[Vegan-commits] r1063 - in pkg/vegan: R inst man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Oct 29 08:00:01 CET 2009
Author: jarioksa
Date: 2009-10-29 08:00:00 +0100 (Thu, 29 Oct 2009)
New Revision: 1063
Added:
pkg/vegan/R/scores.pcnm.R
Modified:
pkg/vegan/inst/ChangeLog
pkg/vegan/man/pcnm.Rd
Log:
added scores.pncm
Added: pkg/vegan/R/scores.pcnm.R
===================================================================
--- pkg/vegan/R/scores.pcnm.R (rev 0)
+++ pkg/vegan/R/scores.pcnm.R 2009-10-29 07:00:00 UTC (rev 1063)
@@ -0,0 +1,8 @@
+`scores.pcnm` <-
+ function(x, choices, ...)
+{
+ if (missing(choices))
+ x$vectors
+ else
+ x$vectors[, choices]
+}
Modified: pkg/vegan/inst/ChangeLog
===================================================================
--- pkg/vegan/inst/ChangeLog 2009-10-28 17:47:38 UTC (rev 1062)
+++ pkg/vegan/inst/ChangeLog 2009-10-29 07:00:00 UTC (rev 1063)
@@ -15,7 +15,8 @@
Neighbourhood Matrix) with option for row weighs allowing PCNM for
cca. Based on Stéphane Dray's PCNM function in his (unreleased)
SpacemakeR package. Imported with history from sedarVegan in
- http://sedar.r-forge.r-project.org/.
+ http://sedar.r-forge.r-project.org/. Has scores.pcnm to select all
+ (default) or some vectors of 'choice'.
* decostand: implemented Marti Anderson's log scaling of type
log(x, base = logbase) + 1 as a part of Feature Request #473. The
Modified: pkg/vegan/man/pcnm.Rd
===================================================================
--- pkg/vegan/man/pcnm.Rd 2009-10-28 17:47:38 UTC (rev 1062)
+++ pkg/vegan/man/pcnm.Rd 2009-10-29 07:00:00 UTC (rev 1063)
@@ -1,5 +1,6 @@
\name{pcnm}
\alias{pcnm}
+\alias{scores.pcnm}
\title{ Principal Coordinates of Neighbourhood Matrix }
\description{
This function computed classical PCNM by the principal coordinate
@@ -61,7 +62,9 @@
\item{values }{Eigenvalues obtained by the principal coordinates
analysis.}
\item{vectors }{Eigenvectors obtained by the principal coordinates
- analysis. They are normalized to unit norm.}
+ analysis. They are scaled to unit norm. The vectors can be extracted
+ with \code{scores} function. The default is to return all PCNM vectors,
+ but argument \code{choices} selects the given vectors.}
\item{threshold}{Truncation distance.}
}
\references{
@@ -84,15 +87,18 @@
data(mite.xy)
pcnm1 <- pcnm(dist(mite.xy))
op <- par(mfrow=c(1,3))
-ordisurf(mite.xy, pcnm1$vectors[,1], bubble = 4, main = "PCNM 1")
-ordisurf(mite.xy, pcnm1$vectors[,2], bubble = 4, main = "PCNM 2")
-ordisurf(mite.xy, pcnm1$vectors[,3], bubble = 4, main = "PCNM 3")
+## Map of PCNMs in the sample plot
+ordisurf(mite.xy, scores(pcnm1, choi=1), bubble = 4, main = "PCNM 1")
+ordisurf(mite.xy, scores(pcnm1, choi=2), bubble = 4, main = "PCNM 2")
+ordisurf(mite.xy, scores(pcnm1, choi=3), bubble = 4, main = "PCNM 3")
par(op)
+## Plot first PCNMs against each other
+ordisplom(pcnm1, choices=1:4)
## Weighted PCNM for CCA
data(mite)
rs <- rowSums(mite)/sum(mite)
pcnmw <- pcnm(dist(mite.xy), w = rs)
-ord <- cca(mite ~ pcnmw$vectors)
+ord <- cca(mite ~ scores(pcnmw))
## Multiscale ordination: residual variance should have no distance
## trend
msoplot(mso(ord, mite.xy))
More information about the Vegan-commits
mailing list