[Vegan-commits] r2709 - pkg/vegan/tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Nov 15 14:02:44 CET 2013


Author: jarioksa
Date: 2013-11-15 14:02:44 +0100 (Fri, 15 Nov 2013)
New Revision: 2709

Modified:
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
Log:
update examples

Modified: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-11-15 12:37:55 UTC (rev 2708)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-11-15 13:02:44 UTC (rev 2709)
@@ -1,5 +1,5 @@
 
-R Under development (unstable) (2013-07-10 r63264) -- "Unsuffered Consequences"
+R Under development (unstable) (2013-11-15 r64218) -- "Unsuffered Consequences"
 Copyright (C) 2013 The R Foundation for Statistical Computing
 Platform: x86_64-unknown-linux-gnu (64-bit)
 
@@ -22,7 +22,8 @@
 > options(warn = 1)
 > library('vegan')
 Loading required package: permute
-This is vegan 2.1-32
+Loading required package: lattice
+This is vegan 2.1-39
 > 
 > base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
 > cleanEx()
@@ -153,14 +154,15 @@
 > plot(ef)
 > ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)
 Loading required package: mgcv
-This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
+Loading required package: nlme
+This is mgcv 1.7-26. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ poly(x1, 1) + poly(x2, 1)
-<environment: 0x3371698>
+<environment: 0x280d1f8>
 Total model degrees of freedom 3 
 
 REML score: -3.185099
@@ -169,7 +171,7 @@
 > 
 > cleanEx()
 
-detaching ‘package:mgcv’
+detaching ‘package:mgcv’, ‘package:nlme’
 
 > nameEx("MOStest")
 > ### * MOStest
@@ -394,12 +396,12 @@
 dune ~ 1
 
              Df    AIC      F N.Perm Pr(>F)   
-+ Moisture    3 86.608 2.2536    199  0.005 **
++ Moisture    3 86.608 2.2536    199  0.010 **
 + Management  3 86.935 2.1307    199  0.005 **
-+ A1          1 87.411 2.1400    199  0.025 * 
++ A1          1 87.411 2.1400    199  0.020 * 
 <none>          87.657                        
-+ Manure      4 88.832 1.5251    199  0.020 * 
-+ Use         2 89.134 1.1431     99  0.260   
++ Manure      4 88.832 1.5251    199  0.025 * 
++ Use         2 89.134 1.1431     99  0.250   
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
@@ -408,11 +410,11 @@
 
              Df    AIC      F N.Perm Pr(>F)   
 <none>          86.608                        
-+ Management  3 86.813 1.4565    199  0.035 * 
-+ A1          1 86.992 1.2624     99  0.190   
-+ Use         2 87.259 1.2760     99  0.130   
-+ Manure      4 87.342 1.3143    199  0.075 . 
-- Moisture    3 87.657 2.2536    199  0.010 **
++ Management  3 86.813 1.4565    199  0.020 * 
++ A1          1 86.992 1.2624     99  0.150   
++ Use         2 87.259 1.2760    199  0.120   
++ Manure      4 87.342 1.3143    199  0.090 . 
+- Moisture    3 87.657 2.2536    199  0.005 **
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 Call: cca(formula = dune ~ Moisture, data = dune.env)
@@ -446,21 +448,21 @@
 > add1(m0, scope=formula(mbig), test="perm")
            Df    AIC      F N.Perm Pr(>F)   
 <none>        89.620                        
-A1          1 89.591 1.9217    199  0.030 * 
+A1          1 89.591 1.9217    199  0.070 . 
 Moisture    3 87.707 2.5883    199  0.005 **
 Management  3 87.082 2.8400    199  0.005 **
-Use         2 91.032 1.1741     99  0.170   
+Use         2 91.032 1.1741     99  0.180   
 Manure      4 89.232 1.9539    199  0.010 **
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > m0 <- update(m0, . ~ . + Management)
 > add1(m0, scope=formula(mbig), test="perm")
-         Df    AIC      F N.Perm Pr(>F)  
-<none>      87.082                       
-A1        1 87.424 1.2965     99  0.200  
-Moisture  3 85.567 1.9764    199  0.015 *
-Use       2 88.284 1.0510     99  0.470  
-Manure    3 87.517 1.3902    199  0.135  
+         Df    AIC      F N.Perm Pr(>F)   
+<none>      87.082                        
+A1        1 87.424 1.2965     99  0.240   
+Moisture  3 85.567 1.9764    199  0.005 **
+Use       2 88.284 1.0510     99  0.430   
+Manure    3 87.517 1.3902    199  0.130   
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > m0 <- update(m0, . ~ . + Moisture)
@@ -468,16 +470,16 @@
 > drop1(m0, test="perm")
            Df    AIC      F N.Perm Pr(>F)   
 <none>        85.567                        
-Management  3 87.707 2.1769    199  0.005 **
-Moisture    3 87.082 1.9764    199  0.010 **
+Management  3 87.707 2.1769    199  0.010 **
+Moisture    3 87.082 1.9764    199  0.015 * 
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > add1(m0, scope=formula(mbig), test="perm")
        Df    AIC      F N.Perm Pr(>F)
 <none>    85.567                     
-A1      1 86.220 0.8359     99   0.62
-Use     2 86.842 0.8027     99   0.72
-Manure  3 85.762 1.1225     99   0.27
+A1      1 86.220 0.8359     99   0.72
+Use     2 86.842 0.8027     99   0.77
+Manure  3 85.762 1.1225     99   0.26
 > 
 > 
 > 
@@ -664,7 +666,6 @@
 > Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2
 > Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2
 > total <- Agropyron + Schizachyrium
-> library(lattice)
 > dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,
 +         type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE) )
 > 
@@ -716,9 +717,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("anosim")
 > ### * anosim
 > 
@@ -847,6 +845,36 @@
 > 
 > 
 > cleanEx()
+> nameEx("anovacca")
+> ### * anovacca
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: anovacca
+> ### Title: Permutation Test for Constrained Correspondence Analysis,
+> ###   Redundancy Analysis and Constrained Analysis of Principal Coordinates
+> ### Aliases: anovacca
+> ### Keywords: multivariate htest
+> 
+> ### ** Examples
+> 
+> data(varespec)
+> data(varechem)
+> vare.cca <- cca(varespec ~ Al + P + K, varechem)
+> ## overall test
+> anovacca(vare.cca)
+Permutation test for cca under reduced model
+
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm Pr(>F)    
+Model     3 0.6441 2.9840    999  0.001 ***
+Residual 20 1.4391                         
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+> 
+> 
+> 
+> cleanEx()
 > nameEx("as.mlm")
 > ### * as.mlm
 > 
@@ -1116,7 +1144,7 @@
 No. of Positive Eigenvalues: 15
 No. of Negative Eigenvalues: 8
 
-Average distance to medoid:
+Average distance to median:
   grazed ungrazed 
   0.3926   0.2706 
 
@@ -1211,7 +1239,7 @@
 27 -0.32914546 -0.17019348  0.231623720  0.019110623
 23 -0.19259443 -0.01459250 -0.005679372 -0.209718312
 19 -0.06794575 -0.14501690 -0.085645653  0.002431355
-> # group centroids/medoids 
+> # group centroids/medians 
 > scores(mod, 1:4, display = "centroids")
               PCoA1       PCoA2       PCoA3      PCoA4
 grazed   -0.1455200  0.07584572 -0.01366220 -0.0178990
@@ -1238,7 +1266,7 @@
 No. of Positive Eigenvalues: 15
 No. of Negative Eigenvalues: 8
 
-Average distance to medoid:
+Average distance to median:
   grazed ungrazed 
   0.4055   0.2893 
 
@@ -1257,7 +1285,7 @@
 No. of Positive Eigenvalues: 15
 No. of Negative Eigenvalues: 8
 
-Average distance to medoid:
+Average distance to median:
 grazed 
 0.4255 
 
@@ -1299,7 +1327,7 @@
 No. of Positive Eigenvalues: 14
 No. of Negative Eigenvalues: 5
 
-Average distance to medoid:
+Average distance to median:
   grazed ungrazed 
   0.3984   0.3008 
 
@@ -1427,8 +1455,10 @@
 3 "c" = (b+c)/2
 4 "wb" = b+c
 5 "r" = 2*b*c/((a+b+c)^2-2*b*c)
-6 "I" = log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c)
-7 "e" = exp(log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c))-1
+6 "I" = log(2*a+b+c) - 2*a*log(2)/(2*a+b+c) - ((a+b)*log(a+b) +
+(a+c)*log(a+c)) / (2*a+b+c)
+7 "e" = exp(log(2*a+b+c) - 2*a*log(2)/(2*a+b+c) - ((a+b)*log(a+b) +
+(a+c)*log(a+c)) / (2*a+b+c))-1
 8 "t" = (b+c)/(2*a+b+c)
 9 "me" = (b+c)/(2*a+b+c)
 10 "j" = a/(a+b+c)
@@ -1526,7 +1556,7 @@
 > ### Name: bioenv
 > ### Title: Best Subset of Environmental Variables with Maximum (Rank)
 > ###   Correlation with Community Dissimilarities
-> ### Aliases: bioenv bioenv.default bioenv.formula summary.bioenv
+> ### Aliases: bioenv bioenv.default bioenv.formula summary.bioenv bioenvdist
 > ### Keywords: multivariate
 > 
 > ### ** Examples
@@ -1608,10 +1638,10 @@
 varechem, distance = "bray")
 
               Inertia Proportion Rank
-Total          4.5444                
-Real Total     4.8034     1.0000     
-Conditional    0.9772     0.2034    1
-Constrained    0.9972     0.2076    3
+Total          4.5440                
+Real Total     4.8030     1.0000     
+Conditional    0.9770     0.2034    1
+Constrained    0.9970     0.2076    3
 Unconstrained  2.8290     0.5890   15
 Imaginary     -0.2590               8
 Inertia is squared Bray distance 
@@ -1643,10 +1673,10 @@
 varechem, distance = "bray", add = TRUE)
 
               Inertia Proportion Rank
-Total          8.9643     1.0000     
-Conditional    1.5053     0.1679    1
-Constrained    1.7171     0.1915    3
-Unconstrained  5.7419     0.6405   19
+Total          8.9640     1.0000     
+Conditional    1.5050     0.1679    1
+Constrained    1.7170     0.1915    3
+Unconstrained  5.7420     0.6405   19
 Inertia is squared Bray distance (euclidified) 
 
 Eigenvalues for constrained axes:
@@ -1668,9 +1698,9 @@
 
               Inertia Proportion Rank
 Total          6.9500     1.0000     
-Conditional    0.9535     0.1372    1
-Constrained    1.2267     0.1765    3
-Unconstrained  4.7698     0.6863   19
+Conditional    0.9530     0.1372    1
+Constrained    1.2270     0.1765    3
+Unconstrained  4.7700     0.6863   19
 Inertia is Bray distance 
 
 Eigenvalues for constrained axes:
@@ -1689,11 +1719,11 @@
 Call: capscale(formula = varespec ~ 1, distance = "bray", metaMDSdist =
 TRUE)
 
-               Inertia Rank
-Total          2.54753     
-Real Total     2.59500     
-Unconstrained  2.59500   19
-Imaginary     -0.04747    4
+              Inertia Rank
+Total          2.5475     
+Real Total     2.5950     
+Unconstrained  2.5950   19
+Imaginary     -0.0475    4
 Inertia is squared Bray distance 
 
 Eigenvalues for unconstrained axes:
@@ -1804,9 +1834,9 @@
 Call: cca(formula = varespec ~ Ca, data = varechem)
 
               Inertia Proportion Rank
-Total         2.08320    1.00000     
-Constrained   0.15722    0.07547    1
-Unconstrained 1.92598    0.92453   22
+Total          2.0832     1.0000     
+Constrained    0.1572     0.0755    1
+Unconstrained  1.9260     0.9245   22
 Inertia is mean squared contingency coefficient 
 
 Eigenvalues for constrained axes:
@@ -2294,16 +2324,12 @@
 > data(dune.env)
 > mod <- adonis(dune ~ Management, data = dune.env)
 > plot(density(mod))
-> library(lattice)
 > mod <- adonis(dune ~ Management * Moisture, dune.env)
 > densityplot(mod)
 > 
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("designdist")
 > ### * designdist
 > 
@@ -2668,6 +2694,8 @@
 > plot(S, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
 > abline(0, 1)
 > rarecurve(BCI, step = 20, sample = raremax, col = "blue", cex = 0.6)
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -2801,21 +2829,21 @@
 
 ***VECTORS
 
-             NMDS1     NMDS2     r2 Pr(>r)    
-N        -0.057194 -0.998363 0.2537  0.046 *  
-P         0.619593  0.784923 0.1938  0.103    
-K         0.766293  0.642492 0.1809  0.143    
-Ca        0.685057  0.728489 0.4119  0.008 ** 
-Mg        0.632400  0.774642 0.4271  0.004 ** 
-S         0.191230  0.981545 0.1752  0.140    
-Al       -0.871691  0.490056 0.5269  0.001 ***
-Fe       -0.936135  0.351641 0.4451  0.002 ** 
-Mn        0.798733 -0.601685 0.5230  0.001 ***
-Zn        0.617495  0.786575 0.1879  0.125    
-Mo       -0.903045  0.429546 0.0609  0.537    
-Baresoil  0.925034 -0.379885 0.2508  0.039 *  
-Humdepth  0.932909 -0.360112 0.5200  0.002 ** 
-pH       -0.648094  0.761560 0.2308  0.060 .  
+            NMDS1    NMDS2     r2 Pr(>r)    
+N        -0.05719 -0.99836 0.2537  0.046 *  
+P         0.61959  0.78492 0.1938  0.103    
+K         0.76629  0.64249 0.1809  0.143    
+Ca        0.68506  0.72849 0.4119  0.008 ** 
+Mg        0.63240  0.77464 0.4271  0.004 ** 
+S         0.19123  0.98155 0.1752  0.140    
+Al       -0.87169  0.49006 0.5269  0.001 ***
+Fe       -0.93613  0.35164 0.4451  0.002 ** 
+Mn        0.79873 -0.60169 0.5230  0.001 ***
+Zn        0.61750  0.78657 0.1879  0.125    
+Mo       -0.90304  0.42955 0.0609  0.537    
+Baresoil  0.92503 -0.37988 0.2508  0.039 *  
+Humdepth  0.93291 -0.36011 0.5200  0.002 ** 
+pH       -0.64809  0.76156 0.2308  0.060 .  
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 P values based on 999 permutations.
@@ -2859,6 +2887,10 @@
 > ordispider(ord, Moisture, col="skyblue")
 > points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
 > plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## Use shorter labels for factor centroids
 > labels(fit)
 $vectors
@@ -2870,6 +2902,10 @@
 > plot(ord)
 > plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),
 +    bg = rgb(1,1,0,0.5))
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -2927,8 +2963,7 @@
 > ### Name: fisherfit
 > ### Title: Fit Fisher's Logseries and Preston's Lognormal Model to
 > ###   Abundance Data
-> ### Aliases: fisherfit as.fisher plot.fisherfit profile.fisherfit
-> ###   confint.fisherfit plot.profile.fisherfit prestonfit prestondistr
+> ### Aliases: fisherfit as.fisher plot.fisherfit prestonfit prestondistr
 > ###   as.preston plot.prestonfit lines.prestonfit plot.preston
 > ###   lines.preston plot.fisher veiledspec
 > ### Keywords: univar distribution
@@ -2941,15 +2976,8 @@
 
 Fisher log series model
 No. of species: 101 
+Fisher alpha:   37.96423 
 
-      Estimate Std. Error
-alpha   37.964     4.6847
-
-> plot(profile(mod))
-> confint(mod)
-Loading required package: MASS
-   2.5 %   97.5 % 
-29.65932 48.12558 
 > # prestonfit seems to need large samples
 > mod.oct <- prestonfit(colSums(BCI))
 > mod.ll <- prestondistr(colSums(BCI))
@@ -3003,9 +3031,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:MASS’
-
 > nameEx("goodness.cca")
 > ### * goodness.cca
 > 
@@ -3344,6 +3369,8 @@
 > fun <- function(x, i) indpower(x)[i,-i]
 > ## 'c0' randomizes species occurrences
 > os <- oecosimu(dune, fun, "c0", i=i, nsimul=99)
+Warning in oecosimu(dune, fun, "c0", i = i, nsimul = 99) :
+  nullmodel transformed 'comm' to binary data
 > ## get z values from oecosimu output
 > z <- os$oecosimu$z
 > ## p-value
@@ -4492,20 +4519,18 @@
 Axis lengths    2.9197 2.5442 2.7546 1.78074
 
 
-     statistic       z    mean      5%     50%   100% Pr(sim.)  
-DCA1  0.382249  1.8658 0.32404 0.27338 0.32373 0.3918     0.02 *
-DCA2  0.261208  1.5772 0.21939 0.17891 0.21617 0.2899     0.09 .
-DCA3  0.166788  0.5209 0.15594 0.12380 0.15572 0.2361     0.30  
-DCA4  0.087226 -1.9822 0.13015 0.10335 0.12649 0.2011     0.99  
+     statistic       z     mean       0%      50%    95% Pr(sim.)  
+DCA1  0.382249  1.8658 0.324042 0.230869 0.323729 0.3726     0.02 *
+DCA2  0.261208  1.5772 0.219388 0.149703 0.216169 0.2637     0.09 .
+DCA3  0.166788  0.5209 0.155941 0.105269 0.155716 0.1859     0.30  
+DCA4  0.087226 -1.9822 0.130151 0.066742 0.126492 0.1649     0.99  
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Inspect the swap sequence as a time series object
 > plot(as.ts(out))
 > lag.plot(as.ts(out))
 > acf(as.ts(out))
-> ## Density plot: needs lattice
-> require(lattice)
-Loading required package: lattice
+> ## Density plot
 > densityplot(out, as.table = TRUE)
 > ## Use quantitative null models to compare
 > ## mean Bray-Curtis dissimilarities
@@ -4553,9 +4578,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("ordiarrows")
 > ### * ordiarrows
 > 
@@ -4581,12 +4603,18 @@
 > plot(mod, type = "n")
 > ## Annual succession by ditches
 > ordiarrows(mod, ditch, label = TRUE)
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## Show only control and highest Pyrifos treatment
 > plot(mod, type = "n")
 > ordiarrows(mod, ditch, label = TRUE, 
 +    show.groups = c("2", "3", "5", "11"))
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ordiarrows(mod, ditch, label = TRUE, show = c("6", "9"),
 +    col = 2)
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > legend("topright", c("Control", "Pyrifos 44"), lty = 1, col = c(1,2))
 > 
 > 
@@ -4624,6 +4652,8 @@
 > plot(mod, type = "n")
 > pl <- ordihull(mod, Management, scaling = 3)
 > ordispider(pl, col="red", lty=3, label = TRUE )
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## ordispider to connect WA and LC scores
 > plot(mod, dis=c("wa","lc"), type="p")
 > ordispider(mod)
@@ -4662,8 +4692,12 @@
 > ord <- cca(dune)
 > plot(ord, type = "n")
 > ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## You may prefer separate plots, but here species as well
 > ordilabel(ord, dis="sp", font=2, priority=colSums(dune))
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -4797,14 +4831,10 @@
 > data(varechem)
 > mod <- cca(varespec ~ Al + P + K, varechem)
 > ordiresids(mod)
-Loading required package: lattice
 > 
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("ordistep")
 > ### * ordistep
 > 
@@ -4870,9 +4900,9 @@
 Call: rda(formula = dune ~ Management + Moisture, data = dune.env)
 
               Inertia Proportion Rank
-Total         84.1237     1.0000     
-Constrained   46.4249     0.5519    6
-Unconstrained 37.6988     0.4481   13
+Total         84.1200     1.0000     
+Constrained   46.4200     0.5519    6
+Unconstrained 37.7000     0.4481   13
 Inertia is variance 
 
 Eigenvalues for constrained axes:
@@ -4924,9 +4954,9 @@
 Call: rda(formula = dune ~ Moisture + Manure, data = dune.env)
 
               Inertia Proportion Rank
-Total         84.1237     1.0000     
-Constrained   49.1609     0.5844    7
-Unconstrained 34.9628     0.4156   12
+Total         84.1200     1.0000     
+Constrained   49.1600     0.5844    7
+Unconstrained 34.9600     0.4156   12
 Inertia is variance 
 
 Eigenvalues for constrained axes:
@@ -5088,14 +5118,15 @@
 > vare.mds <- monoMDS(vare.dist)
 > with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5))
 Loading required package: mgcv
-This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
+Loading required package: nlme
+This is mgcv 1.7-26. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xa7eec90>
+<environment: 0x9d2c888>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5112,7 +5143,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x8ac38d0>
+<environment: 0x857e428>
 
 Estimated degrees of freedom:
 6.45  total = 7.45 
@@ -5143,7 +5174,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xa9f8930>
+<environment: 0x9f03880>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5158,7 +5189,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "ts", fx = FALSE)
-<environment: 0x9948930>
+<environment: 0x8ec7f98>
 
 Estimated degrees of freedom:
 4.43  total = 5.43 
@@ -5184,7 +5215,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "ds", fx = FALSE)
-<environment: 0xb22f4c0>
+<environment: 0xa262658>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -5200,7 +5231,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 4, bs = "tp", fx = TRUE)
-<environment: 0xaa2a810>
+<environment: 0x9e03b88>
 
 Estimated degrees of freedom:
 3  total = 4 
@@ -5217,7 +5248,7 @@
 Formula:
 y ~ te(x1, x2, k = c(4, 4), bs = c("cr", "cr"), fx = c(FALSE, 
     FALSE))
-<environment: 0xae83dd0>
+<environment: 0x9a49fc0>
 
 Estimated degrees of freedom:
 2.99  total = 3.99 
@@ -5236,7 +5267,7 @@
 Formula:
 y ~ te(x1, x2, k = c(3, 4), bs = c("cs", "cs"), fx = c(TRUE, 
     TRUE))
-<environment: 0xa30a9e0>
+<environment: 0x9d149d8>
 
 Estimated degrees of freedom:
 11  total = 12 
@@ -5248,7 +5279,7 @@
 > 
 > cleanEx()
 
-detaching ‘package:mgcv’
+detaching ‘package:mgcv’, ‘package:nlme’
 
 > nameEx("orditkplot")
 > ### * orditkplot
@@ -5334,7 +5365,6 @@
 > ord <- cca(dune)
 > ## Pairs plots
 > ordisplom(ord)
-Loading required package: lattice
 > ordisplom(ord, data=dune.env, choices=1:2)
 > ordisplom(ord, data=dune.env, form = ~ . | Management, groups=Manure)
 > ## Scatter plot
@@ -5354,9 +5384,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("pcnm")
 > ### * pcnm
 > 
@@ -5376,14 +5403,15 @@
 > ## Map of PCNMs in the sample plot
 > ordisurf(mite.xy, scores(pcnm1, choi=1), bubble = 4, main = "PCNM 1")
 Loading required package: mgcv
-This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
+Loading required package: nlme
+This is mgcv 1.7-26. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x92f3b20>
+<environment: 0x97f7ee0>
 
 Estimated degrees of freedom:
 8.71  total = 9.71 
@@ -5396,7 +5424,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x765c640>
+<environment: 0x856d9e8>
 
 Estimated degrees of freedom:
 7.18  total = 8.18 
@@ -5409,7 +5437,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xa083c70>
+<environment: 0x9205860>
 
 Estimated degrees of freedom:
 8.32  total = 9.32 
@@ -5418,7 +5446,6 @@
 > par(op)
 > ## Plot first PCNMs against each other
 > ordisplom(pcnm1, choices=1:4)
-Loading required package: lattice
 > ## Weighted PCNM for CCA
 > data(mite)
 > rs <- rowSums(mite)/sum(mite)
@@ -5433,7 +5460,7 @@
 > graphics::par(get("par.postscript", pos = 'CheckExEnv'))
 > cleanEx()
 
-detaching ‘package:lattice’, ‘package:mgcv’
+detaching ‘package:mgcv’, ‘package:nlme’
 
 > nameEx("permatfull")
 > ### * permatfull
@@ -5682,7 +5709,7 @@
 No. of Positive Eigenvalues: 15
 No. of Negative Eigenvalues: 8
 
-Average distance to medoid:
+Average distance to median:
   grazed ungrazed 
   0.3926   0.2706 
 
@@ -5905,10 +5932,10 @@
 Call: prc(response = pyrifos, treatment = dose, time = week)
 
                Inertia Proportion Rank
-Total         288.9920     1.0000     
-Conditional    63.3493     0.2192   10
-Constrained    96.6837     0.3346   44
-Unconstrained 128.9589     0.4462   77
+Total         288.9900     1.0000     
+Conditional    63.3500     0.2192   10
+Constrained    96.6800     0.3346   44
+Unconstrained 128.9600     0.4462   77
 Inertia is variance 
 
 Eigenvalues for constrained axes:
@@ -6254,7 +6281,6 @@
 > plot(mod, log = "xy")
 > ## Lattice graphics separately for each model
 > radlattice(mod)
-Loading required package: lattice
 > # Take a subset of BCI to save time and nerves
 > mod <- radfit(BCI[3:5,])
 > mod
@@ -6272,9 +6298,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("rankindex")
 > ### * rankindex
 > 
@@ -6380,7 +6403,6 @@
 > i <- sample(nrow(BCI), 12)
 > mod <- renyi(BCI[i,])
 > plot(mod)
-Loading required package: lattice
 > mod <- renyiaccum(BCI[i,])
 > plot(mod, as.table=TRUE, col = c(1, 2, 2))
 > persp(mod)
@@ -6388,9 +6410,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("scores")
 > ### * scores
 > 
@@ -6747,9 +6766,9 @@
 dune.env)
 
               Inertia Proportion Rank
-Total         87.7829     1.0000     
-Constrained   62.2577     0.7092    6
-Unconstrained 25.5252     0.2908   13
+Total         87.7800     1.0000     
+Constrained   62.2600     0.7092    6
+Unconstrained 25.5300     0.2908   13
 Inertia is variance 
 
 Eigenvalues for constrained axes:
@@ -6813,6 +6832,8 @@
 > ## Add tree to a metric scaling 
 > plot(tr, cmdscale(dis), type = "t")
 Loading required package: MASS
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## Find a configuration to display the tree neatly
 > plot(tr, type = "t")
 Initial stress        : 0.03111
@@ -6820,6 +6841,8 @@
 stress after  20 iters: 0.01139, magic = 0.500
 stress after  30 iters: 0.01118, magic = 0.500
 stress after  40 iters: 0.01114, magic = 0.500
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > ## Depths of nodes
 > depths <- spandepth(tr)
 > plot(tr, type = "t", label = depths)
@@ -6828,6 +6851,8 @@
 stress after  20 iters: 0.01139, magic = 0.500
 stress after  30 iters: 0.01118, magic = 0.500
 stress after  40 iters: 0.01114, magic = 0.500
+Warning in rep(border, length = nrow(x)) :
+  'x' is NULL so the result will be NULL
 > 
 > 
 > 
@@ -7105,7 +7130,6 @@
 attr(,"class")
 [1] "summary.poolaccum"
 > plot(pool)
-Loading required package: lattice
 > ## Quantitative model
 > estimateR(BCI[1:5,])
                   1          2          3          4          5
@@ -7120,7 +7144,7 @@
 > graphics::par(get("par.postscript", pos = 'CheckExEnv'))
 > cleanEx()
 
-detaching ‘package:lattice’, ‘dune.env’
+detaching ‘dune.env’
 
 > nameEx("stepacross")
 > ### * stepacross
@@ -7365,6 +7389,8 @@
 > ## Significance test using Null model communities.
 > ## The current choice fixes only site totals.
 > oecosimu(dune, treedive, "r0", tree = cl)
+Warning in oecosimu(dune, treedive, "r0", tree = cl) :
+  nullmodel transformed 'comm' to binary data
 oecosimu object
 
 Call: oecosimu(comm = dune, nestfun = treedive, method = "r0", tree =
@@ -7450,7 +7476,6 @@
   14   19   28   43   10   41   42   29   27    3    9    7 
 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
 > plot(x1)
-Loading required package: lattice
 > x2 <- tsallis(BCI[i,],norm=TRUE)
 > x2
    0       0.2       0.4       0.6       0.8         1       1.2       1.4
@@ -7489,9 +7514,6 @@
 > 
 > 
 > cleanEx()
-
-detaching ‘package:lattice’
-
 > nameEx("varechem")
 > ### * varechem
 > 
@@ -7805,21 +7827,21 @@
 
 ***VECTORS
 
-             NMDS1     NMDS2     r2 Pr(>r)    
-N        -0.057194 -0.998363 0.2537  0.046 *  
-P         0.619593  0.784923 0.1938  0.103    
-K         0.766293  0.642492 0.1809  0.143    
-Ca        0.685057  0.728489 0.4119  0.008 ** 
-Mg        0.632400  0.774642 0.4271  0.004 ** 
-S         0.191230  0.981545 0.1752  0.140    
-Al       -0.871691  0.490056 0.5269  0.001 ***
-Fe       -0.936135  0.351641 0.4451  0.002 ** 
-Mn        0.798733 -0.601685 0.5230  0.001 ***
-Zn        0.617495  0.786575 0.1879  0.125    
-Mo       -0.903045  0.429546 0.0609  0.537    
-Baresoil  0.925034 -0.379885 0.2508  0.039 *  
-Humdepth  0.932909 -0.360112 0.5200  0.002 ** 
-pH       -0.648094  0.761560 0.2308  0.060 .  
+            NMDS1    NMDS2     r2 Pr(>r)    
+N        -0.05719 -0.99836 0.2537  0.046 *  
+P         0.61959  0.78492 0.1938  0.103    
+K         0.76629  0.64249 0.1809  0.143    
+Ca        0.68506  0.72849 0.4119  0.008 ** 
+Mg        0.63240  0.77464 0.4271  0.004 ** 
+S         0.19123  0.98155 0.1752  0.140    
+Al       -0.87169  0.49006 0.5269  0.001 ***
+Fe       -0.93613  0.35164 0.4451  0.002 ** 
+Mn        0.79873 -0.60169 0.5230  0.001 ***
+Zn        0.61750  0.78657 0.1879  0.125    
+Mo       -0.90304  0.42955 0.0609  0.537    
+Baresoil  0.92503 -0.37988 0.2508  0.039 *  
+Humdepth  0.93291 -0.36011 0.5200  0.002 ** 
+pH       -0.64809  0.76156 0.2308  0.060 .  
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 P values based on 999 permutations.
@@ -7853,9 +7875,9 @@
 data = dune.env)
 
               Inertia Proportion Rank
-Total         84.1237     1.0000     
-Constrained   63.2062     0.7513   12
-Unconstrained 20.9175     0.2487    7
+Total         84.1200     1.0000     
+Constrained   63.2100     0.7513   12
+Unconstrained 20.9200     0.2487    7
 Inertia is variance 
 Some constraints were aliased because they were collinear (redundant)
 
@@ -7916,9 +7938,9 @@
 Call: rda(formula = dune ~ Management + Moisture, data = dune.env)
 
               Inertia Proportion Rank
-Total         84.1237     1.0000     
-Constrained   46.4249     0.5519    6
-Unconstrained 37.6988     0.4481   13
+Total         84.1200     1.0000     
+Constrained   46.4200     0.5519    6
+Unconstrained 37.7000     0.4481   13
 Inertia is variance 
 
 Eigenvalues for constrained axes:
@@ -7963,14 +7985,15 @@
 > ## add fitted surface of diversity to the model
 > ordisurf(mod, diversity(dune), add = TRUE)
 Loading required package: mgcv
-This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
+Loading required package: nlme
+This is mgcv 1.7-26. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0xa7a7390>
+<environment: 0xaa07b80>
 
 Estimated degrees of freedom:
 1.28  total = 2.28 
@@ -8014,7 +8037,7 @@
 > 
 > cleanEx()
 
-detaching ‘package:mgcv’
+detaching ‘package:mgcv’, ‘package:nlme’
 
 > nameEx("vegandocs")
 > ### * vegandocs
@@ -8523,7 +8546,7 @@
 > ###
 > options(digits = 7L)
 > base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
-Time elapsed:  27.384 0.108 27.597 0 0 
+Time elapsed:  25.872 0.092 25.999 0 0 
 > grDevices::dev.off()
 null device 
           1 



More information about the Vegan-commits mailing list