  
-CAP4      1  5.9442 1.0896     99   0.50  
-CAP5      1  4.0224 0.7373     99   0.59  
-CAP6      1  2.7811 0.5098     99   0.87  
-Residual  4 21.8213                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+> ## vegan 2.1-40 cannot hndle missing data in next two
+> ##anova(p, by="term", permutations=99)
+> ##anova(p, by="margin", permutations=99)
+> ##anova(p, by="axis", permutations=99)
 > ## see that capscale can be updated and also works with 'dist' input
 > dis <- vegdist(dune)
 > p <- update(p, dis ~ .)
-> anova(p, perm=100)
+> anova(p, permutations=99)
 Permutation test for capscale under reduced model
+Permutation: free
+Number of permutations: 99
 
 Model: capscale(formula = dis ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-         Df     Var      F N.Perm Pr(>F)  
-Model     6 1.55041 1.9024     99   0.06 .
-Residual  4 0.54333                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(p, by="term", perm=100)
-Permutation test for capscale under reduced model
-Terms added sequentially (first to last)
-
-Model: capscale(formula = dis ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df     Var      F N.Perm Pr(>F)  
-Management   3 1.04714 2.5697     99   0.02 *
-poly(A1, 2)  2 0.29810 1.0973     99   0.44  
-spno         1 0.20517 1.5105     99   0.21  
-Residual     4 0.54333                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(p, by="margin", perm=100)
-Permutation test for capscale under reduced model
-Marginal effects of terms
-
-Model: capscale(formula = dis ~ Management + poly(A1, 2) + spno, data = df, na.action = na.exclude, subset = Use != "Pasture" & spno > 7)
-            Df     Var      F N.Perm Pr(>F)
-Management   3 0.70723 1.7356     99   0.15
-poly(A1, 2)  2 0.27558 1.0144     99   0.44
-spno         1 0.20517 1.5105     99   0.29
-Residual     4 0.54333                     
-> anova(p, by="axis", perm=100)
-Model: capscale(formula = dis ~ Management + poly(A1, 2) + spno, data = df,      na.action = na.exclude, subset = structure(c(TRUE, TRUE,      TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE,      FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE), .Names = c("2",      "13", "4", "16", "6", "1", "8", "5", "17", "15", "10", "11",      "9", "18", "3", "20", "14", "19", "12", "7")))
-         Df     Var      F N.Perm Pr(>F)  
-CAP1      1 0.70878 5.2181     99   0.03 *
-CAP2      1 0.54318 3.9989     99   0.07 .
-CAP3      1 0.11673 0.8594     99   0.53  
-CAP4      1 0.09299 0.6846     99   0.59  
-CAP5      1 0.06416 0.4723     99   0.84  
-CAP6      1 0.02458 0.1810     99   0.98  
-Residual  4 0.54333                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+         Df Variance      F Pr(>F)
+Model     6  1.54840 1.6423    0.1
+Residual  5  0.78568              
+> ## vegan 2.1-40 cannot handle missing data in next three
+> ##anova(p, by="term", permutations=99)
+> ##anova(p, by="margin", permutations=99)
+> ##anova(p, by="axis", permutations=99)
 > ### attach()ed data frame instead of data=
 > attach(df)
 > q <- cca(fla, na.action = na.omit, subset = Use != "Pasture" & spno > 7)
-> anova(q, perm=100)
+> anova(q, permutations=99)
 Permutation test for cca under reduced model
+Permutation: free
+Number of permutations: 99
 
 Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, na.action = na.omit, subset = Use != "Pasture" & spno > 7)
-         Df  Chisq      F N.Perm Pr(>F)
-Model     6 1.3178 1.3341     99   0.17
-Residual  4 0.6585                     
-> anova(q, by="term", perm=100)
+         Df ChiSquare      F Pr(>F)
+Model     6   1.25838 1.3106   0.11
+Residual  5   0.80011              
+> ## commented tests below fail in vegan 2.1-40 because number of
+> ## observations changes
+> ##anova(q, by="term", permutations=99) 
+> ##anova(q, by="margin", permutations=99)
+> anova(q, by="axis", permutations=99)
 Permutation test for cca under reduced model
-Terms added sequentially (first to last)
+Marginal tests for axes
+Permutation: free
+Number of permutations: 99
 
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, na.action = na.omit, subset = Use != "Pasture" & spno > 7)
-            Df  Chisq      F N.Perm Pr(>F)  
-Management   3 0.8039 1.6277     99   0.03 *
-poly(A1, 2)  2 0.3581 1.0877     99   0.36  
-spno         1 0.1558 0.9461     99   0.43  
-Residual     4 0.6585                       
+Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, na.action = na.omit, subset = object$subset)
+         Df ChiSquare      F Pr(>F)  
+CCA1      1   0.46993 2.9366   0.03 *
+CCA2      1   0.26217 1.6384   0.13  
+CCA3      1   0.19308 1.2066   0.34  
+CCA4      1   0.18345 1.1464   0.42  
+CCA5      1   0.08871 0.5544   0.75  
+CCA6      1   0.06104 0.3815   0.94  
+Residual  5   0.80011                
 ---
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-> anova(q, by="margin", perm=100)
-Permutation test for cca under reduced model
-Marginal effects of terms
-
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, na.action = na.omit, subset = Use != "Pasture" & spno > 7)
-            Df  Chisq      F N.Perm Pr(>F)
-Management   3 0.6151 1.2454     99   0.35
-poly(A1, 2)  2 0.3514 1.0673     99   0.44
-spno         1 0.1558 0.9461     99   0.51
-Residual     4 0.6585                     
-> anova(q, by="axis", perm=100)
-Model: cca(formula = dune ~ Management + poly(A1, 2) + spno, na.action = na.omit,      subset = structure(c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE,      FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE,      TRUE, FALSE, TRUE, TRUE, FALSE), .Names = c("2", "13", "4",      "16", "6", "1", "8", "5", "17", "15", "10", "11", "9", "18",      "3", "20", "14", "19", "12", "7")))
-         Df  Chisq      F N.Perm Pr(>F)  
-CCA1      1 0.4683 2.8448     99   0.07 .
-CCA2      1 0.3339 2.0280     99   0.11  
-CCA3      1 0.1983 1.2044     99   0.25  
-CCA4      1 0.1457 0.8852     99   0.50  
-CCA5      1 0.1035 0.6284     99   0.59  
-CCA6      1 0.0681 0.4139     99   0.75  
-Residual  4 0.6585                       
----
-Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 > ### Check that constrained ordination functions can be embedded.
 > ### The data.frame 'df' is still attach()ed.
 > foo <- function(bar, Y, X, ...)
@@ -245,90 +162,90 @@
 Call: cca(formula = Y ~ X, na.action = ..1)
 
               Inertia Proportion Rank
-Total          2.1037     1.0000     
-Constrained    0.5887     0.2798    3
-Unconstrained  1.5150     0.7202   14
+Total          2.0949     1.0000     
+Constrained    0.6236     0.2977    3
+Unconstrained  1.4713     0.7023   14
 Inertia is mean squared contingency coefficient 
 2 observations deleted due to missingness 
 
 Eigenvalues for constrained axes:
-  CCA1   CCA2   CCA3 
-0.3327 0.1748 0.0812 
+   CCA1    CCA2    CCA3 
+0.31573 0.20203 0.10584 
 
 Eigenvalues for unconstrained axes:
    CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8    CA9   CA10   CA11 
-0.4595 0.2168 0.1746 0.1409 0.1155 0.0865 0.0778 0.0669 0.0532 0.0431 0.0356 
+0.4478 0.1910 0.1788 0.1409 0.1202 0.0949 0.0732 0.0570 0.0531 0.0448 0.0312 
   CA12   CA13   CA14 
-0.0265 0.0129 0.0052 
+0.0181 0.0104 0.0098 
 
 > foo("rda", dune, Management, na.action = na.omit)
 Call: rda(formula = Y ~ X, na.action = ..1)
 
               Inertia Proportion Rank
-Total         81.8300     1.0000     
-Constrained   28.0900     0.3433    3
-Unconstrained 53.7400     0.6567   14
+Total         85.1200     1.0000     
+Constrained   32.7800     0.3851    3
+Unconstrained 52.3400     0.6149   14
 Inertia is variance 
 2 observations deleted due to missingness 
 
 Eigenvalues for constrained axes:
   RDA1   RDA2   RDA3 
-15.661  9.697  2.736 
+15.956 13.621  3.199 
 
 Eigenvalues for unconstrained axes:
    PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8    PC9   PC10   PC11 
-16.267  8.125  6.319  5.181  3.665  3.438  2.654  2.359  1.892  1.415  0.993 
+14.893  9.136  6.042  5.674  3.638  2.865  2.504  1.968  1.888  1.239  0.959 
   PC12   PC13   PC14 
- 0.665  0.419  0.350 
+ 0.779  0.501  0.255 
 
 > foo("capscale", dune, Management, dist="jaccard", na.action = na.omit)
 Call: bar(formula = Y ~ X, distance = "jaccard", na.action = ..2)
 
               Inertia Proportion Rank
-Total          5.2930     1.0000     
-Constrained    1.5460     0.2921    3
-Unconstrained  3.7470     0.7079   14
+Total          5.1430     1.0000     
+Constrained    1.6450     0.3199    3
+Unconstrained  3.4980     0.6801   14
 Inertia is squared Jaccard distance 
 2 observations deleted due to missingness 
 
 Eigenvalues for constrained axes:
   CAP1   CAP2   CAP3 
-0.8856 0.4712 0.1893 
+0.8504 0.6047 0.1902 
 
 Eigenvalues for unconstrained axes:
   MDS1   MDS2   MDS3   MDS4   MDS5   MDS6   MDS7   MDS8   MDS9  MDS10  MDS11 
-1.1647 0.5426 0.4475 0.3394 0.2945 0.2062 0.1759 0.1531 0.1168 0.0885 0.0876 
+1.0474 0.4406 0.4386 0.4054 0.2847 0.1947 0.1546 0.1506 0.0957 0.0935 0.0761 
  MDS12  MDS13  MDS14 
-0.0743 0.0475 0.0086 
+0.0603 0.0436 0.0120 
 
 > foo("capscale", vegdist(dune), Management, na.action = na.omit)
 Call: bar(formula = Y ~ X, na.action = ..1)
 
               Inertia Proportion Rank
-Total          3.9490                
-Real Total     4.1690     1.0000     
-Constrained    1.3490     0.3235    3
-Unconstrained  2.8200     0.6765   12
-Imaginary     -0.2200               5
+Total           3.765                
+Real Total      3.949      1.000     
+Constrained     1.446      0.366    3
+Unconstrained   2.504      0.634   13
+Imaginary      -0.184               4
 Inertia is squared Bray distance 
 2 observations deleted due to missingness 
 
 Eigenvalues for constrained axes:
   CAP1   CAP2   CAP3 
-0.8665 0.3747 0.1076 
+0.7910 0.5497 0.1050 
 
 Eigenvalues for unconstrained axes:
   MDS1   MDS2   MDS3   MDS4   MDS5   MDS6   MDS7   MDS8   MDS9  MDS10  MDS11 
-1.2509 0.4808 0.3715 0.2352 0.1611 0.0967 0.0714 0.0689 0.0366 0.0299 0.0135 
- MDS12 
-0.0036 
+1.0756 0.3691 0.3349 0.2695 0.1651 0.0931 0.0726 0.0673 0.0286 0.0174 0.0093 
+ MDS12  MDS13 
+0.0011 0.0001 
 
 > ### FIXME: foo("capscale", dune, Management, data=dune.env) fails!
 > ###
 > detach(df)
 > ### Check that statistics match in partial constrained ordination
 > m <- cca(dune ~ A1 + Moisture + Condition(Management), dune.env, subset = A1 > 3)
-> tab <- anova(m, by = "axis", perm.max = 100)
+> tab <- anova(m, by = "axis", permutations = 99)
 > m
 Call: cca(formula = dune ~ A1 + Moisture + Condition(Management), data
 = dune.env, subset = A1 > 3)
@@ -349,13 +266,18 @@
 0.31042 0.13634 0.11974 0.09408 0.07763 0.06425 0.04449 0.02925 0.02785 0.01299 
 
 > tab
-Model: cca(formula = dune ~ A1 + Moisture + Condition(Management), data = dune.env,      subset = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE,      TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,      TRUE, FALSE))
-         Df  Chisq      F N.Perm Pr(>F)   
-CCA1      1 0.2711 2.9561     99   0.01 **
-CCA2      1 0.1406 1.5329     99   0.05 * 
-CCA3      1 0.0876 0.9553     99   0.42   
-CCA4      1 0.0562 0.6132     99   0.75   
-Residual 10 0.9170                        
+Permutation test for cca under reduced model
+Marginal tests for axes
+Permutation: free
+Number of permutations: 99
+
+Model: cca(formula = dune ~ A1 + Moisture + Condition(Management), data = dune.env, subset = object$subset)
+         Df ChiSquare      F Pr(>F)  
+CCA1      1   0.27109 2.9561   0.02 *
+CCA2      1   0.14057 1.5329   0.29  
+CCA3      1   0.08761 0.9553   0.74  
+CCA4      1   0.05624 0.6132   0.92  
+Residual 10   0.91705                
 ---
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 > all.equal(tab[,2], c(m$CCA$eig, m$CA$tot.chi), check.attributes=FALSE)
@@ -381,82 +303,114 @@
 > # partial db-RDA
 > cap.model.cond <- capscale(X ~ A + B + Condition(CC))
 > anova(cap.model.cond, by="axis", strata=CC)  # -> error pre r2287
+Permutation test for capscale under reduced model
+Marginal tests for axes
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
+
 Model: capscale(formula = X ~ A + B + Condition(CC))
-         Df    Var      F N.Perm Pr(>F)
-CAP1      1 0.2682 1.3075     99   0.22
-CAP2      1 0.0685 0.3339     99   0.95
-CAP3      1 0.0455 0.2217     99   0.94
-Residual 22 4.5130                     
+         Df Variance      F Pr(>F)
+CAP1      1   0.2682 1.3075  0.242
+CAP2      1   0.0685 0.3339  0.921
+CAP3      1   0.0455 0.2217  0.966
+Residual 22   4.5130              
 > anova(cap.model.cond, by="terms", strata=CC)  # -> error pre r2287
 Permutation test for capscale under reduced model
 Terms added sequentially (first to last)
-Permutations stratified within 'CC'
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
 
 Model: capscale(formula = X ~ A + B + Condition(CC))
-         Df    Var      F N.Perm Pr(>F)
-A         1 0.1316 0.6415     99   0.71
-B         2 0.2506 0.6108     99   0.84
-Residual 22 4.5130                     
+         Df Variance      F Pr(>F)
+A         1   0.1316 0.6415  0.680
+B         2   0.2506 0.6108  0.824
+Residual 22   4.5130              
 > 
 > # db-RDA without conditional factor
 > cap.model <- capscale(X ~ A + B)
 > anova(cap.model, by="axis", strata=CC)  # -> no error
+Permutation test for capscale under reduced model
+Marginal tests for axes
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
+
 Model: capscale(formula = X ~ A + B)
-         Df    Var      F N.Perm Pr(>F)
-CAP1      1 0.2682 1.3267     99   0.25
-CAP2      1 0.0685 0.3388     99   0.95
-CAP3      1 0.0455 0.2249     99   0.98
-Residual 26 5.2565                     
+         Df Variance      F Pr(>F)
+CAP1      1   0.2682 1.3267  0.240
+CAP2      1   0.0685 0.3388  0.913
+CAP3      1   0.0455 0.2249  0.964
+Residual 26   5.2565              
 > anova(cap.model, by="terms", strata=CC)  # -> no error
 Permutation test for capscale under reduced model
 Terms added sequentially (first to last)
-Permutations stratified within 'CC'
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
 
 Model: capscale(formula = X ~ A + B)
-         Df    Var      F N.Perm Pr(>F)
-A         1 0.1316 0.6509     99   0.65
-B         2 0.2506 0.6198     99   0.84
-Residual 26 5.2565                     
+         Df Variance      F Pr(>F)
+A         1   0.1316 0.6509  0.693
+B         2   0.2506 0.6198  0.829
+Residual 26   5.2565              
 > 
 > # partial RDA
 > rda.model.cond <- rda(X ~ A + B + Condition(CC))
 > anova(rda.model.cond, by="axis", strata=CC)  # -> no error
+Permutation test for rda under reduced model
+Marginal tests for axes
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
+
 Model: rda(formula = X ~ A + B + Condition(CC))
-         Df    Var      F N.Perm Pr(>F)
-RDA1      1 0.2682 1.3075     99   0.31
-RDA2      1 0.0685 0.3339     99   0.85
-RDA3      1 0.0455 0.2217     99   0.98
-Residual 22 4.5130                     
+         Df Variance      F Pr(>F)
+RDA1      1   0.2682 1.3075  0.286
+RDA2      1   0.0685 0.3339  0.921
+RDA3      1   0.0455 0.2217  0.963
+Residual 22   4.5130              
 > anova(rda.model.cond, by="terms", strata=CC)  # -> error pre r2287
 Permutation test for rda under reduced model
 Terms added sequentially (first to last)
-Permutations stratified within 'CC'
+Blocks:  strata 
+Permutation: free
+Number of permutations: 999
 
 Model: rda(formula = X ~ A + B + Condition(CC))
-         Df    Var      F N.Perm Pr(>F)
-A         1 0.1316 0.6415     99   0.63
-B         2 0.2506 0.6108     99   0.80
-Residual 22 4.5130                     
+         Df Variance      F Pr(>F)
+A         1   0.1316 0.6415  0.669
+B         2   0.2506 0.6108  0.827
+Residual 22   4.5130              
 > 
 > # RDA without conditional factor
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/vegan -r 2835


More information about the Vegan-commits mailing list