[Vegan-commits] r1279 - in pkg/vegan: inst man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Aug 25 11:10:50 CEST 2010
Author: jarioksa
Date: 2010-08-25 11:10:50 +0200 (Wed, 25 Aug 2010)
New Revision: 1279
Modified:
pkg/vegan/inst/ChangeLog
pkg/vegan/man/vegdist.Rd
Log:
vegdist.Rd gives equations of binary indices
Modified: pkg/vegan/inst/ChangeLog
===================================================================
--- pkg/vegan/inst/ChangeLog 2010-08-25 06:08:56 UTC (rev 1278)
+++ pkg/vegan/inst/ChangeLog 2010-08-25 09:10:50 UTC (rev 1279)
@@ -7,6 +7,9 @@
* New version opened with the release of vegan_1.17-4 on August
20, 2010.
+ * vegdist: help page gives equations for binary variants of the
+ indices.
+
* biplot.CCorA: resets par that it sets.
* permutest.cca: defaults to 99 permutations instead of 100 (to
Modified: pkg/vegan/man/vegdist.Rd
===================================================================
--- pkg/vegan/man/vegdist.Rd 2010-08-25 06:08:56 UTC (rev 1278)
+++ pkg/vegan/man/vegdist.Rd 2010-08-25 09:10:50 UTC (rev 1279)
@@ -39,43 +39,59 @@
\code{method ="gower"} which accepts \code{range.global} parameter of
\code{\link{decostand}}. .}
}
-\details{
- Jaccard (\code{"jaccard"}), Mountford (\code{"mountford"}),
- Raup--Crick (\code{"raup"}), Binomial and Chao indices are discussed below.
- The other indices are defined as:
+
+\details{Jaccard (\code{"jaccard"}), Mountford (\code{"mountford"}),
+ Raup--Crick (\code{"raup"}), Binomial and Chao indices are discussed
+ later in this section. The function also finds indices for presence/
+ absence data by setting \code{binary = TRUE}. The following overview
+ gives first the quantitative version, where \eqn{x_{ij}}{x[ij]}
+ \eqn{x_{ik}}{x[ik]} refer to the quantity on species (column) \eqn{i}
+ and sites (rows) \eqn{j} and \eqn{k}. In binary versions \eqn{A} and
+ \eqn{B} are the numbers of species on compared sites, and \eqn{J} is
+ the number of species that occur on both compared sites similarly as
+ in \code{\link{designdist}} (many indices produce identical binary
+ versions):
+
\tabular{ll}{
\code{euclidean}
- \tab \eqn{d_{jk} = \sqrt{\sum_i (x_{ij}-x_{ik})^2}}{d[jk] = sqrt(sum (x[ij]-x[ik])^2)}
+ \tab \eqn{d_{jk} = \sqrt{\sum_i (x_{ij}-x_{ik})^2}}{d[jk] = sqrt(sum(x[ij]-x[ik])^2)}
+ \cr \tab binary: \eqn{\sqrt{A+B-2J}}{sqrt(A+B-2*J)}
\cr
\code{manhattan}
\tab \eqn{d_{jk}=\sum_i |x_{ij}-x_{ik}|}{d[jk] = sum(abs(x[ij] - x[ik]))}
+ \cr \tab binary: \eqn{A+B-2J}{A+B-2*J}
\cr
\code{gower}
- \tab \eqn{d_{jk} = (1/M) \sum_i \frac{|x_{ij}-x_{ik}|}{\max x_i-\min
- x_i}}{d[jk] = (1/M) sum(abs(x[ij]-x[ik])/(max(x[i])-min(x[i])))}
+ \tab \eqn{d_{jk} = (1/N) \sum_i \frac{|x_{ij}-x_{ik}|}{\max x_i-\min
+ x_i}}{d[jk] = (1/N) sum(abs(x[ij]-x[ik])/(max(x[i])-min(x[i])))}
+ \cr \tab binary: \eqn{(A+B-2J)/N}{(A+B-2*J)/N},
\cr
- \tab where \eqn{M} is the number of rows (excluding missing
+ \tab where \eqn{N} is the number of rows (excluding missing
values)
\cr
\code{altGower}
\tab \eqn{d_{jk} = (1/NZ) \sum_i |x_{ij} - x_{ik}|}{d[jk] = (1/NZ) sum(abs(x[ij] - x[ik]))}
\cr
\tab where \eqn{NZ} is the number of non-zero rows excluding
- double-zeros (Anderson et al. 2006).
+ double-zeros (Anderson et al. 2006).
+ \cr \tab binary: \eqn{\frac{A+B-2J}{A+B-J}}{(A+B-2*J)/(A+B-J)}
\cr
\code{canberra}
\tab \eqn{d_{jk}=\frac{1}{NZ} \sum_i
\frac{|x_{ij}-x_{ik}|}{x_{ij}+x_{ik}}}{d[jk] = (1/NZ) sum ((x[ij]-x[ik])/(x[ij]+x[ik]))}
\cr
\tab where \eqn{NZ} is the number of non-zero entries.
+ \cr \tab binary: \eqn{\frac{A+B-2J}{A+B-J}}{(A+B-2*J)/(A+B-J)}
\cr
\code{bray}
\tab \eqn{d_{jk} = \frac{\sum_i |x_{ij}-x_{ik}|}{\sum_i (x_{ij}+x_{ik})}}{d[jk] = (sum abs(x[ij]-x[ik])/(sum (x[ij]+x[ik]))}
+ \cr \tab binary: \eqn{\frac{A+B-2J}{A+B}}{(A+B-2*J)/(A+B)}
\cr
\code{kulczynski}
\tab \eqn{d_{jk} = 1-0.5(\frac{\sum_i \min(x_{ij},x_{ik})}{\sum_i x_{ij}} +
\frac{\sum_i \min(x_{ij},x_{ik})}{\sum_i x_{ik}} )}{d[jk] 1 - 0.5*((sum min(x[ij],x[ik])/(sum x[ij]) + (sum
min(x[ij],x[ik])/(sum x[ik]))}
+ \cr \tab binary: \eqn{1-(J/A + J/B)/2}{1-(J/A + J/B)/2}
\cr
\code{morisita}
\tab \eqn{d_{jk} = 1 - \frac{2 \sum_i x_{ij} x_{ik}}{(\lambda_j +
@@ -85,10 +101,12 @@
\cr
\tab \eqn{\lambda_j = \frac{\sum_i x_{ij} (x_{ij} - 1)}{\sum_i
x_{ij} \sum_i (x_{ij} - 1)}}{lambda[j] = sum(x[ij]*(x[ij]-1))/sum(x[ij])*sum(x[ij]-1)}
+ \cr \tab binary: cannot be calculated
\cr
\code{horn}
\tab Like \code{morisita}, but \eqn{\lambda_j = \sum_i
x_{ij}^2/(\sum_i x_{ij})^2}{lambda[j] = sum(x[ij]^2)/(sum(x[ij])^2)}
+ \cr \tab binary: \eqn{\frac{A+B-2J}{A+B}}{(A+B-2*J)/(A+B)}
\cr
\code{binomial}
\tab \eqn{d_{jk} = \sum_i [x_{ij} \log (\frac{x_{ij}}{n_i}) + x_{ik} \log
@@ -97,6 +115,7 @@
n[i]*log(1/2))/n[i]},
\cr
\tab where \eqn{n_i = x_{ij} + x_{ik}}{n[i] = x[ij] + x[ik]}
+ \cr \tab binary: \eqn{\log(2) \times (A+B-2J)}{log(2)*(A+B-2*J)}
}
Jaccard index is computed as \eqn{2B/(1+B)}, where \eqn{B} is
More information about the Vegan-commits
mailing list