[Vegan-commits] r1467 - in pkg/vegan: . tests tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jan 20 15:24:15 CET 2011


Author: jarioksa
Date: 2011-01-20 15:24:15 +0100 (Thu, 20 Jan 2011)
New Revision: 1467

Added:
   pkg/vegan/tests/
   pkg/vegan/tests/Examples/
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
   pkg/vegan/tests/vegan-tests.R
   pkg/vegan/tests/vegan-tests.Rout.save
Log:
add tests/ with anova.cca unit tests and Examples

Added: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	                        (rev 0)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2011-01-20 14:24:15 UTC (rev 1467)
@@ -0,0 +1,7971 @@
+
+R version 2.12.1 (2010-12-16)
+Copyright (C) 2010 The R Foundation for Statistical Computing
+ISBN 3-900051-07-0
+Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
+
+R is free software and comes with ABSOLUTELY NO WARRANTY.
+You are welcome to redistribute it under certain conditions.
+Type 'license()' or 'licence()' for distribution details.
+
+  Natural language support but running in an English locale
+
+R is a collaborative project with many contributors.
+Type 'contributors()' for more information and
+'citation()' on how to cite R or R packages in publications.
+
+Type 'demo()' for some demos, 'help()' for on-line help, or
+'help.start()' for an HTML browser interface to help.
+Type 'q()' to quit R.
+
+> pkgname <- "vegan"
+> source(file.path(R.home("share"), "R", "examples-header.R"))
+> options(warn = 1)
+> library('vegan')
+This is vegan 1.18-22
+> 
+> assign(".oldSearch", search(), pos = 'CheckExEnv')
+> cleanEx()
+> nameEx("BCI")
+> ### * BCI
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: BCI
+> ### Title: Barro Colorado Island Tree Counts
+> ### Aliases: BCI
+> ### Keywords: datasets
+> 
+> ### ** Examples
+> 
+> data(BCI)
+> ## UTM Coordinates (in metres)
+> UTM.EW <- rep(seq(625754, 626654, by=100), each=5)
+> UTM.NS <- rep(seq(1011569,  1011969, by=100), len=50)
+> 
+> 
+> 
+> cleanEx()
+> nameEx("CCorA")
+> ### * CCorA
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: CCorA
+> ### Title: Canonical Correlation Analysis
+> ### Aliases: CCorA print.CCorA biplot.CCorA
+> ### Keywords: multivariate
+> 
+> ### ** Examples
+> 
+> # Example using two mite groups. The mite data are available in vegan
+> data(mite)
+> # Two mite species associations (Legendre 2005, Fig. 4)
+> group.1 <- c(1,2,4:8,10:15,17,19:22,24,26:30)
+> group.2 <- c(3,9,16,18,23,25,31:35)
+> # Separate Hellinger transformations of the two groups of species 
+> mite.hel.1 <- decostand(mite[,group.1], "hel")
+> mite.hel.2 <- decostand(mite[,group.2], "hel")
+> rownames(mite.hel.1) = paste("S",1:nrow(mite),sep="")
+> rownames(mite.hel.2) = paste("S",1:nrow(mite),sep="")
+> out <- CCorA(mite.hel.1, mite.hel.2)
+> out
+
+Canonical Correlation Analysis
+
+Call:
+CCorA(Y = mite.hel.1, X = mite.hel.2) 
+
+              Y  X
+Matrix Ranks 24 11
+
+Pillai's trace:  4.573009 
+
+Significance of Pillai's trace:
+from F-distribution:  0.0032737 
+
+                       CanAxis1 CanAxis2 CanAxis3 CanAxis4 CanAxis5 CanAxis6
+Canonical Correlations  0.92810  0.82431  0.81209  0.74981  0.70795  0.65950
+                       CanAxis7 CanAxis8 CanAxis9 CanAxis10 CanAxis11
+Canonical Correlations  0.50189  0.48179  0.41089   0.37823      0.28
+
+                     Y | X  X | Y
+RDA R squares      0.33224 0.5376
+adj. RDA R squares 0.20560 0.2910
+
+> summary(out)
+             Length Class  Mode   
+Pillai         1    -none- numeric
+Eigenvalues   11    -none- numeric
+CanCorr       11    -none- numeric
+Mat.ranks      2    -none- numeric
+RDA.Rsquares   2    -none- numeric
+RDA.adj.Rsq    2    -none- numeric
+nperm          1    -none- numeric
+p.Pillai       1    -none- numeric
+p.perm         1    -none- logical
+Cy           770    -none- numeric
+Cx           770    -none- numeric
+corr.Y.Cy    264    -none- numeric
+corr.X.Cx    121    -none- numeric
+corr.Y.Cx    264    -none- numeric
+corr.X.Cy    121    -none- numeric
+call           3    -none- call   
+> biplot(out, "ob")                 # Two plots of objects
+> biplot(out, "v", cex=c(0.7,0.6))  # Two plots of variables
+> biplot(out, "ov", cex=c(0.7,0.6)) # Four plots (2 for objects, 2 for variables)
+> biplot(out, "b", cex=c(0.7,0.6))  # Two biplots
+> biplot(out, xlabs = NA, plot.axes = c(3,5))    # Plot axes 3, 5. No object names
+> biplot(out, plot.type="biplots", xlabs = NULL) # Replace object names by numbers
+> 
+> # Example using random numbers. No significant relationship is expected
+> mat1 <- matrix(rnorm(60),20,3)
+> mat2 <- matrix(rnorm(100),20,5)
+> out2 = CCorA(mat1, mat2, nperm=99)
+> out2
+
+Canonical Correlation Analysis
+
+Call:
+CCorA(Y = mat1, X = mat2, nperm = 99) 
+
+             Y X
+Matrix Ranks 3 5
+
+Pillai's trace:  0.6455578 
+
+Significance of Pillai's trace:
+based on 99 permutations: 0.69 
+from F-distribution:  0.70352 
+
+                       CanAxis1 CanAxis2 CanAxis3
+Canonical Correlations  0.69691  0.38140     0.12
+
+                      Y | X   X | Y
+RDA R squares       0.17066  0.1368
+adj. RDA R squares -0.12553 -0.0250
+
+> biplot(out2, "b")
+> 
+> 
+> 
+> cleanEx()
+> nameEx("MOStest")
+> ### * MOStest
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: MOStest
+> ### Title: Mitchell-Olds & Shaw Test for the Location of Quadratic Extreme
+> ### Aliases: MOStest print.MOStest plot.MOStest fieller.MOStest
+> ###   profile.MOStest confint.MOStest
+> ### Keywords: models regression
+> 
+> ### ** Examples
+> 
+> ## The Al-Mufti data analysed in humpfit():
+> mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
+> spno <- c(1,  4,  3,  9, 18, 30, 20, 14,  3,  2,  3,  2,  5,  2)
+> mod <- MOStest(mass, spno)
+> ## Insignificant
+> mod
+
+Mitchell-Olds and Shaw test
+Null: hump of a quadratic linear predictor is at min or max
+
+Family: gaussian 
+Link function: identity 
+
+      hump        min        max 
+  46.89749  140.00000 2480.00000 
+***** Caution: hump/pit not bracketed by the data ******
+
+            min/max      F Pr(>F)
+hump at min     140 0.0006 0.9816
+hump at max    2480 0.3161 0.5852
+Combined                   0.9924
+> ## ... but inadequate shape of the curve
+> op <- par(mfrow=c(2,2), mar=c(4,4,1,1)+.1)
+> plot(mod)
+> ## Looks rather like log-link with Poisson error and logarithmic biomass
+> mod <- MOStest(log(mass), spno, family=quasipoisson)
+> mod
+
+Mitchell-Olds and Shaw test
+Null: hump of a quadratic linear predictor is at min or max
+
+Family: quasipoisson 
+Link function: log 
+
+     min     hump      max 
+4.941642 6.243371 7.816014 
+
+            min/max      F  Pr(>F)  
+hump at min  4.9416 7.1367 0.02174 *
+hump at max  7.8160 9.0487 0.01191 *
+Combined                   0.03338 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> plot(mod)
+> par(op)
+> ## Confidence Limits
+> fieller.MOStest(mod)
+   2.5 %   97.5 % 
+5.255827 6.782979 
+> confint(mod)
+Loading required package: MASS
+   2.5 %   97.5 % 
+5.816021 6.574378 
+> plot(profile(mod))
+> 
+> 
+> 
+> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
+> cleanEx()
+
+detaching ‘package:MASS’
+
+> nameEx("RsquareAdj")
+> ### * RsquareAdj
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: RsquareAdj
+> ### Title: Adjusted R-square
+> ### Aliases: RsquareAdj RsquareAdj.default RsquareAdj.rda RsquareAdj.cca
+> ###   RsquareAdj.lm RsquareAdj.glm RsquareAdj
+> ### Keywords: univar multivariate
+> 
+> ### ** Examples
+> 
+> data(mite)
+> data(mite.env)
+> ## rda
+> m <- rda(decostand(mite, "hell") ~  ., mite.env)
+> RsquareAdj(m)
+$r.squared
+[1] 0.5265047
+
+$adj.r.squared
+[1] 0.4367038
+
+> ## default method
+> RsquareAdj(0.8, 20, 5)
+[1] 0.7285714
+> 
+> 
+> 
+> cleanEx()
+> nameEx("SSarrhenius")
+> ### * SSarrhenius
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: SSarrhenius
+> ### Title: Self-Starting nls Species-Area Models
+> ### Aliases: SSarrhenius SSlomolino SSgitay SSgleason
+> ### Keywords: models
+> 
+> ### ** Examples
+> 
+> ## Get species area data: sipoo.area gives the areas of islands
+> example(sipoo)
+
+sipoo> data(sipoo)
+
+sipoo> ## Areas of the islands in hectares
+sipoo> sipoo.area <-  c(1.1, 2.1, 2.2, 3.1, 3.5, 5.8, 6, 6.1, 6.5, 11.4, 13,
+sipoo+ 14.5, 16.1 ,17.5, 28.7, 40.5, 104.5, 233) 
+> S <- specnumber(sipoo)
+> plot(S ~ sipoo.area, xlab = "Island Area (ha)", ylab = "Number of Species",
++     ylim = c(1, max(S)))
+> ## The Arrhenius model
+> marr <- nls(S ~ SSarrhenius(sipoo.area, k, z))
+> marr
+Nonlinear regression model
+  model:  S ~ SSarrhenius(sipoo.area, k, z) 
+   data:  parent.frame() 
+     k      z 
+3.4062 0.4364 
+ residual sum-of-squares: 78.1
+
+Number of iterations to convergence: 5 
+Achieved convergence tolerance: 1.056e-06 
+> ## confidence limits from profile likelihood
+> confint(marr)
+Waiting for profiling to be done...
+       2.5%     97.5%
+k 2.6220312 4.3033906
+z 0.3813576 0.4944693
+> ## draw a line
+> xtmp <- seq(min(sipoo.area), max(sipoo.area), len=51)
+> lines(xtmp, predict(marr, newdata=data.frame(sipoo.area = xtmp)), lwd=2)
+> ## The normal way is to use linear regression on log-log data,
+> ## but this will be different from the previous:
+> mloglog <- lm(log(S) ~ log(sipoo.area))
+> mloglog
+
+Call:
+lm(formula = log(S) ~ log(sipoo.area))
+
+Coefficients:
+    (Intercept)  log(sipoo.area)  
+         1.0111           0.4925  
+
+> lines(xtmp, exp(predict(mloglog, newdata=data.frame(sipoo.area=xtmp))),
++    lty=2)
+> ## Gleason: log-linear
+> mgle <- nls(S ~ SSgleason(sipoo.area, k, slope))
+> lines(xtmp, predict(mgle, newdata=data.frame(sipoo.area=xtmp)),
++   lwd=2, col=2)
+> ## Gitay: quadratic of log-linear
+> mgit <- nls(S ~ SSgitay(sipoo.area, k, slope))
+> lines(xtmp, predict(mgit, newdata=data.frame(sipoo.area=xtmp)), 
++   lwd=2, col = 3)
+> ## Lomolino: using original names of the parameters (Lomolino 2000):
+> mlom <- nls(S ~ SSlomolino(sipoo.area, Smax, A50, Hill))
+> mlom
+Nonlinear regression model
+  model:  S ~ SSlomolino(sipoo.area, Smax, A50, Hill) 
+   data:  parent.frame() 
+  Smax    A50   Hill 
+53.493 94.697  2.018 
+ residual sum-of-squares: 55.37
+
+Number of iterations to convergence: 6 
+Achieved convergence tolerance: 9.715e-07 
+> lines(xtmp, predict(mlom, newdata=data.frame(sipoo.area=xtmp)), 
++   lwd=2, col = 4)
+> ## One canned model of standard R:
+> mmic <- nls(S ~ SSmicmen(sipoo.area, slope, Asym))
+> lines(xtmp, predict(mmic, newdata = data.frame(sipoo.area=xtmp)),
++   lwd =2, col = 5)
+> legend("bottomright", c("Arrhenius", "log-log linear", "Gleason", "Gitay", 
++   "Lomolino", "Michaelis-Menten"), col=c(1,1,2,3,4,5), lwd=c(2,1,2,2,2,2), 
++    lty=c(1,2,1,1,1,1))
+> ## compare models (AIC)
+> allmods <- list(Arrhenius = marr, Gleason = mgle, Gitay = mgit, 
++    Lomolino = mlom, MicMen= mmic)
+> 
+> 
+> 
+> cleanEx()
+> nameEx("add1.cca")
+> ### * add1.cca
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: add1.cca
+> ### Title: Add or Drop Single Terms to a Constrained Ordination Model
+> ### Aliases: add1.cca drop1.cca
+> ### Keywords: multivariate models
+> 
+> ### ** Examples
+> 
+> data(dune)
+> data(dune.env)
+> ## Automatic model building based on AIC but with permutation tests
+> step(cca(dune ~  1, dune.env), reformulate(names(dune.env)), test="perm")
+Start:  AIC=87.66
+dune ~ 1
+
+             Df    AIC      F N.Perm Pr(>F)   
++ Moisture    3 86.608 2.2536    199  0.010 **
++ Management  3 86.935 2.1307    199  0.005 **
++ A1          1 87.411 2.1400    199  0.020 * 
+<none>          87.657                        
++ Manure      4 88.832 1.5251    199  0.025 * 
++ Use         2 89.134 1.1431     99  0.250   
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+Step:  AIC=86.61
+dune ~ Moisture
+
+             Df    AIC      F N.Perm Pr(>F)   
+<none>          86.608                        
++ Management  3 86.813 1.4565    199  0.020 * 
++ A1          1 86.992 1.2624     99  0.150   
++ Use         2 87.259 1.2760    199  0.120   
++ Manure      4 87.342 1.3143    199  0.090 . 
+- Moisture    3 87.657 2.2536    199  0.005 **
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+Call: cca(formula = dune ~ Moisture, data = dune.env)
+
+              Inertia Proportion Rank
+Total          2.1153     1.0000     
+Constrained    0.6283     0.2970    3
+Unconstrained  1.4870     0.7030   16
+Inertia is mean squared contingency coefficient 
+
+Eigenvalues for constrained axes:
+  CCA1   CCA2   CCA3 
+0.4187 0.1330 0.0766 
+
+Eigenvalues for unconstrained axes:
+     CA1      CA2      CA3      CA4      CA5      CA6      CA7      CA8 
+0.409782 0.225913 0.176062 0.123389 0.108171 0.090751 0.085878 0.060894 
+     CA9     CA10     CA11     CA12     CA13     CA14     CA15     CA16 
+0.056606 0.046688 0.041926 0.020103 0.014335 0.009917 0.008505 0.008033 
+
+> ## The same, but based on permutation P-values
+> ordistep(cca(dune ~  1, dune.env), reformulate(names(dune.env)), perm.max=200)
+
+Start: dune ~ 1 
+
+             Df    AIC      F N.Perm Pr(>F)   
++ Moisture    3 86.608 2.2536    199  0.005 **
++ Management  3 86.935 2.1307    199  0.005 **
++ Manure      4 88.832 1.5251    199  0.025 * 
++ A1          1 87.411 2.1400    199  0.035 * 
++ Use         2 89.134 1.1431     99  0.130   
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+Step: dune ~ Moisture 
+
+           Df    AIC      F N.Perm Pr(>F)   
+- Moisture  3 87.657 2.2536     99   0.01 **
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+             Df    AIC      F N.Perm Pr(>F)  
++ Management  3 86.813 1.4565    199  0.035 *
++ Use         2 87.259 1.2760    199  0.095 .
++ Manure      4 87.342 1.3143    199  0.095 .
++ A1          1 86.992 1.2624     99  0.170  
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+Step: dune ~ Moisture + Management 
+
+             Df    AIC      F N.Perm Pr(>F)  
+- Management  3 86.608 1.4565    199  0.035 *
+- Moisture    3 86.935 1.5518     99  0.020 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+         Df    AIC      F N.Perm Pr(>F)  
++ A1      1 86.190 1.6817    199   0.09 .
++ Manure  3 88.430 0.8167     99   0.58  
++ Use     2 88.245 0.7534     99   0.65  
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+
+Call: cca(formula = dune ~ Moisture + Management, data = dune.env)
+
+              Inertia Proportion Rank
+Total          2.1153     1.0000     
+Constrained    1.0024     0.4739    6
+Unconstrained  1.1129     0.5261   13
+Inertia is mean squared contingency coefficient 
+
+Eigenvalues for constrained axes:
+   CCA1    CCA2    CCA3    CCA4    CCA5    CCA6 
+0.44583 0.28869 0.11239 0.07166 0.04937 0.03444 
+
+Eigenvalues for unconstrained axes:
+     CA1      CA2      CA3      CA4      CA5      CA6      CA7      CA8 
+0.350396 0.152057 0.125084 0.109838 0.092209 0.077107 0.059441 0.047755 
+     CA9     CA10     CA11     CA12     CA13 
+0.036958 0.022266 0.020700 0.010827 0.008252 
+
+> ## Manual model building
+> ## -- define the maximal model for scope
+> mbig <- rda(dune ~  ., dune.env)
+> ## -- define an empty model to start with
+> m0 <- rda(dune ~ 1, dune.env)
+> ## -- manual selection and updating
+> add1(m0, scope=formula(mbig), test="perm")
+           Df    AIC      F N.Perm Pr(>F)   
+<none>        89.620                        
+A1          1 89.591 1.9217    199  0.055 . 
+Moisture    3 87.707 2.5883    199  0.005 **
+Management  3 87.082 2.8400    199  0.005 **
+Use         2 91.032 1.1741     99  0.270   
+Manure      4 89.232 1.9539    199  0.010 **
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> m0 <- update(m0, . ~ . + Management)
+> add1(m0, scope=formula(mbig), test="perm")
+         Df    AIC      F N.Perm Pr(>F)  
+<none>      87.082                       
+A1        1 87.424 1.2965     99   0.21  
+Moisture  3 85.567 1.9764    199   0.03 *
+Use       2 88.284 1.0510     99   0.41  
+Manure    3 87.517 1.3902    199   0.07 .
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> m0 <- update(m0, . ~ . + Moisture)
+> ## -- included variables still significant?
+> drop1(m0, test="perm")
+           Df    AIC      F N.Perm Pr(>F)   
+<none>        85.567                        
+Management  3 87.707 2.1769    199  0.015 * 
+Moisture    3 87.082 1.9764    199  0.005 **
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> add1(m0, scope=formula(mbig), test="perm")
+       Df    AIC      F N.Perm Pr(>F)
+<none>    85.567                     
+A1      1 86.220 0.8359     99   0.66
+Use     2 86.842 0.8027     99   0.66
+Manure  3 85.762 1.1225     99   0.31
+> 
+> 
+> 
+> cleanEx()
+> nameEx("adipart")
+> ### * adipart
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: adipart
+> ### Title: Additive Diversity Partitioning and Hierarchical Null Model
+> ###   Testing
+> ### Aliases: adipart print.adipart hiersimu print.hiersimu
+> ### Keywords: multivariate
+> 
+> ### ** Examples
+> 
+> ## NOTE: 'nsimul' argument usually needs to be >= 99
+> ## here much lower value is used for demonstration
+> 
+> data(mite)
+> data(mite.xy)
+> data(mite.env)
+> ## Function to get equal area partitions of the mite data
+> cutter <- function (x, cut = seq(0, 10, by = 2.5)) {
++     out <- rep(1, length(x))
++     for (i in 2:(length(cut) - 1))
++         out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
++     return(as.factor(out))}
+> ## The hierarchy of sample aggregation
+> levsm <- data.frame(
++     l1=as.factor(1:nrow(mite)),
++     l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
++     l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
++     l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))
+> ## Let's see in a map
+> par(mfrow=c(1,3))
+> plot(mite.xy, main="l1", col=as.numeric(levsm$l1)+1)
+> plot(mite.xy, main="l2", col=as.numeric(levsm$l2)+1)
+> plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1)
+> par(mfrow=c(1,1))
+> ## Additive diversity partitioning
+> adipart(mite ~., levsm, index="richness", nsimul=9)
+adipart with 9 simulations
+with index richness, weights unif
+
+        statistic       z    2.5%     50%  97.5% Pr(sim.)
+alpha.1    15.114 -44.931  22.217  22.386 22.594      0.1
+alpha.2    29.750 -28.284  34.500  34.750 35.000      0.1
+alpha.3    33.000   0.000  35.000  35.000 35.000      0.1
+gamma      35.000   0.000  35.000  35.000 35.000      1.0
+beta.1     14.636  11.309  12.156  12.286 12.710      0.1
+beta.2      3.250  16.971   0.000   0.250  0.500      0.1
+beta.3      2.000   0.000   0.000   0.000  0.000      0.1
+> ## Hierarchical null model testing
+> ## diversity analysis (similar to adipart)
+> hiersimu(mite ~., levsm, diversity, relative=TRUE, nsimul=9)
+hiersimu with 9 simulations
+
+    statistic          z       2.5%        50%  97.5% Pr(sim.)
+l1    0.76064  -61.57993    0.93421    0.93718 0.9418      0.1
+l2    0.89736  -98.45713    0.99629    0.99723 0.9992      0.1
+l3    0.92791 -550.28201    0.99914    0.99931 0.9995      0.1
+l4    1.00000    0.00000    1.00000    1.00000 1.0000      1.0
+> ## Hierarchical testing with the Morisita index
+> morfun <- function(x) dispindmorisita(x)$imst
+> hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=9)
+hiersimu with 9 simulations
+
+   statistic         z      2.5%       50%   97.5% Pr(sim.)
+l1  0.520702  9.445924  0.336022  0.363409  0.3815      0.1
+l2  0.602337  9.398210  0.098335  0.135400  0.2364      0.1
+l3  0.675085 18.347360 -0.293851 -0.189212 -0.1565      0.1
+> 
+> 
+> 
+> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
+> cleanEx()
+> nameEx("adonis")
+> ### * adonis
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: adonis
+> ### Title: Permutational Multivariate Analysis of Variance Using Distance
+> ###   Matrices
+> ### Aliases: adonis print.adonis
+> ### Keywords: multivariate nonparametric
+> 
+> ### ** Examples
+> 
+> data(dune)
+> data(dune.env)
+> adonis(dune ~ Management*A1, data=dune.env, permutations=99)
+
+Call:
+adonis(formula = dune ~ Management * A1, data = dune.env, permutations = 99) 
+
+              Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)   
+Management     3    1.4686 0.48953  3.2629 0.34161   0.01 **
+A1             1    0.4409 0.44089  2.9387 0.10256   0.02 * 
+Management:A1  3    0.5892 0.19639  1.3090 0.13705   0.18   
+Residuals     12    1.8004 0.15003         0.41878          
+Total         19    4.2990                 1.00000          
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> 
+> 
+> ### Example of use with strata, for nested (e.g., block) designs.
+> 
+> dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1) )
+> dat
+   rep NO3 field
+1    1   0     1
+2    2   0     1
+3    1  10     1
+4    2  10     1
+5    1   0     2
+6    2   0     2
+7    1  10     2
+8    2  10     2
+9    1   0     3
+10   2   0     3
+11   1  10     3
+12   2  10     3
+> Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2
+> Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2
+> total <- Agropyron + Schizachyrium
+> library(lattice)
+> dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,
++         type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE) )
+> 
+> Y <- data.frame(Agropyron, Schizachyrium)
+> mod <- metaMDS(Y)
+Loading required package: MASS
+Run 0 stress 8.56469 
+Run 1 stress 17.68491 
+Run 2 stress 8.556588 
+... New best solution
+... procrustes: rmse 0.001526914  max resid 0.003279392 
+*** Solution reached
+
+> plot(mod)
+> ### Hulls show treatment
+> ordihull(mod, group=dat$NO3, show="0")
+> ordihull(mod, group=dat$NO3, show="10", col=3)
+> ### Spider shows fields
+> ordispider(mod, group=dat$field, lty=3, col="red")
+> 
+> ### Correct hypothesis test (with strata)
+> adonis(Y ~ NO3, data=dat, strata=dat$field, perm=1e3)
+
+Call:
+adonis(formula = Y ~ NO3, data = dat, permutations = 1000, strata = dat$field) 
+
+          Df SumsOfSqs  MeanSqs F.Model      R2   Pr(>F)   
+NO3        1  0.055856 0.055856  4.0281 0.28714 0.008991 **
+Residuals 10  0.138667 0.013867         0.71286            
+Total     11  0.194524                  1.00000            
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> 
+> ### Incorrect (no strata)
+> adonis(Y ~ NO3, data=dat, perm=1e3)
+
+Call:
+adonis(formula = Y ~ NO3, data = dat, permutations = 1000) 
+
+          Df SumsOfSqs  MeanSqs F.Model      R2   Pr(>F)   
+NO3        1  0.055856 0.055856  4.0281 0.28714 0.004995 **
+Residuals 10  0.138667 0.013867         0.71286            
+Total     11  0.194524                  1.00000            
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> 
+> 
+> 
+> cleanEx()
+
+detaching ‘package:MASS’, ‘package:lattice’
+
+> nameEx("anosim")
+> ### * anosim
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: anosim
+> ### Title: Analysis of Similarities
+> ### Aliases: anosim print.anosim summary.anosim plot.anosim
+> ### Keywords: multivariate nonparametric htest
+> 
+> ### ** Examples
+> 
+> data(dune)
+> data(dune.env)
+> dune.dist <- vegdist(dune)
+> attach(dune.env)
+> dune.ano <- anosim(dune.dist, Management)
+> summary(dune.ano)
+
+Call:
+anosim(dat = dune.dist, grouping = Management) 
+Dissimilarity: bray 
+
+ANOSIM statistic R: 0.2579 
+      Significance: 0.006 
+
+Based on  999  permutations
+
+Empirical upper confidence limits of R:
+  90%   95% 97.5%   99% 
+0.116 0.160 0.203 0.233 
+
+Dissimilarity ranks between and within classes:
+        0%   25%    50%     75%  100%   N
+Between  4 58.50 104.00 145.500 188.0 147
+BF       5 15.25  25.50  41.250  57.0   3
+HF       1  7.25  46.25  68.125  89.5  10
+NM       6 64.75 124.50 156.250 181.0  15
+SF       3 32.75  53.50  99.250 184.0  15
+
+> plot(dune.ano)
+Warning in bxp(list(stats = c(4, 58.5, 104, 145.5, 188, 5, 15.25, 25.5,  :
+  some notches went outside hinges ('box'): maybe set notch=FALSE
+> 
+> 
+> 
+> cleanEx()
+
+detaching ‘dune.env’
+
+> nameEx("anova.cca")
+> ### * anova.cca
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: anova.cca
+> ### Title: Permutation Test for Constrained Correspondence Analysis,
+> ###   Redundancy Analysis and Constrained Analysis of Principal Coordinates
+> ### Aliases: anova.cca anova.ccanull anova.ccabyaxis anova.ccabyterm
+> ###   anova.ccabymargin permutest permutest.default permutest.cca
+> ###   print.permutest.cca
+> ### Keywords: multivariate htest
+> 
+> ### ** Examples
+> 
+> data(varespec)
+> data(varechem)
+> vare.cca <- cca(varespec ~ Al + P + K, varechem)
+> ## overall test
+> anova(vare.cca)
+Permutation test for cca under reduced model
+
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm Pr(>F)   
+Model     3 0.6441 2.9840    199  0.005 **
+Residual 20 1.4391                        
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> ## Test for axes
+> anova(vare.cca, by="axis", perm.max=500)
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm Pr(>F)   
+CCA1      1 0.3616 5.0249    199  0.005 **
+CCA2      1 0.1700 2.3621    199  0.010 **
+CCA3      1 0.1126 1.5651    399  0.100 . 
+Residual 20 1.4391                        
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> ## Sequential test for terms
+> anova(vare.cca, by="terms", permu=200)
+Permutation test for cca under reduced model
+Terms added sequentially (first to last)
+
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm Pr(>F)   
+Al        1 0.2982 4.1440    199  0.005 **
+P         1 0.1899 2.6393    199  0.015 * 
+K         1 0.1561 2.1688    199  0.030 * 
+Residual 20 1.4391                        
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> ## Marginal or Type III effects
+> anova(vare.cca, by="margin")
+Permutation test for cca under reduced model
+Marginal effects of terms
+
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm  Pr(>F)   
+Al        1 0.3118 4.3340    199 0.00500 **
+P         1 0.1681 2.3362    199 0.01500 * 
+K         1 0.1561 2.1688    599 0.02833 * 
+Residual 20 1.4391                         
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> ## Marginal test knows 'scope'
+> anova(vare.cca, by = "m", scope="P")
+Permutation test for cca under reduced model
+Marginal effects of terms
+
+Model: cca(formula = varespec ~ Al + P + K, data = varechem)
+         Df  Chisq      F N.Perm Pr(>F)  
+P         1 0.1681 2.3362    199  0.015 *
+Residual 20 1.4391                       
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> 
+> 
+> 
+> cleanEx()
+> nameEx("as.mlm")
+> ### * as.mlm
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: as.mlm.cca
+> ### Title: Refit Constrained Ordination as a Multiple Response Linear Model
+> ### Aliases: as.mlm as.mlm.cca as.mlm.rda
+> ### Keywords: models multivariate
+> 
+> ### ** Examples
+> 
+> data(varespec)
+> data(varechem)
+> mod <- cca(varespec ~ Al + P + K, data=varechem)
+> lmod <- as.mlm(mod)
+> ## Coefficients
+> lmod
+
+Call:
+lm(formula = wa ~ . - 1, data = as.data.frame(X))
+
+Coefficients:
+    CCA1       CCA2       CCA3     
+Al   0.007479  -0.001884   0.003381
+P   -0.006491  -0.102190  -0.022307
+K   -0.006756   0.015344   0.017067
+
+> coef(mod)
+           CCA1         CCA2         CCA3
+Al  0.007478556 -0.001883637  0.003380774
+P  -0.006491081 -0.102189737 -0.022306682
+K  -0.006755568  0.015343662  0.017067351
+> ## Influential observations
+> influence.measures(lmod)
+Influence measures of
+	 lm(formula = wa ~ . - 1, data = as.data.frame(X)) :
+
+      dfb.Al    dfb.P    dfb.K    CCA1    CCA2      CCA3  cov.r   CCA1.1
+18 -0.251387  0.00976 -0.06310  0.2740  0.1806 -0.118754 0.0265 7.38e-03
+15  0.099858  0.13864 -0.11781 -0.1654 -0.0935  0.006898 0.0319 2.86e-03
+24 -0.003448 -0.44078  0.20788 -0.4824 -0.1750 -0.260788 0.0307 2.33e-02
+27  0.071682 -0.01707 -0.03516 -0.1018 -0.1676  0.022271 0.0406 1.13e-03
+23 -0.116533  0.06900 -0.02545  0.1441  0.2918 -0.220457 0.0355 2.23e-03
+19 -0.007394 -0.01169  0.01080  0.0136 -0.2318 -0.000417 0.0359 2.02e-05
+22  0.150916  0.14845 -0.13091 -0.2047  0.3815  0.168914 0.0376 4.50e-03
+16  0.107456  0.17900 -0.09917 -0.2120  0.2250  0.194432 0.0338 4.75e-03
+28  0.332161 -0.34398 -0.05414 -0.6774  0.0742  0.620990 0.0364 4.65e-02
+13  0.366880 -1.00834  1.23685  1.3392  0.4102  0.277067 0.1124 1.89e-01
+14  0.024147  0.02512 -0.01161 -0.0361  0.1491  0.053638 0.0355 1.42e-04
+20  0.000747 -0.00560  0.00205 -0.0066  0.2935 -0.190351 0.0368 4.77e-06
+25  0.166736 -0.11049  0.09341 -0.2095 -0.1627 -0.070753 0.0346 4.66e-03
+7  -0.397145  0.15747  0.15662 -0.5912  0.5842 -0.838287 0.0327 3.51e-02
+5  -0.279996 -0.09119 -0.35616  0.7358  0.3694 -0.326563 0.0281 5.18e-02
+6   0.003191 -0.00168 -0.01550  0.0259  0.3447  0.201072 0.0400 7.34e-05
+3  -0.302851 -0.07889  0.25932 -0.4196 -0.2766  0.536017 0.0386 1.85e-02
+4  -0.058151 -0.02719  0.00870 -0.0664  0.8199  0.131003 0.0486 4.83e-04
+2   0.020380  0.00416 -0.00373  0.0206 -0.4158 -0.160401 0.0395 4.62e-05
+9   0.074217  0.09551 -0.10857  0.1271 -0.3481  0.644579 0.0383 1.75e-03
+12 -0.097825 -0.20830  0.04637  0.2864 -0.6601  0.270324 0.0280 8.19e-03
+10  0.149178  0.66594 -0.12975  0.8935 -0.2510  0.000571 0.0118 5.90e-02
+11  0.014687  0.00691  0.00105  0.0191  0.1838 -0.301086 0.0377 4.00e-05
+21  0.148213  0.15461 -0.02915 -0.2531 -0.1892 -0.318491 0.0361 6.81e-03
+     CCA2.1   CCA3.1    hat inf
+18 0.003207 1.39e-03 0.0321    
+15 0.000915 4.98e-06 0.0295    
+24 0.003071 6.82e-03 0.1135    
+27 0.003062 5.41e-05 0.1375    
+23 0.009151 5.22e-03 0.0555    
+19 0.005873 1.90e-08 0.0176    
+22 0.015648 3.07e-03 0.1077    
+16 0.005348 3.99e-03 0.0594    
+28 0.000559 3.91e-02 0.2256    
+13 0.017773 8.11e-03 0.7168   *
+14 0.002424 3.13e-04 0.0158    
+20 0.009421 3.96e-03 0.0393    
+25 0.002810 5.31e-04 0.0670    
+7  0.034274 7.06e-02 0.1635    
+5  0.013057 1.02e-02 0.1588    
+6  0.012996 4.42e-03 0.1169    
+3  0.008056 3.02e-02 0.1833    
+4  0.073491 1.88e-03 0.2741    
+2  0.018909 2.81e-03 0.1063    
+9  0.013158 4.51e-02 0.0978    
+12 0.043487 7.29e-03 0.0409    
+10 0.004658 2.41e-08 0.0768    
+11 0.003694 9.91e-03 0.0632    
+21 0.003807 1.08e-02 0.1009    
+> plot(mod, type = "n")
+> points(mod, cex = 10*hatvalues(lmod), pch=16, xpd = TRUE)
+> text(mod, display = "bp", col = "blue") 
+> 
+> 
+> 
+> cleanEx()
+> nameEx("beals")
+> ### * beals
+> 
+> flush(stderr()); flush(stdout())
+> 
+> ### Name: beals
+> ### Title: Beals Smoothing and Degree of Absence
+> ### Aliases: beals swan
+> ### Keywords: manip smooth
+> 
+> ### ** Examples
+> 
+> data(dune)
+> ## Default
+> x <- beals(dune)
+> ## Remove target species
+> x <- beals(dune, include = FALSE)
+> ## Smoothed values against presence or absence of species
+> pa <- decostand(dune, "pa")
+> boxplot(as.vector(x) ~ unlist(pa), xlab="Presence", ylab="Beals")
+> ## Remove the bias of tarbet species: Yields lower values.
+> beals(dune, type =3, include = FALSE)
+      Belper     Empnig    Junbuf     Junart     Airpra     Elepal    Rumace
+2  0.4917791 0.01829337 0.2070478 0.13017869 0.03361524 0.08656209 0.3031318
+13 0.2939740 0.01840390 0.3339728 0.28204736 0.02191119 0.22437598 0.3107471
+4  0.4398775 0.02527165 0.2318440 0.21320122 0.02876960 0.16112450 0.2610006
+16 0.1516354 0.00742115 0.1776781 0.54304667 0.00742115 0.51523810 0.1508409
+6  0.3696613 0.03093489 0.2166255 0.11631772 0.05967771 0.08784329 0.4330705
+1  0.4935662 0.00000000 0.1987270 0.14794933 0.01157407 0.05592045 0.3160963
+8  0.2720122 0.02102222 0.2323566 0.33219882 0.02588333 0.29777644 0.2331043
+5  0.4322142 0.03029752 0.2164230 0.10406655 0.06632771 0.05419613 0.3979230
+17 0.3129358 0.21968254 0.1038156 0.03333333 0.29233391 0.02777778 0.2913631
+15 0.1420251 0.02215971 0.1370235 0.51561767 0.02538032 0.53973883 0.1459458
+10 0.4705094 0.03425596 0.1678040 0.09080902 0.07349127 0.07787078 0.3226025
+11 0.3713794 0.07310076 0.1656396 0.13478872 0.10259239 0.11146095 0.2753878
+9  0.3292320 0.01838883 0.2675624 0.23134366 0.02213662 0.19018562 0.3464870
+18 0.3676424 0.06763669 0.1376386 0.18956922 0.08535723 0.17341352 0.2668100
+3  0.4033301 0.01074444 0.2544828 0.22291082 0.01520046 0.16099072 0.2909068
+20 0.1450721 0.05905666 0.1192488 0.53056145 0.06144615 0.58476297 0.1098600
+14 0.1682755 0.01989756 0.1206518 0.46685537 0.02298398 0.55982776 0.1241545
+19 0.2237843 0.26011417 0.1127832 0.13543701 0.35137675 0.12592768 0.1831168
+12 0.2802946 0.03413656 0.3231724 0.27306206 0.03625297 0.19518888 0.3507140
+7  0.4051777 0.02304603 0.2110045 0.11293676 0.05329633 0.06694311 0.4113622
+       Viclat    Brarut     Ranfla     Cirarv     Hyprad    Leoaut      Potpal
+2  0.18494940 0.7415172 0.13042865 0.08570299 0.07454127 0.9349640 0.026548839
+13 0.06604026 0.7465509 0.33309468 0.07905124 0.04250245 0.9255312 0.056084315
+4  0.12550967 0.7919786 0.21909541 0.12920228 0.06985986 0.9204237 0.039859621
+16 0.03353260 0.8029953 0.66893881 0.05184498 0.01731602 0.8131968 0.201352298
+6  0.18035860 0.8387650 0.10909966 0.03223112 0.11463153 0.9590466 0.030347896
+1  0.17244420 0.7476589 0.08105273 0.09504980 0.07702746 0.8898317 0.000000000
+8  0.10213052 0.8109194 0.40134447 0.06688407 0.06550319 0.8755515 0.100703044
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/vegan -r 1467


More information about the Vegan-commits mailing list