[Vegan-commits] r1589 - pkg/vegan/tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon Apr 11 20:54:48 CEST 2011


Author: jarioksa
Date: 2011-04-11 20:54:47 +0200 (Mon, 11 Apr 2011)
New Revision: 1589

Modified:
   pkg/vegan/tests/Examples/vegan-Ex.Rout.save
Log:
update

Modified: pkg/vegan/tests/Examples/vegan-Ex.Rout.save
===================================================================
--- pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2011-04-11 18:45:15 UTC (rev 1588)
+++ pkg/vegan/tests/Examples/vegan-Ex.Rout.save	2011-04-11 18:54:47 UTC (rev 1589)
@@ -22,7 +22,7 @@
 > source(file.path(R.home("share"), "R", "examples-header.R"))
 > options(warn = 1)
 > library('vegan')
-This is vegan 1.18-28
+This is vegan 1.18-29
 > 
 > assign(".oldSearch", search(), pos = 'CheckExEnv')
 > cleanEx()
@@ -539,37 +539,43 @@
 > plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1)
 > par(mfrow=c(1,1))
 > ## Additive diversity partitioning
-> adipart(mite ~., levsm, index="richness", nsimul=9)
-adipart with 9 simulations
+> adipart(mite ~., levsm, index="richness", nsimul=19)
+adipart with 19 simulations
 with index richness, weights unif
 
-        statistic       z    2.5%     50%  97.5% Pr(sim.)
-alpha.1    15.114 -44.931  22.217  22.386 22.594      0.1
-alpha.2    29.750 -28.284  34.500  34.750 35.000      0.1
-alpha.3    33.000   0.000  35.000  35.000 35.000      0.1
-gamma      35.000   0.000  35.000  35.000 35.000      1.0
-beta.1     14.636  11.309  12.156  12.286 12.710      0.1
-beta.2      3.250  16.971   0.000   0.250  0.500      0.1
-beta.3      2.000   0.000   0.000   0.000  0.000      0.1
+        statistic        z     2.5%      50%  97.5% Pr(sim.)  
+alpha.1   15.1143 -38.7550  22.0321  22.3000 22.608     0.05 *
+alpha.2   29.7500 -27.1142  34.5000  34.7500 35.000     0.05 *
+alpha.3   33.0000   0.0000  35.0000  35.0000 35.000     0.05 *
+gamma     35.0000   0.0000  35.0000  35.0000 35.000     1.00  
+beta.1    14.6357   9.0433  12.1629  12.4500 12.955     0.05 *
+beta.2     3.2500  16.4371   0.0000   0.2500  0.500     0.05 *
+beta.3     2.0000   0.0000   0.0000   0.0000  0.000     0.05 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Hierarchical null model testing
 > ## diversity analysis (similar to adipart)
-> hiersimu(mite ~., levsm, diversity, relative=TRUE, nsimul=9)
-hiersimu with 9 simulations
+> hiersimu(mite ~., levsm, diversity, relative=TRUE, nsimul=19)
+hiersimu with 19 simulations
 
-    statistic          z       2.5%        50%  97.5% Pr(sim.)
-l1    0.76064  -61.57993    0.93421    0.93718 0.9418      0.1
-l2    0.89736  -98.45713    0.99629    0.99723 0.9992      0.1
-l3    0.92791 -550.28201    0.99914    0.99931 0.9995      0.1
-l4    1.00000    0.00000    1.00000    1.00000 1.0000      1.0
+    statistic          z       2.5%        50%  97.5% Pr(sim.)  
+l1    0.76064  -65.47286    0.93511    0.93959 0.9437     0.05 *
+l2    0.89736 -127.77766    0.99635    0.99815 0.9989     0.05 *
+l3    0.92791 -516.33891    0.99921    0.99948 0.9997     0.05 *
+l4    1.00000    0.00000    1.00000    1.00000 1.0000     1.00  
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Hierarchical testing with the Morisita index
 > morfun <- function(x) dispindmorisita(x)$imst
-> hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=9)
-hiersimu with 9 simulations
+> hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
+hiersimu with 19 simulations
 
-   statistic         z      2.5%       50%   97.5% Pr(sim.)
-l1  0.520702  9.445924  0.336022  0.363409  0.3815      0.1
-l2  0.602337  9.398210  0.098335  0.135400  0.2364      0.1
-l3  0.675085 18.347360 -0.293851 -0.189212 -0.1565      0.1
+   statistic        z     2.5%      50%   97.5% Pr(sim.)  
+l1   0.52070  4.98527  0.31016  0.36570  0.4227     0.05 *
+l2   0.60234 12.33099  0.11979  0.17096  0.2283     0.05 *
+l3   0.67509 19.37352 -0.24164 -0.16761 -0.0895     0.05 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -3047,7 +3053,7 @@
 > 
 > # Reproduce the results shown in Table 2 of Legendre (2005), a single group
 > mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
-> kendall.global(mite.small, nperm=99)
+> kendall.global(mite.small, nperm=49)
 $Concordance_analysis
               Group.1
 W          0.44160305
@@ -3058,13 +3064,13 @@
 
 attr(,"class")
 [1] "kendall.global"
-> kendall.post(mite.small, mult="holm", nperm=99)
+> kendall.post(mite.small, mult="holm", nperm=49)
 $A_posteriori_tests
                     TVEL      ONOV      SUCT   Trhypch1
 Spearman.mean  0.3265678 0.3965503 0.4570402 -0.1681251
 W.per.species  0.4949258 0.5474127 0.5927802  0.1239061
-Prob           0.0500000 0.0200000 0.0100000  0.6700000
-Corrected prob 0.1000000 0.0600000 0.0400000  0.6700000
+Prob           0.1400000 0.0200000 0.0200000  0.7200000
+Corrected prob 0.2800000 0.0800000 0.0800000  0.7200000
 
 $Correction.type
 [1] "holm"
@@ -3074,7 +3080,7 @@
 > 
 > # Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
 > group <-c(1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,2,2)
-> kendall.global(mite.hel, group=group, nperm=99)
+> kendall.global(mite.hel, group=group, nperm=49)
 $Concordance_analysis
                          Group.1      Group.2
 W                   3.097870e-01 2.911888e-01
@@ -3082,49 +3088,49 @@
 Prob.F              1.177138e-85 4.676566e-22
 Corrected prob.F    2.354275e-85 4.676566e-22
 Chi2                5.130073e+02 2.210123e+02
-Prob.perm           1.000000e-02 1.000000e-02
-Corrected prob.perm 2.000000e-02 2.000000e-02
+Prob.perm           2.000000e-02 2.000000e-02
+Corrected prob.perm 4.000000e-02 4.000000e-02
 
 $Correction.type
 [1] "holm"
 
 attr(,"class")
 [1] "kendall.global"
-> kendall.post(mite.hel, group=group, mult="holm", nperm=99)
+> kendall.post(mite.hel, group=group, mult="holm", nperm=49)
 $A_posteriori_tests_Group
 $A_posteriori_tests_Group[[1]]
                   Brachy      PHTH     RARD      SSTR   Protopl      MEGR
 Spearman.mean  0.1851177 0.4258111 0.359058 0.2505486 0.1802160 0.2833298
 W.per.species  0.2190711 0.4497357 0.385764 0.2817757 0.2143736 0.3131911
-Prob           0.0100000 0.0100000 0.010000 0.0100000 0.0400000 0.0100000
-Corrected prob 0.3500000 0.3500000 0.350000 0.3500000 0.3500000 0.3500000
+Prob           0.0200000 0.0200000 0.020000 0.0200000 0.0200000 0.0200000
+Corrected prob 0.7000000 0.7000000 0.700000 0.7000000 0.7000000 0.7000000
                      MPRO      HMIN     HMIN2      NPRA      TVEL      ONOV
 Spearman.mean  0.09248024 0.2444656 0.4138494 0.1263751 0.4177343 0.3301159
 W.per.species  0.13029357 0.2759462 0.4382723 0.1627761 0.4419954 0.3580278
-Prob           0.08000000 0.0100000 0.0100000 0.0400000 0.0100000 0.0100000
-Corrected prob 0.35000000 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000
+Prob           0.22000000 0.0200000 0.0200000 0.0400000 0.0200000 0.0200000
+Corrected prob 0.70000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000
                     SUCT Oribatl1      PWIL  Galumna1  Stgncrs2      HRUF
 Spearman.mean  0.2185421 0.421216 0.2574779 0.4180699 0.3623428 0.1250230
 W.per.species  0.2511028 0.445332 0.2884163 0.4423170 0.3889118 0.1614804
-Prob           0.0100000 0.010000 0.0100000 0.0100000 0.0100000 0.0500000
-Corrected prob 0.3500000 0.350000 0.3500000 0.3500000 0.3500000 0.3500000
+Prob           0.0200000 0.020000 0.0200000 0.0200000 0.0200000 0.0400000
+Corrected prob 0.7000000 0.700000 0.7000000 0.7000000 0.7000000 0.7000000
                     PPEL      SLAT      FSET  Lepidzts  Eupelops  Miniglmn
 Spearman.mean  0.2188216 0.3016159 0.4217606 0.2577037 0.1108022 0.2301430
 W.per.species  0.2513707 0.3307153 0.4458539 0.2886327 0.1478521 0.2622203
-Prob           0.0100000 0.0100000 0.0100000 0.0100000 0.0700000 0.0100000
-Corrected prob 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000
+Prob           0.0200000 0.0200000 0.0200000 0.0200000 0.0600000 0.0200000
+Corrected prob 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000
 
 $A_posteriori_tests_Group[[2]]
                     HPAV      TVIE      LCIL  Ceratoz1  Trhypch1      NCOR
 Spearman.mean  0.1222579 0.2712078 0.1906408 0.1375601 0.1342409 0.3342345
 W.per.species  0.2020527 0.3374616 0.2642189 0.2159637 0.2129463 0.3947586
-Prob           0.0500000 0.0100000 0.0200000 0.0200000 0.0400000 0.0100000
-Corrected prob 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000
+Prob           0.0800000 0.0200000 0.0200000 0.0200000 0.0400000 0.0200000
+Corrected prob 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000
                     LRUG     PLAG2  Ceratoz3  Oppiminu  Trimalc2
 Spearman.mean  0.3446561 0.1833099 0.3188922 0.1764232 0.2498877
 W.per.species  0.4042328 0.2575544 0.3808111 0.2512938 0.3180797
-Prob           0.0100000 0.0100000 0.0100000 0.0100000 0.0100000
-Corrected prob 0.3500000 0.3500000 0.3500000 0.3500000 0.3500000
+Prob           0.0200000 0.0200000 0.0200000 0.0200000 0.0200000
+Corrected prob 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000
 
 
 $Correction.type
@@ -3133,7 +3139,7 @@
 attr(,"class")
 [1] "kendall.post"
 > 
-> # NOTE: 'nperm' argument usually needs to be larger than 99.
+> # NOTE: 'nperm' argument usually needs to be larger than 49.
 > # It was set to this low value for demonstration purposes.
 > 
 > 
@@ -3795,42 +3801,48 @@
 +     l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
 +     l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))
 > ## Multiplicative diversity partitioning
-> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=9)
-multipart with 9 simulations
+> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19)
+multipart with 19 simulations
 with index renyi, scales 1, global TRUE
 
-         statistic          z       2.5%        50%   97.5% Pr(sim.)
-alpha.1    8.05548  -51.02503   12.11957   12.20548 12.3611      0.1
-alpha.2   11.23526  -97.75402   14.06702   14.09107 14.1493      0.1
-alpha.3   12.00644 -351.14109   14.13038   14.13932 14.1476      0.1
-gamma     14.16027    0.00000   14.16027   14.16027 14.1603      1.0
-beta.1     1.35678   24.85873    1.14268    1.15598  1.1643      0.1
-beta.2     1.07103   33.37286    0.99935    1.00319  1.0056      0.1
-beta.3     1.17939  413.49699    1.00090    1.00148  1.0021      0.1
-> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=9, relative=TRUE)
-multipart with 9 simulations
+         statistic          z       2.5%        50%   97.5% Pr(sim.)  
+alpha.1    8.05548  -50.70213   12.06155   12.17739 12.3400     0.05 *
+alpha.2   11.23526  -81.96187   14.03610   14.08098 14.1485     0.05 *
+alpha.3   12.00644 -352.92816   14.12822   14.13863 14.1485     0.05 *
+gamma     14.16027    0.00000   14.16027   14.16027 14.1603     1.00  
+beta.1     1.35678   27.78084    1.14474    1.15859  1.1683     0.05 *
+beta.2     1.07103   28.03171    0.99912    1.00368  1.0067     0.05 *
+beta.3     1.17939  415.61573    1.00083    1.00153  1.0023     0.05 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, relative=TRUE)
+multipart with 19 simulations
 with index renyi, scales 1, global TRUE
 
-          statistic           z        2.5%         50%   97.5% Pr(sim.)
-alpha.1    8.055481  -52.029990   12.058266   12.166664 12.2796      0.1
-alpha.2   11.235261  -74.976817   14.029198   14.060144 14.1372      0.1
-alpha.3   12.006443 -455.862328   14.128554   14.136459 14.1420      0.1
-gamma     14.160271    0.000000   14.160271   14.160271 14.1603      1.0
-beta.1     0.078594   27.718478    0.067828    0.068339  0.0689      0.1
-beta.2     0.535514   25.325379    0.499875    0.502749  0.5036      0.1
-beta.3     0.589695  536.670846    0.500646    0.500842  0.5011      0.1
-> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=9, global=TRUE)
-multipart with 9 simulations
+          statistic           z        2.5%         50%   97.5% Pr(sim.)  
+alpha.1    8.055481  -58.367006   12.114272   12.212001 12.3367     0.05 *
+alpha.2   11.235261 -101.405343   14.030529   14.092411 14.1193     0.05 *
+alpha.3   12.006443 -397.121850   14.130733   14.140903 14.1485     0.05 *
+gamma     14.160271    0.000000   14.160271   14.160271 14.1603     1.00  
+beta.1     0.078594   24.964962    0.067424    0.068173  0.0688     0.05 *
+beta.2     0.535514   34.653906    0.500756    0.501720  0.5039     0.05 *
+beta.3     0.589695  467.673224    0.500417    0.500685  0.5010     0.05 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
+> multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=19, global=TRUE)
+multipart with 19 simulations
 with index renyi, scales 1, global TRUE
 
-        statistic         z      2.5%       50%   97.5% Pr(sim.)
-alpha.1    8.0555  -60.1230   12.1089   12.1625 12.2818      0.1
-alpha.2   11.2353  -85.0716   14.0297   14.0945 14.1205      0.1
-alpha.3   12.0064 -449.3895   14.1332   14.1371 14.1461      0.1
-gamma     14.1603    0.0000   14.1603   14.1603 14.1603      1.0
-beta.1     1.7578   91.0706    1.1529    1.1643  1.1694      0.1
-beta.2     1.2603  106.4842    1.0028    1.0047  1.0093      0.1
-beta.3     1.1794  529.2934    1.0010    1.0016  1.0019      0.1
+        statistic         z      2.5%       50%   97.5% Pr(sim.)  
+alpha.1    8.0555  -51.9567   12.0474   12.1983 12.3527     0.05 *
+alpha.2   11.2353  -97.0303   14.0328   14.0761 14.1247     0.05 *
+alpha.3   12.0064 -369.9941   14.1236   14.1345 14.1428     0.05 *
+gamma     14.1603    0.0000   14.1603   14.1603 14.1603     1.00  
+beta.1     1.7578   78.6700    1.1463    1.1608  1.1754     0.05 *
+beta.2     1.2603  121.5731    1.0025    1.0060  1.0091     0.05 *
+beta.3     1.1794  435.4695    1.0012    1.0018  1.0026     0.05 *
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > 
 > 
 > 
@@ -4253,65 +4265,6 @@
   PC12   PC13 
 0.3107 0.2273 
 
-> ordistep(rda(dune ~ 1, dune.env), scope = formula(mod1), perm.max = 200)
-
-Start: dune ~ 1 
-
-             Df    AIC      F N.Perm Pr(>F)   
-+ Management  3 87.082 2.8400    199  0.005 **
-+ Moisture    3 87.707 2.5883    199  0.005 **
-+ Manure      4 89.232 1.9539    199  0.010 **
-+ A1          1 89.591 1.9217    199  0.055 . 
-+ Use         2 91.032 1.1741     99  0.290   
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-
-Step: dune ~ Management 
-
-             Df   AIC    F N.Perm Pr(>F)   
-- Management  3 89.62 2.84     99   0.01 **
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-
-           Df    AIC      F N.Perm Pr(>F)  
-+ Moisture  3 85.567 1.9764    199   0.02 *
-+ Manure    3 87.517 1.3902     99   0.16  
-+ A1        1 87.424 1.2965     99   0.27  
-+ Use       2 88.284 1.0510     99   0.37  
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-
-Step: dune ~ Management + Moisture 
-
-             Df    AIC      F N.Perm Pr(>F)   
-- Moisture    3 87.082 1.9764     99   0.01 **
-- Management  3 87.707 2.1769     99   0.01 **
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-
-         Df    AIC      F N.Perm Pr(>F)
-+ Manure  3 85.762 1.1225     99   0.35
-+ A1      1 86.220 0.8359     99   0.62
-+ Use     2 86.842 0.8027     99   0.76
-
-Call: rda(formula = dune ~ Management + Moisture, data = dune.env)
-
-              Inertia Proportion Rank
-Total         84.1237     1.0000     
-Constrained   46.4249     0.5519    6
-Unconstrained 37.6988     0.4481   13
-Inertia is variance 
-
-Eigenvalues for constrained axes:
-  RDA1   RDA2   RDA3   RDA4   RDA5   RDA6 
-21.588 14.075  4.123  3.163  2.369  1.107 
-
-Eigenvalues for unconstrained axes:
-   PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8    PC9   PC10   PC11 
-8.2409 7.1380 5.3547 4.4086 3.1430 2.7697 1.8779 1.7409 0.9517 0.9088 0.6265 
-  PC12   PC13 
-0.3107 0.2273 
-
 > 
 > ## Example without scope. Default direction is "backward"
 > ordistep(mod1, perm.max = 200) 
@@ -4319,54 +4272,54 @@
 Start: dune ~ A1 + Moisture + Management + Use + Manure 
 
              Df    AIC      F N.Perm Pr(>F)
-- Use         2 86.056 0.8330     99   0.73
-- A1          1 85.933 0.7933     99   0.60
-- Manure      3 87.357 1.0737     99   0.51
-- Management  2 87.672 1.1976     99   0.27
-- Moisture    3 88.818 1.3320     99   0.20
+- Use         2 86.056 0.8330     99   0.69
+- A1          1 85.933 0.7933     99   0.64
+- Manure      3 87.357 1.0737     99   0.41
+- Management  2 87.672 1.1976     99   0.29
+- Moisture    3 88.818 1.3320     99   0.22
 
 Step: dune ~ A1 + Moisture + Management + Manure 
 
              Df    AIC      F N.Perm Pr(>F)
-- A1          1 85.762 0.8015     99  0.670
-- Manure      3 86.220 1.0829     99  0.330
-- Management  2 86.688 1.1728     99  0.240
+- A1          1 85.762 0.8015     99  0.650
+- Manure      3 86.220 1.0829     99  0.360
+- Management  2 86.688 1.1728     99  0.270
 - Moisture    3 87.779 1.4140    199  0.135
 
 Step: dune ~ Moisture + Management + Manure 
 
              Df    AIC      F N.Perm Pr(>F)  
-- Manure      3 85.567 1.1225     99   0.32  
-- Management  2 86.060 1.1986     99   0.21  
-- Moisture    3 87.517 1.5788    199   0.05 *
+- Management  2 86.060 1.1986     99   0.33  
+- Manure      3 85.567 1.1225     99   0.30  
+- Moisture    3 87.517 1.5788     99   0.03 *
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
-Step: dune ~ Moisture + Management 
+Step: dune ~ Moisture + Manure 
 
-             Df    AIC      F N.Perm Pr(>F)   
-- Moisture    3 87.082 1.9764     99   0.01 **
-- Management  3 87.707 2.1769     99   0.01 **
+           Df    AIC      F N.Perm Pr(>F)   
+- Manure    4 87.707 1.8598     99   0.02 * 
+- Moisture  3 89.232 2.3275     99   0.01 **
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
-Call: rda(formula = dune ~ Moisture + Management, data = dune.env)
+Call: rda(formula = dune ~ Moisture + Manure, data = dune.env)
 
               Inertia Proportion Rank
 Total         84.1237     1.0000     
-Constrained   46.4249     0.5519    6
-Unconstrained 37.6988     0.4481   13
+Constrained   49.1609     0.5844    7
+Unconstrained 34.9628     0.4156   12
 Inertia is variance 
 
 Eigenvalues for constrained axes:
-  RDA1   RDA2   RDA3   RDA4   RDA5   RDA6 
-21.588 14.075  4.123  3.163  2.369  1.107 
+  RDA1   RDA2   RDA3   RDA4   RDA5   RDA6   RDA7 
+20.538 15.067  5.585  3.327  1.972  1.428  1.244 
 
 Eigenvalues for unconstrained axes:
    PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8    PC9   PC10   PC11 
-8.2409 7.1380 5.3547 4.4086 3.1430 2.7697 1.8779 1.7409 0.9517 0.9088 0.6265 
-  PC12   PC13 
-0.3107 0.2273 
+8.0368 6.1066 5.1262 3.5404 3.4157 2.6188 2.1608 1.3604 1.1717 0.8532 0.3513 
+  PC12 
+0.2208 
 
 > 
 > ## Example of ordistep, forward
@@ -4377,9 +4330,9 @@
              Df    AIC      F N.Perm Pr(>F)   
 + Management  3 87.082 2.8400    199  0.005 **
 + Moisture    3 87.707 2.5883    199  0.005 **
-+ Manure      4 89.232 1.9539    199  0.015 * 
-+ A1          1 89.591 1.9217    199  0.050 * 
-+ Use         2 91.032 1.1741     99  0.250   
++ Manure      4 89.232 1.9539    199  0.010 **
++ A1          1 89.591 1.9217    199  0.045 * 
++ Use         2 91.032 1.1741     99  0.350   
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
@@ -4387,18 +4340,18 @@
 
            Df    AIC      F N.Perm Pr(>F)   
 + Moisture  3 85.567 1.9764    199  0.005 **
-+ Manure    3 87.517 1.3902    199  0.100 . 
-+ A1        1 87.424 1.2965     99  0.280   
-+ Use       2 88.284 1.0510     99  0.360   
++ Manure    3 87.517 1.3902    199  0.095 . 
++ A1        1 87.424 1.2965     99  0.180   
++ Use       2 88.284 1.0510     99  0.380   
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 Step: dune ~ Management + Moisture 
 
          Df    AIC      F N.Perm Pr(>F)
-+ Manure  3 85.762 1.1225     99   0.35
-+ A1      1 86.220 0.8359     99   0.56
-+ Use     2 86.842 0.8027     99   0.69
++ Manure  3 85.762 1.1225     99   0.32
++ A1      1 86.220 0.8359     99   0.61
++ Use     2 86.842 0.8027     99   0.66
 
 Call: rda(formula = dune ~ Management + Moisture, data = dune.env)
 
@@ -4583,7 +4536,7 @@
 <none>            0.3177536
 
             Df     AIC      F N.Perm Pr(>F)   
-+ Substrate  6 -87.768 1.8251    199  0.005 **
++ Substrate  6 -87.768 1.8251    199   0.01 **
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
@@ -4617,12 +4570,11 @@
 Step: R2.adj= 0.4367038 
 Call: mite.hel ~ WatrCont + Shrub + Substrate + Topo + SubsDens 
  
-> step.res <- ordiR2step(mod0, scope = formula(mod1), direction="forward", trace=0) 
 > step.res$anova  # Summary table
                  R2.adj Df     AIC       F N.Perm Pr(>F)   
 + WatrCont      0.26085  1 -84.336 25.3499    199  0.005 **
 + Shrub         0.31775  2 -88.034  3.8360    199  0.005 **
-+ Substrate     0.36536  6 -87.768  1.8251    199  0.005 **
++ Substrate     0.36536  6 -87.768  1.8251    199  0.010 **
 + Topo          0.40042  1 -90.924  4.5095    199  0.005 **
 + SubsDens      0.43670  1 -94.489  4.7999    199  0.005 **
 <All variables> 0.43670                                    
@@ -4663,7 +4615,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x1036f60a0>
+<environment: 0x1034ff030>
 
 Estimated degrees of freedom:
 6.2955  total = 7.295494 
@@ -4679,7 +4631,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x1060bec30>
+<environment: 0x10486ac98>
 
 Estimated degrees of freedom:
 4.9207  total = 5.920718 
@@ -4835,7 +4787,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x106c72e68>
+<environment: 0x105dda708>
 
 Estimated degrees of freedom:
 8.9275  total = 9.927492 
@@ -4848,7 +4800,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x10707ca38>
+<environment: 0x1070190e8>
 
 Estimated degrees of freedom:
 7.7529  total = 8.75294 
@@ -4861,7 +4813,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x10704a200>
+<environment: 0x10695daa0>
 
 Estimated degrees of freedom:
 8.8962  total = 9.89616 
@@ -7457,31 +7409,6 @@
 6.6269 4.3091 3.5491 2.5465 2.3403 0.9335 0.6121 
 
 > plot(mod1)
-> ## Overall permutation test for all variables
-> anova(mod1)
-Permutation test for rda under reduced model
-
-Model: rda(formula = dune ~ A1 + Moisture + Management + Use + Manure, data = dune.env)
-         Df    Var      F N.Perm Pr(>F)   
-Model    12 63.206 1.7627    199  0.005 **
-Residual  7 20.917                        
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-> ## Permutation test for terms added sequentially
-> anova(mod1, by = "term")
-Permutation test for rda under reduced model
-Terms added sequentially (first to last)
-
-Model: rda(formula = dune ~ A1 + Moisture + Management + Use + Manure, data = dune.env)
-           Df     Var      F N.Perm Pr(>F)   
-A1          1  8.1148 2.7156     99   0.01 **
-Moisture    3 21.6497 2.4150     99   0.01 **
-Management  3 19.1153 2.1323     99   0.02 * 
-Use         2  4.7007 0.7865     99   0.70   
-Manure      3  9.6257 1.0737     99   0.40   
-Residual    7 20.9175                        
----
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Automatic selection of variables by permutation P-values
 > mod <- ordistep(mod0, scope=formula(mod1))
 
@@ -7491,8 +7418,8 @@
 + Management  3 87.082 2.8400    199  0.005 **
 + Moisture    3 87.707 2.5883    199  0.005 **
 + Manure      4 89.232 1.9539    199  0.005 **
-+ A1          1 89.591 1.9217    999  0.040 * 
-+ Use         2 91.032 1.1741     99  0.250   
++ A1          1 89.591 1.9217    999  0.045 * 
++ Use         2 91.032 1.1741     99  0.210   
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
@@ -7503,11 +7430,11 @@
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
-           Df    AIC      F N.Perm Pr(>F)   
-+ Moisture  3 85.567 1.9764    199   0.01 **
-+ Manure    3 87.517 1.3902     99   0.18   
-+ A1        1 87.424 1.2965     99   0.24   
-+ Use       2 88.284 1.0510     99   0.37   
+           Df    AIC      F N.Perm Pr(>F)  
++ Moisture  3 85.567 1.9764    299 0.0200 *
++ Manure    3 87.517 1.3902    299 0.1133  
++ A1        1 87.424 1.2965     99 0.1800  
++ Use       2 88.284 1.0510     99 0.4000  
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
@@ -7522,7 +7449,7 @@
          Df    AIC      F N.Perm Pr(>F)
 + Manure  3 85.762 1.1225     99   0.27
 + A1      1 86.220 0.8359     99   0.70
-+ Use     2 86.842 0.8027     99   0.77
++ Use     2 86.842 0.8027     99   0.76
 
 > mod
 Call: rda(formula = dune ~ Management + Moisture, data = dune.env)
@@ -7544,6 +7471,16 @@
 0.3107 0.2273 
 
 > plot(mod)
+> ## Permutation test for all variables
+> anova(mod)
+Permutation test for rda under reduced model
+
+Model: rda(formula = dune ~ Management + Moisture, data = dune.env)
+         Df    Var      F N.Perm Pr(>F)   
+Model     6 46.425 2.6682    199  0.005 **
+Residual 13 37.699                        
+---
+Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > ## Permutation test of "type III" effects, or significance when a term
 > ## is added to the model after all other terms
 > anova(mod, by = "margin")
@@ -7574,7 +7511,7 @@
 
 Formula:
 y ~ s(x1, x2, k = knots)
-<environment: 0x1080d9440>
+<environment: 0x1080db7c0>
 
 Estimated degrees of freedom:
 2  total = 3 
@@ -7587,14 +7524,14 @@
 Call:
 adonis(formula = dune ~ ., data = dune.env) 
 
-           Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)    
-A1          1    0.7230 0.72295  5.2038 0.16817  0.001 ***
-Moisture    3    1.1871 0.39569  2.8482 0.27613  0.004 ** 
-Management  3    0.9036 0.30121  2.1681 0.21019  0.028 *  
-Use         2    0.0921 0.04606  0.3315 0.02143  0.973    
-Manure      3    0.4208 0.14026  1.0096 0.09787  0.489    
-Residuals   7    0.9725 0.13893         0.22621           
-Total      19    4.2990                 1.00000           
+           Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)   
+A1          1    0.7230 0.72295  5.2038 0.16817  0.002 **
+Moisture    3    1.1871 0.39569  2.8482 0.27613  0.003 **
+Management  3    0.9036 0.30121  2.1681 0.21019  0.025 * 
+Use         2    0.0921 0.04606  0.3315 0.02143  0.976   
+Manure      3    0.4208 0.14026  1.0096 0.09787  0.490   
+Residuals   7    0.9725 0.13893         0.22621          
+Total      19    4.2990                 1.00000          
 ---
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 > adonis(dune ~ Management + Moisture, dune.env)
@@ -8051,7 +7988,7 @@
 > ### * <FOOTER>
 > ###
 > cat("Time elapsed: ", proc.time() - get("ptime", pos = 'CheckExEnv'),"\n")
-Time elapsed:  108.803 1.165 111.255 0 0 
+Time elapsed:  106.217 1.196 108.951 0 0 
 > grDevices::dev.off()
 null device 
           1 



More information about the Vegan-commits mailing list