[Vegan-commits] r2560 - pkg/vegan/tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jul 11 13:44:53 CEST 2013


Author: jarioksa
Date: 2013-07-11 13:44:52 +0200 (Thu, 11 Jul 2013)
New Revision: 2560

Modified:
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
Log:
update Examples

Modified: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-07-11 11:39:10 UTC (rev 2559)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2013-07-11 11:44:52 UTC (rev 2560)
@@ -1,8 +1,7 @@
 
-R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
-Copyright (C) 2012 The R Foundation for Statistical Computing
-ISBN 3-900051-07-0
-Platform: x86_64-pc-linux-gnu (64-bit)
+R Under development (unstable) (2013-07-10 r63264) -- "Unsuffered Consequences"
+Copyright (C) 2013 The R Foundation for Statistical Computing
+Platform: x86_64-unknown-linux-gnu (64-bit)
 
 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
@@ -23,9 +22,9 @@
 > options(warn = 1)
 > library('vegan')
 Loading required package: permute
-This is vegan 2.1-29
+This is vegan 2.1-32
 > 
-> assign(".oldSearch", search(), pos = 'CheckExEnv')
+> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
 > cleanEx()
 > nameEx("BCI")
 > ### * BCI
@@ -154,14 +153,14 @@
 > plot(ef)
 > ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)
 Loading required package: mgcv
-This is mgcv 1.7-22. For overview type 'help("mgcv-package")'.
+This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ poly(x1, 1) + poly(x2, 1)
-<environment: 0x1db31c0>
+<environment: 0x3371698>
 Total model degrees of freedom 3 
 
 REML score: -3.185099
@@ -227,7 +226,7 @@
 hump at max  7.8160 9.0487 0.01191 *
 Combined                   0.03338 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > plot(mod)
 > par(op)
 > ## Confidence Limits
@@ -305,14 +304,14 @@
 > marr <- nls(S ~ SSarrhenius(sipoo.area, k, z))
 > marr
 Nonlinear regression model
-  model:  S ~ SSarrhenius(sipoo.area, k, z) 
-   data:  parent.frame() 
+  model: S ~ SSarrhenius(sipoo.area, k, z)
+   data: parent.frame()
      k      z 
 3.4062 0.4364 
  residual sum-of-squares: 78.1
 
 Number of iterations to convergence: 5 
-Achieved convergence tolerance: 1.056e-06 
+Achieved convergence tolerance: 1.056e-06
 > ## confidence limits from profile likelihood
 > confint(marr)
 Waiting for profiling to be done...
@@ -348,14 +347,14 @@
 > mlom <- nls(S ~ SSlomolino(sipoo.area, Smax, A50, Hill))
 > mlom
 Nonlinear regression model
-  model:  S ~ SSlomolino(sipoo.area, Smax, A50, Hill) 
-   data:  parent.frame() 
+  model: S ~ SSlomolino(sipoo.area, Smax, A50, Hill)
+   data: parent.frame()
   Smax    A50   Hill 
 53.493 94.697  2.018 
  residual sum-of-squares: 55.37
 
 Number of iterations to convergence: 6 
-Achieved convergence tolerance: 9.715e-07 
+Achieved convergence tolerance: 9.715e-07
 > lines(xtmp, predict(mlom, newdata=data.frame(sipoo.area=xtmp)), 
 +   lwd=2, col = 4)
 > ## One canned model of standard R:
@@ -395,27 +394,27 @@
 dune ~ 1
 
              Df    AIC      F N.Perm Pr(>F)   
-+ Moisture    3 86.608 2.2536    199  0.010 **
++ Moisture    3 86.608 2.2536    199  0.005 **
 + Management  3 86.935 2.1307    199  0.005 **
-+ A1          1 87.411 2.1400    199  0.020 * 
++ A1          1 87.411 2.1400    199  0.025 * 
 <none>          87.657                        
-+ Manure      4 88.832 1.5251    199  0.025 * 
-+ Use         2 89.134 1.1431     99  0.250   
++ Manure      4 88.832 1.5251    199  0.020 * 
++ Use         2 89.134 1.1431     99  0.260   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step:  AIC=86.61
 dune ~ Moisture
 
              Df    AIC      F N.Perm Pr(>F)   
 <none>          86.608                        
-+ Management  3 86.813 1.4565    199  0.020 * 
-+ A1          1 86.992 1.2624     99  0.150   
-+ Use         2 87.259 1.2760    199  0.120   
-+ Manure      4 87.342 1.3143    199  0.090 . 
-- Moisture    3 87.657 2.2536    199  0.005 **
++ Management  3 86.813 1.4565    199  0.035 * 
++ A1          1 86.992 1.2624     99  0.190   
++ Use         2 87.259 1.2760     99  0.130   
++ Manure      4 87.342 1.3143    199  0.075 . 
+- Moisture    3 87.657 2.2536    199  0.010 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 Call: cca(formula = dune ~ Moisture, data = dune.env)
 
               Inertia Proportion Rank
@@ -447,38 +446,38 @@
 > add1(m0, scope=formula(mbig), test="perm")
            Df    AIC      F N.Perm Pr(>F)   
 <none>        89.620                        
-A1          1 89.591 1.9217    199  0.070 . 
+A1          1 89.591 1.9217    199  0.030 * 
 Moisture    3 87.707 2.5883    199  0.005 **
 Management  3 87.082 2.8400    199  0.005 **
-Use         2 91.032 1.1741     99  0.180   
+Use         2 91.032 1.1741     99  0.170   
 Manure      4 89.232 1.9539    199  0.010 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > m0 <- update(m0, . ~ . + Management)
 > add1(m0, scope=formula(mbig), test="perm")
-         Df    AIC      F N.Perm Pr(>F)   
-<none>      87.082                        
-A1        1 87.424 1.2965     99  0.240   
-Moisture  3 85.567 1.9764    199  0.005 **
-Use       2 88.284 1.0510     99  0.430   
-Manure    3 87.517 1.3902    199  0.130   
+         Df    AIC      F N.Perm Pr(>F)  
+<none>      87.082                       
+A1        1 87.424 1.2965     99  0.200  
+Moisture  3 85.567 1.9764    199  0.015 *
+Use       2 88.284 1.0510     99  0.470  
+Manure    3 87.517 1.3902    199  0.135  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > m0 <- update(m0, . ~ . + Moisture)
 > ## -- included variables still significant?
 > drop1(m0, test="perm")
            Df    AIC      F N.Perm Pr(>F)   
 <none>        85.567                        
-Management  3 87.707 2.1769    199  0.010 **
-Moisture    3 87.082 1.9764    199  0.015 * 
+Management  3 87.707 2.1769    199  0.005 **
+Moisture    3 87.082 1.9764    199  0.010 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > add1(m0, scope=formula(mbig), test="perm")
        Df    AIC      F N.Perm Pr(>F)
 <none>    85.567                     
-A1      1 86.220 0.8359     99   0.72
-Use     2 86.842 0.8027     99   0.77
-Manure  3 85.762 1.1225     99   0.26
+A1      1 86.220 0.8359     99   0.62
+Use     2 86.842 0.8027     99   0.72
+Manure  3 85.762 1.1225     99   0.27
 > 
 > 
 > 
@@ -536,7 +535,7 @@
 gamma      35.000   0.00 35.000 35.000 35.000 35.000     1.00  
 beta.1     19.886  38.43 12.656 12.392 12.700 12.968     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > adipart(mite ~ ., levsm, index="richness", nsimul=19)
 adipart object
 
@@ -556,7 +555,7 @@
 beta.2      3.250  13.1373  0.18421  0.00000  0.00000  0.6375     0.05 *
 beta.3      2.000   0.0000  0.00000  0.00000  0.00000  0.0000     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Hierarchical null model testing
 > ## diversity analysis (similar to adipart)
 > hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
@@ -572,7 +571,7 @@
 level_1   0.76064 -71.195 0.93904 0.93487 0.93856 0.9444     0.05 *
 leve_2    1.00000   0.000 1.00000 1.00000 1.00000 1.0000     1.00  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > hiersimu(mite ~., levsm, FUN=diversity, relative=TRUE, nsimul=19)
 hiersimu object
 
@@ -589,7 +588,7 @@
 l3   0.92791 -417.338 0.99940 0.99904 0.99943 0.9996     0.05 *
 l4   1.00000    0.000 1.00000 1.00000 1.00000 1.0000     1.00  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Hierarchical testing with the Morisita index
 > morfun <- function(x) dispindmorisita(x)$imst
 > hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
@@ -607,7 +606,7 @@
 l2   0.60234 14.3854  0.153047  0.096700  0.150434  0.1969     0.05 *
 l3   0.67509 20.3162 -0.182473 -0.234793 -0.195937 -0.0988     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -642,7 +641,7 @@
 Residuals     12    1.8004 0.15003         0.41878          
 Total         19    4.2990                 1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > ### Example of use with strata, for nested (e.g., block) designs.
@@ -697,7 +696,7 @@
 Residuals 10  0.138667 0.013867         0.71286          
 Total     11  0.194524                  1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > ### Incorrect (no strata)
 > adonis(Y ~ NO3, data=dat, perm=999)
@@ -712,7 +711,7 @@
 Residuals 10  0.138667 0.013867         0.71286          
 Total     11  0.194524                  1.00000          
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -796,7 +795,7 @@
 Model     3 0.6441 2.9840    199  0.005 **
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Test for axes
 > anova(vare.cca, by="axis", perm.max=500)
 Model: cca(formula = varespec ~ Al + P + K, data = varechem)
@@ -806,7 +805,7 @@
 CCA3      1 0.1126 1.5651    399  0.100 . 
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Sequential test for terms
 > anova(vare.cca, by="terms", permu=200)
 Permutation test for cca under reduced model
@@ -819,7 +818,7 @@
 K         1 0.1561 2.1688    199  0.030 * 
 Residual 20 1.4391                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Marginal or Type III effects
 > anova(vare.cca, by="margin")
 Permutation test for cca under reduced model
@@ -832,7 +831,7 @@
 K         1 0.1561 2.1688    599 0.02833 * 
 Residual 20 1.4391                         
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Marginal test knows 'scope'
 > anova(vare.cca, by = "m", scope="P")
 Permutation test for cca under reduced model
@@ -843,7 +842,7 @@
 P         1 0.1681 2.3362    199  0.015 *
 Residual 20 1.4391                       
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -1134,28 +1133,34 @@
 Groups     1 0.07931 0.079306  4.6156 0.04295 *
 Residuals 22 0.37801 0.017182                  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > ## Permutation test for F
 > permutest(mod, pairwise = TRUE)
 
 Permutation test for homogeneity of multivariate dispersions
 
-No. of permutations: 999  
+Permutation Design:
 
-**** STRATA ****
-Permutations are unstratified
+Blocks:
+  Defined by: none
 
-**** SAMPLES ****
-Permutation type: free 
-Mirrored permutations for Samples?: No 
+Plots:
+  Defined by: none
 
+Within Plots:
+  Permutation type: free
+
+Permutation details:
+  Number of permutations requested: 999
+  Max. number of permutations allowed: 9999
+  Evaluate all permutations?: No.  Activation limit: 99
 Response: Distances
           Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)  
 Groups     1 0.07931 0.079306 4.6156    999   0.05 *
 Residuals 22 0.37801 0.017182                       
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Pairwise comparisons:
 (Observed p-value below diagonal, permuted p-value above diagonal)
@@ -1301,19 +1306,25 @@
 Eigenvalues for PCoA axes:
  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
 1.4755 0.8245 0.4218 0.3456 0.2159 0.1688 0.1150 0.1060 
-> permutest(mod2, control = permControl(nperm = 100))
+> permutest(mod2, control = how(nperm = 100))
 
 Permutation test for homogeneity of multivariate dispersions
 
-No. of permutations: 100  
+Permutation Design:
 
-**** STRATA ****
-Permutations are unstratified
+Blocks:
+  Defined by: none
 
-**** SAMPLES ****
-Permutation type: free 
-Mirrored permutations for Samples?: No 
+Plots:
+  Defined by: none
 
+Within Plots:
+  Permutation type: free
+
+Permutation details:
+  Number of permutations requested: 100
+  Max. number of permutations allowed: 9999
+  Evaluate all permutations?: No.  Activation limit: 99
 Response: Distances
           Df   Sum Sq  Mean Sq      F N.Perm Pr(>F)
 Groups     1 0.039979 0.039979 2.4237    100 0.1584
@@ -1351,25 +1362,31 @@
 Eigenvalues for PCoA axes:
  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
 1.4755 0.8245 0.4218 0.3456 0.2159 0.1688 0.1150 0.1060 
-> permutest(mod3, control = permControl(nperm = 100))
+> permutest(mod3, control = how(nperm = 100))
 
 Permutation test for homogeneity of multivariate dispersions
 
-No. of permutations: 100  
+Permutation Design:
 
-**** STRATA ****
-Permutations are unstratified
+Blocks:
+  Defined by: none
 
-**** SAMPLES ****
-Permutation type: free 
-Mirrored permutations for Samples?: No 
+Plots:
+  Defined by: none
 
+Within Plots:
+  Permutation type: free
+
+Permutation details:
+  Number of permutations requested: 100
+  Max. number of permutations allowed: 9999
+  Evaluate all permutations?: No.  Activation limit: 99
 Response: Distances
           Df   Sum Sq  Mean Sq      F N.Perm  Pr(>F)  
 Groups     1 0.033468 0.033468 3.1749    100 0.06931 .
 Residuals 18 0.189749 0.010542                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > anova(mod3)
 Analysis of Variance Table
 
@@ -1378,7 +1395,7 @@
 Groups     1 0.033468 0.033468  3.1749 0.09166 .
 Residuals 18 0.189749 0.010542                  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > plot(mod3)
 > boxplot(mod3)
 > plot(TukeyHSD(mod3))
@@ -1526,8 +1543,9 @@
 
 Subset of environmental variables with best correlation to community data.
 
-Correlations:      spearman 
-Dissimilarities:   bray 
+Correlations:    spearman 
+Dissimilarities: bray 
+Metric:          euclidean 
 
 Best model has 3 parameters (max. 6 allowed):
 P Ca Al
@@ -1617,7 +1635,7 @@
 Model     3 0.99717 2.2324    199  0.005 **
 Residual 19 2.82904                        
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Avoid negative eigenvalues with additive constant
 > capscale(varespec ~ N + P + K + Condition(Al), varechem,
 +                      dist="bray", add =TRUE)
@@ -2338,7 +2356,7 @@
 
 	Pearson's Chi-squared test
 
-data:  dune 
+data:  dune
 X-squared = 1448.956, df = 551, p-value < 2.2e-16
 
 > deviance(cca(dune))
@@ -2473,6 +2491,112 @@
 > 
 > 
 > cleanEx()
+> nameEx("dispweight")
+> ### * dispweight
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: dispweight
+> ### Title: Dispersion-based weighting of species counts
+> ### Aliases: dispweight
+> ### Keywords: multivariate
+> 
+> ### ** Examples
+> 
+> data(dune)
+> data(dune.env)
+> # calculate weights
+> dpw <- dispweight(dune, dune.env$Management, nperm = 100)
+> # transformed community data
+> dpw$transformed
+     Belper Empnig    Junbuf   Junart Airpra    Elepal Rumace Viclat   Brarut
+2  1.666667      0 0.0000000 0.000000      0 0.0000000      0      0 0.000000
+13 0.000000      0 1.0759013 0.000000      0 0.0000000      0      0 0.000000
+4  1.111111      0 0.0000000 0.000000      0 0.0000000      0      0 1.196356
+16 0.000000      0 0.0000000 1.013793      0 1.6159822      0      0 2.392711
+6  0.000000      0 0.0000000 0.000000      0 0.0000000      6      0 3.589067
+1  0.000000      0 0.0000000 0.000000      0 0.0000000      0      0 0.000000
+8  0.000000      0 0.0000000 1.351724      0 0.8079911      0      0 1.196356
+5  1.111111      0 0.0000000 0.000000      0 0.0000000      5      0 1.196356
+17 0.000000      0 0.0000000 0.000000      2 0.0000000      0      0 0.000000
+15 0.000000      0 0.0000000 1.013793      0 1.0099889      0      0 2.392711
+10 1.111111      0 0.0000000 0.000000      0 0.0000000      0      1 1.196356
+11 0.000000      0 0.0000000 0.000000      0 0.0000000      0      2 2.392711
+9  0.000000      0 1.4345351 1.351724      0 0.0000000      2      0 1.196356
+18 1.111111      0 0.0000000 0.000000      0 0.0000000      0      1 3.589067
+3  1.111111      0 0.0000000 0.000000      0 0.0000000      0      0 1.196356
+20 0.000000      0 0.0000000 1.351724      0 0.8079911      0      0 2.392711
+14 0.000000      0 0.0000000 0.000000      0 0.8079911      0      0 0.000000
+19 0.000000      2 0.0000000 0.000000      3 0.0000000      0      0 1.794533
+12 0.000000      0 1.4345351 0.000000      0 0.0000000      2      0 2.392711
+7  0.000000      0 0.7172676 0.000000      0 0.0000000      3      0 1.196356
+     Ranfla Cirarv    Hyprad Leoaut Potpal Poapra   Calcus Tripra Trirep
+2  0.000000      0 0.0000000      5      0      4 0.000000      0      5
+13 1.076923      0 0.0000000      2      0      2 0.000000      0      2
+4  0.000000      2 0.0000000      2      0      4 0.000000      0      1
+16 1.076923      0 0.0000000      0      0      0 1.019417      0      0
+6  0.000000      0 0.0000000      3      0      3 0.000000      5      5
+1  0.000000      0 0.0000000      0      0      4 0.000000      0      0
+8  1.076923      0 0.0000000      3      0      4 0.000000      0      2
+5  0.000000      0 0.0000000      3      0      2 0.000000      2      2
+17 0.000000      0 0.6405229      2      0      1 0.000000      0      0
+15 1.076923      0 0.0000000      2      2      0 0.000000      0      1
+10 0.000000      0 0.0000000      3      0      4 0.000000      0      6
+11 0.000000      0 0.6405229      5      0      4 0.000000      0      3
+9  0.000000      0 0.0000000      2      0      4 0.000000      0      3
+18 0.000000      0 0.0000000      5      0      3 0.000000      0      2
+3  0.000000      0 0.0000000      2      0      5 0.000000      0      2
+20 2.153846      0 0.0000000      2      0      0 1.019417      0      0
+14 1.076923      0 0.0000000      2      2      0 1.359223      0      6
+19 0.000000      0 1.6013072      6      0      0 0.000000      0      2
+12 0.000000      0 0.0000000      2      0      0 0.000000      0      3
+7  0.000000      0 0.0000000      3      0      4 0.000000      2      2
+      Antodo   Salrep Achmil Poatri Chealb   Elyrep    Sagpro    Plalan
+2  0.0000000 0.000000      3      7      0 1.222222 0.0000000 0.0000000
+13 0.0000000 0.000000      0      9      1 0.000000 0.8301887 0.0000000
+4  0.0000000 0.000000      0      5      0 1.222222 2.0754717 0.0000000
+16 0.0000000 0.000000      0      2      0 0.000000 0.0000000 0.0000000
+6  1.0607143 0.000000      2      4      0 0.000000 0.0000000 2.3305085
+1  0.0000000 0.000000      1      2      0 1.222222 0.0000000 0.0000000
+8  0.0000000 0.000000      0      4      0 0.000000 0.8301887 0.0000000
+5  1.4142857 0.000000      2      6      0 1.222222 0.0000000 2.3305085
+17 1.4142857 0.000000      2      0      0 0.000000 0.0000000 0.9322034
+15 0.0000000 0.000000      0      0      0 0.000000 0.0000000 0.0000000
+10 1.4142857 0.000000      4      4      0 0.000000 0.0000000 1.3983051
+11 0.0000000 0.000000      0      0      0 0.000000 0.8301887 1.3983051
+9  0.0000000 0.000000      0      5      0 1.833333 0.8301887 0.0000000
+18 0.0000000 1.204380      0      0      0 0.000000 0.0000000 1.3983051
+3  0.0000000 0.000000      0      6      0 1.222222 0.0000000 0.0000000
+20 0.0000000 2.007299      0      0      0 0.000000 0.0000000 0.0000000
+14 0.0000000 0.000000      0      0      0 0.000000 0.0000000 0.0000000
+19 1.4142857 1.204380      0      0      0 0.000000 1.2452830 0.0000000
+12 0.0000000 0.000000      0      4      0 0.000000 1.6603774 0.0000000
+7  0.7071429 0.000000      2      5      0 0.000000 0.0000000 2.3305085
+     Agrsto   Lolper    Alogen Brohor
+2  0.000000 2.424242 0.7938931   1.76
+13 2.147674 0.000000 1.9847328   0.00
+4  3.436278 2.424242 0.7938931   1.32
+16 3.006743 0.000000 1.5877863   0.00
+6  0.000000 2.909091 0.0000000   0.00
+1  0.000000 3.393939 0.0000000   0.00
+8  1.718139 1.939394 1.9847328   0.00
+5  0.000000 0.969697 0.0000000   0.88
+17 0.000000 0.000000 0.0000000   0.00
+15 1.718139 0.000000 0.0000000   0.00
+10 0.000000 2.909091 0.0000000   1.76
+11 0.000000 3.393939 0.0000000   0.00
+9  1.288604 0.969697 1.1908397   0.00
+18 0.000000 0.969697 0.0000000   0.00
+3  1.718139 2.909091 2.7786260   0.00
+20 2.147674 0.000000 0.0000000   0.00
+14 1.718139 0.000000 0.0000000   0.00
+19 0.000000 0.000000 0.0000000   0.00
+12 1.718139 0.000000 3.1755725   0.00
+7  0.000000 2.909091 0.0000000   0.88
+> 
+> 
+> 
+> cleanEx()
 > nameEx("distconnected")
 > ### * distconnected
 > 
@@ -2693,7 +2817,7 @@
 Humdepth  0.932909 -0.360112 0.5200  0.002 ** 
 pH       -0.648094  0.761560 0.2308  0.060 .  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 P values based on 999 permutations.
 
 
@@ -3555,7 +3679,7 @@
 D.cl.12    8.526186  66.000000         NA         NA            NA  
 D.cl.13    9.254550  32.000000         NA         NA            NA  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > # or: print(mite.correlog)
 > # or: print.mantel.correlog(mite.correlog)
 > plot(mite.correlog)
@@ -3594,7 +3718,7 @@
 D.cl.12    8.526186  66.000000  -0.054242       0.04          0.24  
 D.cl.13    9.254550  32.000000  -0.066677       0.02          0.26  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > plot(mite.correlog2)
 > 
 > # NOTE: 'nperm' argument usually needs to be larger than 49.
@@ -4091,7 +4215,7 @@
 beta.2     1.0710   30.431  1.00339  0.99912  1.00340  1.0059     0.05 *
 beta.3     1.1794  460.550  1.00148  1.00083  1.00148  1.0021     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19)
 multipart object
 
@@ -4111,7 +4235,7 @@
 beta.2     1.0710   33.423  1.0041  1.0015  1.0035  1.0078     0.05 *
 beta.3     1.1794  419.166  1.0015  1.0008  1.0016  1.0023     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, relative=TRUE)
 multipart object
 
@@ -4131,7 +4255,7 @@
 beta.2   0.535514   35.966  0.501994  0.500294  0.502062  0.5035     0.05 *
 beta.3   0.589695  404.814  0.500885  0.500583  0.500848  0.5013     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, global=TRUE)
 multipart object
 
@@ -4151,7 +4275,7 @@
 beta.2     1.2603  102.695  1.00483  0.99985  1.00484  1.0077     0.05 *
 beta.3     1.1794  378.335  1.00154  1.00104  1.00144  1.0025     0.05 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -4213,7 +4337,7 @@
         statistic      z   mean   2.5%    50%  97.5% Pr(sim.)   
 C.score    2.2588 -28.92 9.2234 8.6935 9.2384 9.6053     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -4341,7 +4465,7 @@
           statistic       z   mean   2.5%    50%  97.5% Pr(sim.)   
 statistic      2767 -17.768 8034.6 7529.9 8052.0 8518.5     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## sequential model, one-sided test, a vector statistic
 > out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10, 
 +    statistic="evals", alt = "greater")
@@ -4374,7 +4498,7 @@
 DCA3  0.166788  0.5209 0.15594 0.12380 0.15572 0.2361     0.30  
 DCA4  0.087226 -1.9822 0.13015 0.10335 0.12649 0.2011     0.99  
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > ## Inspect the swap sequence as a time series object
 > plot(as.ts(out))
 > lag.plot(as.ts(out))
@@ -4400,7 +4524,7 @@
           statistic     z    mean    2.5%     50%  97.5% Pr(sim.)   
 statistic   0.64565 14.66 0.46734 0.44069 0.46760 0.4903     0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > ## Define your own null model as a 'commsim' function: shuffle cells
 > ## in each row
@@ -4424,7 +4548,7 @@
           statistic      z    mean    2.5%     50%  97.5% Pr(sim.)  
 statistic   0.64565 3.1832 0.63514 0.63016 0.63441 0.6419     0.03 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > 
 > 
@@ -4634,17 +4758,28 @@
 > 
 > ### Name: ordipointlabel
 > ### Title: Ordination Plots with Points and Optimized Locations for Text
-> ### Aliases: ordipointlabel
+> ### Aliases: ordipointlabel plot.ordipointlabel
 > ### Keywords: hplot aplot
 > 
 > ### ** Examples
 > 
 > data(dune)
 > ord <- cca(dune)
-> ordipointlabel(ord)
+> plt <- ordipointlabel(ord)
 > 
+> ## set scaling - should be no warnings!
+> ordipointlabel(ord, scaling = 1)
 > 
+> ## plot then add
+> plot(ord, scaling = 3, type = "n")
+> ordipointlabel(ord, display = "species", scaling = 3, add = TRUE)
+> ordipointlabel(ord, display = "sites", scaling = 3, add = TRUE)
 > 
+> ## redraw plot without rerunning SANN optimisation
+> plot(plt)
+> 
+> 
+> 
 > cleanEx()
 > nameEx("ordiresids")
 > ### * ordiresids
@@ -4702,14 +4837,14 @@
 + A1          1 89.591 1.9217    199  0.035 * 
 + Use         2 91.032 1.1741     99  0.310   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: dune ~ Management 
 
              Df   AIC    F N.Perm Pr(>F)   
 - Management  3 89.62 2.84     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
            Df    AIC      F N.Perm Pr(>F)   
 + Moisture  3 85.567 1.9764    199  0.005 **
@@ -4717,7 +4852,7 @@
 + A1        1 87.424 1.2965     99  0.240   
 + Use       2 88.284 1.0510     99  0.480   
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: dune ~ Management + Moisture 
 
@@ -4725,7 +4860,7 @@
 - Moisture    3 87.082 1.9764     99   0.02 * 
 - Management  3 87.707 2.1769     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
          Df    AIC      F N.Perm Pr(>F)
 + Manure  3 85.762 1.1225     99   0.26
@@ -4776,7 +4911,7 @@
 - Manure      3 85.567 1.1225     99   0.30  
 - Moisture    3 87.517 1.5788     99   0.03 *
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: dune ~ Moisture + Manure 
 
@@ -4784,7 +4919,7 @@
 - Manure    4 87.707 1.8598     99   0.02 * 
 - Moisture  3 89.232 2.3275     99   0.01 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Call: rda(formula = dune ~ Moisture + Manure, data = dune.env)
 
@@ -4832,7 +4967,7 @@
            Df     AIC     F N.Perm Pr(>F)   
 + WatrCont  1 -84.336 25.35    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: R2.adj= 0.2608453 
 Call: mite.hel ~ WatrCont 
@@ -4849,7 +4984,7 @@
         Df     AIC     F N.Perm Pr(>F)   
 + Shrub  2 -88.034 3.836    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: R2.adj= 0.3177536 
 Call: mite.hel ~ WatrCont + Shrub 
@@ -4866,7 +5001,7 @@
             Df     AIC      F N.Perm Pr(>F)   
 + Substrate  6 -87.768 1.8251    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: R2.adj= 0.3653551 
 Call: mite.hel ~ WatrCont + Shrub + Substrate 
@@ -4883,7 +5018,7 @@
        Df     AIC      F N.Perm Pr(>F)   
 + Topo  1 -90.924 4.5095    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: R2.adj= 0.4004249 
 Call: mite.hel ~ WatrCont + Shrub + Substrate + Topo 
@@ -4900,7 +5035,7 @@
            Df     AIC      F N.Perm Pr(>F)   
 + SubsDens  1 -94.489 4.7999    199  0.005 **
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
 Step: R2.adj= 0.4367038 
 Call: mite.hel ~ WatrCont + Shrub + Substrate + Topo + SubsDens 
@@ -4923,7 +5058,7 @@
 + SubsDens      0.43670  1 -94.489  4.7999    199  0.005 **
 <All variables> 0.43670                                    
 ---
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 > 
 > ## Example of ordiR2step with direction = "forward"
 > ## Not run: 
@@ -4953,14 +5088,14 @@
 > vare.mds <- monoMDS(vare.dist)
 > with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5))
 Loading required package: mgcv
-This is mgcv 1.7-22. For overview type 'help("mgcv-package")'.
+This is mgcv 1.7-24. For overview type 'help("mgcv-package")'.
 
 Family: gaussian 
 Link function: identity 
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x8fd4ae0>
+<environment: 0xa7eec90>
 
 Estimated degrees of freedom:
 5.63  total = 6.63 
@@ -4977,7 +5112,7 @@
 
 Formula:
 y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)
-<environment: 0x84775b0>
+<environment: 0x8ac38d0>
 
 Estimated degrees of freedom:
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/vegan -r 2560


More information about the Vegan-commits mailing list