[Vars-commits] r72 - pkg/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sat Feb 13 16:48:53 CET 2010
Author: matthieu
Date: 2010-02-13 16:48:53 +0100 (Sat, 13 Feb 2010)
New Revision: 72
Modified:
pkg/man/causality.Rd
Log:
Man page of causality: add example and few corrections
Modified: pkg/man/causality.Rd
===================================================================
--- pkg/man/causality.Rd 2010-02-13 15:48:50 UTC (rev 71)
+++ pkg/man/causality.Rd 2010-02-13 15:48:53 UTC (rev 72)
@@ -23,7 +23,7 @@
variable and a warning is printed.}
\item{vcov.}{a specification of the covariance matrix of the estimated coefficients. This can be
specified as a matrix or as a function yielding a matrix when applied to \code{x}.}
- \item{boot}{Logical. Whether a wild bootstrap procedure should be used to compute the critical values. Default is no}
+ \item{boot}{Logical. Whether a wild bootstrap procedure should be used to compute the critical values. Default is no}
\item{boot.runs}{Number of bootstrap replications if boot=TRUE}
}
@@ -71,9 +71,12 @@
\eqn{\chi^2(N)}.
Fot the Granger causality test, a robust covariance-matrix estimator can be
- used through argument \code{vcov.} It can be either a pre-computed matrix or
+ used in case of heteroskedasticity through argument \code{vcov.} It can be either a pre-computed matrix or
a function for extracting the covariance matrix. See \code{\link[sandwich]{vcovHC}}
- from package \pkg{sandwich} for further details. A wild bootstrap computation (imposing the restricted model as null) of the p values is available through argument \code{boot}.
+ from package \pkg{sandwich} for further details.
+
+ A wild bootstrap computation (imposing the restricted model as null)
+ of the p values is available through argument \code{boot} and \code{boot.runs} following Hafner and Herwartz (2009).
}
\value{
@@ -122,7 +125,13 @@
\examples{
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
-causality(var.2c, cause = "e")
+causality(var.2c, cause = "e")
+
+#use a robust HC variance-covariance matrix for the Granger test:
+causality(var.2c, cause = "e", vcov.=vcovHC(var.2c))
+
+#use a wild-bootstrap procedure to for the Granger test
+\dontrun{causality(var.2c, cause = "e", boot=TRUE, boot.runs=1000)}
}
\keyword{regression}
More information about the Vars-commits
mailing list