[Vegan-commits] r1440 - pkg/vegan/inst/doc
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Jan 7 17:14:03 CET 2011
Author: jarioksa
Date: 2011-01-07 17:13:56 +0100 (Fri, 07 Jan 2011)
New Revision: 1440
Modified:
pkg/vegan/inst/doc/decision-vegan.Rnw
Log:
CANOCO scaling may need some work with pen, paper and calculator
Modified: pkg/vegan/inst/doc/decision-vegan.Rnw
===================================================================
--- pkg/vegan/inst/doc/decision-vegan.Rnw 2011-01-07 16:05:02 UTC (rev 1439)
+++ pkg/vegan/inst/doc/decision-vegan.Rnw 2011-01-07 16:13:56 UTC (rev 1440)
@@ -247,7 +247,8 @@
species standard deviations ($s_j$). In \texttt{rda},
$\mathrm{const} = \sqrt[4]{(n-1) \sum \lambda_k}$. Corresponding
negative scaling in \texttt{vegan}
- and corresponding positive scaling in \texttt{Canoco 3} is derived
+ % and corresponding positive scaling in \texttt{Canoco 3}
+ is derived
dividing each species by its standard deviation $s_j$ (possibly
with some additional constant multiplier). }
\begin{tabular}{lcc}
@@ -269,17 +270,17 @@
\texttt{rda, scaling < 0} &
$u_{ik}^*$ &
$\sqrt{\sum \lambda_k /(n-1)} s_j^{-1} v_{jk}^*$
-\\
-\texttt{Canoco 3, scaling=-1} &
-$u_{ik} \sqrt{n-1} \sqrt{\lambda_k / \sum \lambda_k}$ &
-$v_{jk} \sqrt{n}$ \\
-\texttt{Canoco 3, scaling=-2} &
-$u_{ik} \sqrt{n-1}$ &
-$v_{jk} \sqrt{n} \sqrt{\lambda_k / \sum \lambda_k}$
-\\
-\texttt{Canoco 3, scaling=-3} &
-$u_{ik} \sqrt{n-1} \sqrt[4]{\lambda_k / \sum \lambda_k}$ &
-$v_{jk} \sqrt{n} \sqrt[4]{\lambda_k / \sum \lambda_k}$
+% \\
+% \texttt{Canoco 3, scaling=-1} &
+% $u_{ik} \sqrt{n-1} \sqrt{\lambda_k / \sum \lambda_k}$ &
+% $v_{jk} \sqrt{n}$ \\
+% \texttt{Canoco 3, scaling=-2} &
+% $u_{ik} \sqrt{n-1}$ &
+% $v_{jk} \sqrt{n} \sqrt{\lambda_k / \sum \lambda_k}$
+% \\
+% \texttt{Canoco 3, scaling=-3} &
+% $u_{ik} \sqrt{n-1} \sqrt[4]{\lambda_k / \sum \lambda_k}$ &
+% $v_{jk} \sqrt{n} \sqrt[4]{\lambda_k / \sum \lambda_k}$
\end{tabular}
\end{table}
@@ -291,14 +292,15 @@
constant. In functions \texttt{princomp}, \texttt{prcomp} and
\texttt{rda}, $c=1$ and the plotted scores are a biplot so that the
singular values (or eigenvalues) are expressed for sites, and species
-are left unscaled. For \texttt{Canoco 3} $c = n^{-1} \sqrt{n-1}
-\sqrt{\sum \lambda_k}$ with negative \texttt{Canoco} scaling
-values. All these $c$ are constants for a matrix, so these are all
-biplots with different internal scaling of species and site scores
-with respect to each other. For \texttt{Canoco} with positive scaling
-values and \texttt{vegan} with negative scaling values, no constant
-$c$ can be found, but the correction is dependent on species standard
-deviations $s_j$, and these scores do not define a biplot.
+are left unscaled.
+% For \texttt{Canoco 3} $c = n^{-1} \sqrt{n-1}
+% \sqrt{\sum \lambda_k}$ with negative \texttt{Canoco} scaling
+% values. All these $c$ are constants for a matrix, so these are all
+% biplots with different internal scaling of species and site scores
+% with respect to each other. For \texttt{Canoco} with positive scaling
+% values and \texttt{vegan} with negative scaling values, no constant
+% $c$ can be found, but the correction is dependent on species standard
+% deviations $s_j$, and these scores do not define a biplot.
There is no natural way of scaling species and site scores to each
other. The eigenvalues in redundancy and principal components
More information about the Vegan-commits
mailing list