[Uwgarp-commits] r92 - in pkg/GARPFRM: R sandbox vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Feb 21 22:01:09 CET 2014
Author: tfillebeen
Date: 2014-02-21 22:01:08 +0100 (Fri, 21 Feb 2014)
New Revision: 92
Added:
pkg/GARPFRM/vignettes/Correlation_Volatility_TF.pdf
pkg/GARPFRM/vignettes/Correlation_Volatility_TF.tex
Modified:
pkg/GARPFRM/R/capm.R
pkg/GARPFRM/sandbox/test_EWMA_GARCH.R
pkg/GARPFRM/vignettes/CAPM_TF.Rnw
pkg/GARPFRM/vignettes/CAPM_TF.pdf
Log:
Vignette update CAPM, draft of Correlation_Volatility vignette added
Modified: pkg/GARPFRM/R/capm.R
===================================================================
--- pkg/GARPFRM/R/capm.R 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/R/capm.R 2014-02-21 21:01:08 UTC (rev 92)
@@ -125,8 +125,12 @@
getStatistics.capm_uv <- function(object){
if(!inherits(object, "capm_uv")) stop("object must be of class capm_uv")
tmp_sm <- summary.lm(object)
- # gets t-value, and p-value of model
+ # Gets t-value, and p-value of model
result = coef(tmp_sm)[,c(1:4)]
+ tstat = (result[2,1] - 1 )/result[2,2]
+ # Two sided t-test
+ pvalue= (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2)))
+ result[2,3:4] = cbind(tstat, pvalue)
rownames(result) = cbind(c(paste("alpha.", colnames(object$y_data))),c(paste("beta. ", colnames(object$y_data))))
return(result)
}
@@ -146,6 +150,10 @@
n = i*2 +1
}
rownames(tmp_sm) <- c(holder)
+ tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
+ #' Two sided t-test
+ pvalue = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2)))
+ tmp_sm[seq(2,nrow(tmp_sm),2),3:4] = cbind(tstat,pvalue)
return(tmp_sm)
}
@@ -154,13 +162,13 @@
plot.capm_uv <- function(object){
xlab <- colnames(object$x_data)
ylab <- colnames(object$y_data)
- plot(x=coredata(object$x_data), y=(object$y_data), xlab=xlab, ylab=ylab, main="CAPM Plot")
+ plot(x=coredata(object$x_data), y=(object$y_data), xlab=xlab, ylab=ylab, main="CAPM")
abline(object)
abline(h=0,v=0,lty=3)
alpha = coef(summary(object))[1,1]
- a_tstat = coef(summary(object))[1,3]
+ a_tstat = coef(summary(object))[1,2]
beta = coef(summary(object))[2,1]
- b_tstat = coef(summary(object))[2,3]
+ b_tstat = coef(summary(object))[2,2]
legend("topleft", legend=c(paste("alpha =", round(alpha,dig=2),"(", round(a_tstat,dig=2),")"),
paste("beta =", round(beta,dig=2),"(", round(b_tstat,dig=2),")")), cex=.8, bty="n")
@@ -215,10 +223,11 @@
hypTest.capm_uv <- function(object,CI = 0.05){
if(!inherits(object, "capm_uv")) stop("object must be of class capm_uv")
tmp_sm = getStatistics(object)
- tmp_A = tmp_sm[1,3] < CI
- tstat = (tmp_sm[2,2] - 1 )/tmp_sm[2,3]
+ tmp_A = tmp_sm[1,4] < CI
+ # tstat = (tmp_sm[2,1] - 1 )/tmp_sm[2,2]
#' Two sided t-test
- tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-1))) < CI
+ # tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ tmp_B = tmp_sm[2,4] < CI
result = list(alpha = tmp_A, beta = tmp_B)
return(result)
}
@@ -229,9 +238,10 @@
if(!inherits(object, "capm_mlm")) stop("object must be of class capm_mlm")
tmp_sm = getStatistics(object)
tmp_A = tmp_sm[seq(1,nrow(tmp_sm),2),4] < CI
- tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
+ # tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
#' Two sided t-test
- tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ # tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ tmp_B = tmp_sm[seq(2,nrow(tmp_sm),2),4] < CI
result = list(alpha = tmp_A, beta = tmp_B)
return(result)
}
\ No newline at end of file
Modified: pkg/GARPFRM/sandbox/test_EWMA_GARCH.R
===================================================================
--- pkg/GARPFRM/sandbox/test_EWMA_GARCH.R 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/sandbox/test_EWMA_GARCH.R 2014-02-21 21:01:08 UTC (rev 92)
@@ -6,20 +6,18 @@
R <- largecap.ts[, 1:4]
options(digits=4)
-
# Remember: log-returns for GARCH analysis
-temp_1 = R[,1]
-temp_2 = R[,3]
+asset1 = R[,1]
+asset2 = R[,3]
# Create combined data series
-temp = merge(temp_1,temp_2)
+cAssets = cbind(asset1,asset2)
# Scatterplot of returns
-plot(coredata(temp_1), coredata(temp_2), xlab=colnames(temp_1), ylab=colnames(temp_2),
- main ="Scatterplot of Returns")
+plot(coredata(asset1), coredata(asset2), xlab=colnames(asset1), ylab=colnames(asset2), main ="Scatterplot of Returns")
abline(h=0,v=0,lty=3)
-# Compute rolling cor
+# Compute rolling cor to illustrate the later smoothing effect of EWMA
cor.fun = function(x){
cor(x)[1,2]
}
@@ -28,51 +26,47 @@
cov(x)[1,2]
}
-roll.cov = rollapply(as.zoo(temp), FUN=cov.fun, width=20,
- by.column=FALSE, align="right")
-roll.cor = rollapply(as.zoo(temp), FUN=cor.fun, width=20,
- by.column=FALSE, align="right")
+rollCov = rollapply(cAssets, FUN=cov.fun, width=10, by.column=FALSE, align="right")
+rollCor = rollapply(cAssets, FUN=cor.fun, width=10, by.column=FALSE, align="right")
par(mfrow=c(2,1))
# First Rolling Cov
-plot(roll.cov, main="20-Day Rolling Cov",
- ylab="covariance", lwd=3, col="blue")
+plot(na.omit(rollCov), main="20-Day Rolling Cov", ylab="covariance")
grid()
-abline(h=cov(temp)[1,2], lwd=3, col="red")
+abline(h=cov(cAssets)[1,2], lwd=3, col="red")
# Second Rolling Cor
-plot(roll.cor, main="20-Day Rolling Cor",
- ylab="correlation", lwd=3, col="blue")
+plot(na.omit(rollCor), main="20-Day Rolling Cor",ylab="correlation")
grid()
-abline(h=cor(temp)[1,2], lwd=3, col="red")
+abline(h=cor(cAssets)[1,2], lwd=3, col="red")
par(mfrow=c(1,1))
# Calculate EWMA cov and cor, applying default lambda - 0.96
-tempEWMACov <- EWMA(temp,lambda=0.94, initialWindow=10, cor=FALSE)
-tempEWMACor <- EWMA(temp,lambda=0.94, initialWindow=10, cor=TRUE)
+cAssetsEWMACov <- EWMA(cAssets,lambda=0.94, initialWindow=30, cor=FALSE)
+cAssetsEWMACor <- EWMA(cAssets,lambda=0.94, initialWindow=30, cor=TRUE)
# Plots
par(mfrow=c(2,1))
-plot(tempEWMACov,asset1=1,asset2=2)
-plot(tempEWMACor, asset1=1,asset2=2)
+plot(cAssetsEWMACov,asset1=1,asset2=2)
+plot(cAssetsEWMACor, asset1=1,asset2=2)
par(mfrow=c(1,1))
# Compute EWMA cov and cor for longer half-life of
halfLife = log(0.5)/log(0.94) + 5
lambda = exp(log(0.5)/halfLife)
-covEwma <- EWMA(temp, lambda)
+covEwma <- EWMA(cAssets, lambda)
# Garch11 testing
data(returns)
-tempReturns = cbind(returns[, "SPY"],returns[,"AAPL"])
+cAssetsReturns = cbind(returns[, "SPY"],returns[,"AAPL"])
# Dynamic Conditional Cor/Cov
-garch11 <- garch11(tempReturns)
+garch11 <- garch11(cAssetsReturns)
# many extractor functions - see help on DCCfit object
# coef, likelihood, rshape, rskew, fitted, sigma, residuals, plot, infocriteria, rcor, rcov show, nisurface
# show dcc fit
garch11
-# Conditional sd of each series
+# Conditional Sigma (vs Realized Absolute Returns)
plot(garch11, which=2)
# Conditional covar of each series
Modified: pkg/GARPFRM/vignettes/CAPM_TF.Rnw
===================================================================
--- pkg/GARPFRM/vignettes/CAPM_TF.Rnw 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/vignettes/CAPM_TF.Rnw 2014-02-21 21:01:08 UTC (rev 92)
@@ -59,67 +59,60 @@
\section{Fitting CAPM}
\subsection{Selected Returns Time Series}
<<ex1>>=
-# 'Load the GARPFRM package and the CAPM dataset.
+# 'Load the GARPFRM package and CRSP dataset for CAPM analysis.
suppressMessages(library(GARPFRM))
options(digits=3)
data(crsp.short)
-data(cons)
stock.df <- largecap.ts[, 1:20]
-cons <- xts(cons[,2], index(largecap.ts))
-colnames(cons)= c("CONS")
-R.market <- largecap.ts[, "market"]
+mrkt <- largecap.ts[, "market"]
rfr <- largecap.ts[, "t90"]
-colnames(stock.df)
+# Plot first four stocks from
+plot.zoo(stock.df[,1:4], main="First Four Large Cap Returns")
@
-Summarize the first and last data values corresponding to the first 5 dates for the first 5 returns.
+Summarize the start and end dates corresponding to the first 4 large cap returns.
<<ex2>>=
-head(stock.df[,1:5])
-tail(stock.df[,1:5])
-# Count the number of rows
+# Illustrate the type of data being analzyed: start-end dates.
+start(stock.df[,1:4])
+end(stock.df[,1:4])
+# Count the number of rows: sample size.
nrow(stock.df)
@
\subsection{Estimate Excess Returns}
Estimate excess returns: subtracting off risk-free rate.
-To strip off the dates and just return a plain vector/matrix coredata() can be used.
<<ex3>>=
-# Excess Returns
+# Excess Returns initialized before utilizing in CAPM
exReturns <- Return.excess(stock.df, rfr)
colnames(exReturns)= c(colnames(stock.df))
@
\subsection{Fitting CAPM Model: Univariate}
-Run CAPM regression for AMAT
+Run CAPM regression for AMAT and estimate CAPM with $\alpha=0$ \& $\beta=1$ for asset.
<<ex4>>=
# Univariate CAPM
-uv <- CAPM(exReturns[,1], R.market)
-coef(summary(uv))
+uv <- CAPM(exReturns[,1], mrkt)
+getStatistics(uv)
# Plot data with regression line
plot(uv)
@
-\subsection{Fitting CAPM Model: Multiple Linear Model}
-Run CAPM regression for AMAT
+\subsection{CAPM Model: Multiple Asset Analysis}
+Run CAPM regression
<<ex5>>=
-# MLM CAPM
-mlm <- CAPM(exReturns[,1:3], R.market)
-coef(summary(mlm))
+# MLM CAPM for AMAT, AMGN, and CAT
+mlm <- CAPM(exReturns[,1:3], mrkt)
+getStatistics(mlm)
# Plot data with regression line
plot(mlm)
@
\section{Testing CAPM}
-\subsection{Retrieve CAPM Statistics}
-Estimating CAPM with $\alpha=0$ \& $\beta=1$ for asset.
+\subsection{Retrieve $\alpha$ \& $\beta$ and Estimate Result Significance}
+Retrieve $\alpha$ \& $\beta$ from CAPM object for one or multiple assets and run hypothesis test.
<<ex6>>=
-getStatistics(uv)
-@
-\subsection{Estimate Significance and Test Beta Results}
-Retrieve tstats from function for assets.
-<<ex7>>=
# For uv
getBetas(uv)
getAlphas(uv)
@@ -133,9 +126,9 @@
\subsection{Estimate Expected Returns and Plot}
Plot expected return versus beta.
Estimate expected returns
-<<ex8>>=
+<<ex7>>=
# MLM CAPM
-mlm <- CAPM(exReturns[,], R.market)
+mlm <- CAPM(exReturns[,], mrkt)
# Plot expected returns versus betas
chartSML(mlm)
@@ -144,10 +137,15 @@
\section{Consumption-Oriented CAPM}
\subsection{Fitting C-CAPM}
Run C-CAPM regression for CONS (Consumption).
-<<ex9>>=
-capm.cons = CAPM(cons, R.market)
-summary(capm.cons)
+<<ex8>>=
+# Load FED consumption data: CONS
+data(cons)
+cons <- xts(cons[,2], index(largecap.ts))
+colnames(cons)= c("CONS")
+capm.cons = CAPM(cons, mrkt)
+coef(summary(capm.cons))
+
# Plot data with regression line
plot(capm.cons)
@
Modified: pkg/GARPFRM/vignettes/CAPM_TF.pdf
===================================================================
--- pkg/GARPFRM/vignettes/CAPM_TF.pdf 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/vignettes/CAPM_TF.pdf 2014-02-21 21:01:08 UTC (rev 92)
@@ -1,126 +1,181 @@
%PDF-1.5
%ÐÔÅØ
-60 0 obj <<
-/Length 1242
+55 0 obj <<
+/Length 1333
/Filter /FlateDecode
>>
stream
-xÚÝXMsÛ6½çWðÍñI¢>9»ÓNݺ±zJz)Øâ"5 »ýõ]pAY¶åLÓIëåb±ûöñR]eEöÃâç»ù·'¬ÊXI9S2_f¼Të2Ó¦¢eóEöÎrQprÒÐtW8±ÝóYiÆ7Ì&c¥x)+*uåBÑJk9_ö+;Àr®!hÛºYÎKâ\#dyA¥Rhe.9U¸¿±þϸ°$LxÁd\÷ À·'²È*j´Æâ-
-d"2
=¼·uxd½0;ës¦UeLѤZÎ a}C
-r4cÄ®`[8<óM
-o@öP´!7ºrò±PEÄ=>BNË q°öhÝÛ¿mÀ%E[Ø`éfk*EµÛNYT1·Íj¾¢ÁFg¹Vü¸F at j¡©cñU3>Ïx[ÝûC\/{XïÐq
-U:´û).r~8 äħøwÒf¸¾¿}åS¥CV0A+.R5«ì
-vLA²ÓhÙû毾;ìDиyE~é·Ý ²ÑP÷CpØûäcoÜÖË´þÈ&ÿÈÕ
-\}³¼F#öF6àÓ7çüÒ»·ÁìkN!0[¨ìßwm$¾4¤Á6{1R¨ß¯qêÃeß6=ÚÜ
-Z]Ðo1¼ß¥(]2~©:ÙØ®® ÅNyZÿiì¼
-) NèÅ/ÑjÛv_}ëÍEÛÔXmX¸E"vüHdë¾&ϱ^ØúöKÍõM"Î&¾E¡Q3jdÒÙ¶t¯úM²=ÂrhVë6/{¿ÂÑXÊ®[Mqx|S»uØCÉTgX
J«KråGZ_%Î#p©sòqVÆ·5£ai¡¢!rëÖÖÀÎ~ãoûmÝ=÷ÕÔÙ°·oT[NÅ¥&ÀÐt Ujã"qÆ7æ(·)L ºÌ3&A
õxDä\RS£2ÆNAæð1¤
"3 È\ÇuE:"j®vN©J 'bQ8¬I¾xT;á@m$UôND#Dò¤s×Æ(-yádâ#$8ùúãàE©Î¨¢øziÌWùâÇî}È©yk-x|'ðáÈZ!-¯ø
-
-Ã} ÿõ2¾)zOÈ÷¸e H ÞR[IîsãM¢iÞµßÇãJß»ä\r¨ë×x9ùåÈnÚÐà ¾?7³Çw¼±I]|s@çî½ø|æ ÁFÊ»÷l":M¶×Ì'T¿XHùVHáÃ/yØ©#"^§\)A×òÑ¿¸aúI>óGäô¼¹êøk¡¶x
-ouí|VÉØJ½¯o'ïÝ dÒ[ÿo0*ÁH<rä¬Ç¯÷±#|×YÛÇß"â?ÈS|~&ÕK@ xxÙ<]¶'=ȹb³G¦À»[¸+Ç9Xc@`&ÄÔ¬|ÿ?#½ÙûEÆ¢LÎUA%;ÛÏñüÍß7>h
+xÚåXKoã6¾ï¯Ð©+>E6§4HHfÝÓ¦Åfb!²dHô>úë;£¡l9q¶»èAÛÉg8óÍðãØyräɯògÆïç¯^_pð ®U2¿KD®1Ebe'óeò6=;½ºe2éEBÕÜÓ¢l4Ï
+ú~øòûü'0éÎÓZ Ie26ɤfÖ29_µë²uaÀh]ûÛY&Ôû-$YÎÖ uT.fV¤þ¶ÛÝGT,RÁ¿%"ç
+õøúBåeÎ
+N³Â¡'FAfOoûÐð¾týkÉtqôdáM $ÊÁP2=ñ´ÜT¡¬i}Ú÷>Ðôª«ð õeA»té"½ÉuXÃÈiÇM.Õ¸yhÒm¿³øë¶DkË2l at 3üUÊ$*·èÛv½ UÛô(p)g³Ìhþ¸Dk¡Z`ø©ïfÂbªÛ®'ïW-MÊÎÓÆ
+DéIÊTò]ðIöãa¤ßî?uÑÌÊSUpɬ1KÑôåN\³ãlÕvÕmsÕ¡RÉðpþÜÆ}]Ùôq¶=MÛ.î)?ø>ꫨVÆýX«¶v-zùÔ~Ʈ겻ÎGïº2øÄÄP4T:!p;¨%ß65¾réb eåíPBí6ÐzCË.ܵuÕÌ ©_å·$Û®V(|7Ód²*nE ´HMôë²ì¼À§=Ò©=ôð¤e]+¼Íö¶®Ä4,ý26^ªõXç+>óbÉf¿tU,Á~%¢Y5pxÒuîÞ·Û( -í£É¾Zoê8¿k»5ÍP¦ÛÐ6£éù
ßçK2¬ÌCEí"½ï²~V´Æ TÄÌaÉãj1PHïc&ÁªúhÈoêrA LÎ{jo5¶¯ÇÌ£yEµ«)LXLâ`U\¥·gøâa-¡äv4EPEÂÊOD&syd3."ëJó4ôQQ&YÔË`M'ôä²jRÜÁ;ä@'ª¶QLä÷9ù\e<"}ãk¼D¶é5D9T°©« ?>Z¦P3:Ï¿Þ ûê6?{¾ÉÛ;« Ƚ4àõ¦²¼ðõýc ÿñ0^½O((Feq_ÚRt57t¨ê®þ+þÖT@çf sBÝüÛÈ=«À¶+"u¹Cµìêx
Ç
+0>
äcÏ3îßÑasüC3àa§TdÒØbÒùÌt×k~MÍ_³i¬e±cS¸öðS§¹}ªn
¸É¹<rc
äãoXß!ùÞÍøCáeŸ!¤¨Âºö=I¤øê¾ÁFÛóÅÐ+eÆÚ笧©7½²
+?ïïx¢7«<÷äE TzU·Ø»KýâÅÿÅ ¬øüÛûI·åis*ElNÇ« ÍOí"
+OS#wåø3¢A(B°ixñ|(ÿéÙÇi<ì8G¸§'ÍÈBï(,ìÿÖF欰ŴKDíIêû+Ø%zè}O.S:Iî>9&¾þ5qP=ççôßbÒã~¡ýóù«?e)±
endstream
endobj
-74 0 obj <<
-/Length 1368
+71 0 obj <<
+/Length 705
/Filter /FlateDecode
>>
stream
-xÚíYÝSã6Ï_á MfÎ:}Ëêô(aZBhÎÝòà&&dIÎ1kÿú®-ÙVs\apV«V»ZýVØxØë4°ýýyØxÌ©G8b\RoxåÅ<%â8cï¢EÚ>!T´§I2OÚ>S¢u°Þm_1¤
È:ÀÏ0R²mQÞzÍ¢QMó~ÜÅó)§·¡Q<Vi¿
-c·öO¼Ø}0 i©Ó²óIßg?[úhØøÒ `ö0DîqJÓÄÝ6R>g`¨âUi`ÇwÕøíÙ£zÅÛ*¢ K¤ÝdömIîi0J' QFLìHÂ#qz5øÁJ¸= è ¯?]9â(¹ÑÙï÷»¦°G7áÄÖóMÙ,Z3j&á*JP¥SL¥EÁÒ¯¶^Ùd$"C|"¨ðB1cÑên¹£Õªÿ0òjAî·u¿f@Ì#ÍõíXà:ÝáÎëlúWÆÿÔi<Hæo# Hþ×T Aµ
-¸e2]ÌW¯ëjÚYj«Ý@Ù
-&Hñt2M¶k£wùd+a¡SÌË{Y*a[¶¤U{hÚXC>ëK
-ÙR7,GñjV×8©Ý!v0»æ@Ê®xrüÆ3Hä&%Ñ
-_U[_úþ$lðÊÕõ_PÌÂxÂ%JVïê JíDÓúìÏÃ[mâmãÛåvàõu;ª_ëÛ Å
-xÿ&µn ìwêYFtë±ù®Îy)XëÊé|}5ÅÀ N¬¥_gÌ%âl®àÙ<¼÷à´¾Â^}
%j
°*Õécݼô B4D0â:½«ä:Ë,ìæAïlÐÜÙûÓ·g#ÂÕú
-é£Û0¾·íÙó¢"SÖ4¾kþO¶=öf!¾ß¢¡J4$ïh(TDxlrr²i~ |`nGÚóíp}ªP í xo¯íxë\ææ~wØ,èÎYNdìL¸yxB»%£³?ráN·8éí~íìÓÓáA'tHi¤Rwp\©×?8ÍéóNÑÝùÉ~¡eÐ+ØÃO¥òß
-úc9¾
-öç^/_&[|ú°ïWïrO iÎa~$±ÁÝ-àøôß,¤y BA°1·IkrödJÌÂÝìd¼¿Ûð gw°:²Ñ"£Õ
-ªµ³7±,Ö´H£%ïOtkú«El~«AlÊÐwð*FB
-¯b"Bè÷ÿ*öT¨5¯bòþ«ãÀömô:
-ǯ{uÃíÛe×úeØz¦ßÉ_ñf NÙDóiZ³*Íj@ÊìaLBýá¡%:ßJJDkåcâ3bS¨WLÌd`$
-5Dr©J9Éøú
-¹ lB+É=8ÀÂ|("U8ÖÛÃ2{ò&ÇNAèBB:ztJ%ëá>Ã¥CæØ#ÊõÂ1-k@ãEµá·õu=º,Â{ ¡ã^Íyä`ê£ó#]=à*Zø0\ÆÖA9ó°éÂYÇ:ª¾Çv×RNgoÿø» øÎß|F`ÉÀO©§>üñ±ZH)´ø¬\Ϋ@ @(/[1_ëdN¡pb¦(PvûVåÑ6Íÿ$
+xÚíXÍoÛ ¿ç¯@ía©ÔP0i;tÓRij¥,Ëë%Njåøî¯/ÒØd¯ª(?û}ðÞ2 PµÑ«ú84Ó«v
+Øö¸· äÒ+M~I>ýgD` ÄÆ óíÀÑ)ÁÇ`I è,?é8u»DóXØ!³Ú¾àÛ$ZäÙàbÌ)VÙn-A at L ³¸Ý;[«à0;«Qý³ØÏ_gjq6b÷ï\]N'ãéäj¾V«0£vûuúsâ{U(~°Ìt¿Üì_QGèä8ÚZ1Ý÷ÁZM¢EZyEÁfKlÛJB¼¦æ!ÏubÌý[L+\§ú|ÆV^ R];R®k°ù/ÄP樮÷&ý~ìSyÂ!Ǥª|ð0ÛÅî߯kD²Hß¼PY^¤ÙÎü[«´ãN®zÛ¾Ç6iy,ÒUZt«#¸-þs+&e@ĤË
ûÞ$5öîÁ%jYËå×>Ý2²»fUÝr®MÍ}¦ÖyµÑGý0(¬q|â.²ù.íJ¾\íàRF}DÇFéU2W9,ÌíyÒjÑÊc/>">v,í0B]õ]·P}_Ùêuñî¶{XÚÄ©tÇ\áuÒÙÉVéuRü'î¹^êwohã
+
DoÔ^[Ï5J0TßâN}±4ÙdûJ*Õ湨zUU¹@ÕÙ¶ÏÃI#±åVRø7Ëú<P÷'÷m´¾ÒÎcå¼ãb¥4øV¥»·[®¿Æp?óµK¡á¾Då¾3M½3'o¶¶éðÞ-\N^q\½ÎâFå"fÔBøo³ÁL\7
endstream
endobj
-83 0 obj <<
-/Length 1213
+79 0 obj <<
+/Length 635
/Filter /FlateDecode
>>
stream
-xÚíXÝoÛ6Ï_! /2P1<~¶YÑ sݧ4-§Zl)ÓGýãw4²³uv%ö"ñÈÓñîx¼ûé(áBF
-_Õuö¯ñÏG4Â¥ßû}E2^kîÝé½¹ÿ8ÔFiN@HC@h¶:²óTD 5a<ª²hqôÛÞícíO£ãSÅ#3MV¨R¡à,Ì£øÕ«Q"¥PpptB UTÐQTÒ)&E·dTÅeÀgL:ºü6'óøF&azó=çÆNVtC ª@%Á:¥ýø#][äucx¨ÍY§6ZË;JIÝBÿ á@I*Ê@ òN6@ÚñQ úë±Ð"J
-í$h
-:8#yÝhïû³·J5/µr¼ÛÈa*0EëYJ´Þzgò-7l>fnP´««¬rãráÞUù©>ȶ§Ü>×v{Òi«úÚgUàþ»6|nxçÛ>¼Ó³c¨Åz÷x¾uSÎnÈ|cà÷áÆuêöØð\ºÞ§÷Ó%Çr|*X@̦PDIpª±P§·u¯¦
-OºeuíÆã¬i«bsǧn² \¥NX'B0g^WNÄw£Dëöª©FOgM^\[Ë<s^ß$*CÌ-VV(Äd¤TÆæqéxë¦ÊoÝ0°¾?v0ǽ
-Óbî¿·ujåËK·ËiëóønÄtͲ:F«üÞNxV®õÄ}¦64×!é¦þëQb¿tD[gsrPÌ>]a;ÙíBH"ÔviDzªQÚ_FÚv Cì¡%ÑOß7Æ3TÜÜìþ[tÀ#Û)[s6Ù]¬ý>²)4óª/ÎHâSÍîî«V¥×¾J/ªëÓ®IKÔª³rYLWÙ Î@´à¡s6áx°Oö
-Ét{Ê cP
-éhZúyH»íæ«_D
Àðà@%Ù§lqÌNóÆá$ÆÞ¹ÑB Ð#["¬Æïün¤X<r¾
-×ÆÒ´¦x¹\ªìºÂl#¬)7µ(+ÇurvbÁ×ä_ aÀhbMßiO"¥þÄD\:Ó16|ø¸RÏbÚ»ÿ|Á(äzó7;´{wÿ¥7
ùâõa®Æ ³}ë]ùpw¶';gÃZ6]zø5&«iu5c0ɧ¢ßÙâyù¹pAÝ®ð>i<Ç
-=XÐÞ} xÊnb$UÒwT×-Rº×±ý®ÿ§YU¥ï ú~áÝtÙz¶sûÛAüÒ|y0ø¯ï¢ÉªYvëîIqÞ\°Ía¦#R±Y1Ô·±9,¡ðwðñêÆéGcFØÈä`ª¥ïþ i^~ãVõæù²ôç`Û@nô)o>úA§,²ô2/²çhß²*û¬¹È]ÇÍ{´A0©¢Ä(BGæü Ý¡þ <,ݽ
+xÚíWK0¾çWXÛ×c
+{ìSÛ[»Ü²9°¤«H
+Qµûë;~ÐúRÒVðx<ý}`TD1!l8èÍáÜÞÎÁ%ãQ» ÷0P E'«jöyFHHi-¢]ê÷yÅåuäU3{¿>Þ$ì}ç/²ÙåÔ¥4\lý=H()É
+²nöUëûÇrEÐ}ôBÛåº3bäuáte/yW¶N\5Zínò$hêâ¾ÞxGÍÃ(¸e"C [ï5rëÛ\o|ÈU¾sKºDÃn¯ëÎÙ»#aÁ©ký£úhë×ÙàfA!EUlÏÜè#§¬P-U:+ÉÚÜÙYWñ)¥Jpc¥('ÒÙhi'£àFAxÊiÞ,ÞÍÃÇÁõv»o;8rs+<ì¼Ô¬Ý`ËtWZx1¯óíãCY\¹©Ekhñé·±£2ÓXgê«+ÑKRPÑTW¥cÏøF>¿Ù.¾ÄçxÔAæÂß²µ]³úDõâù¤<Ì¥2ÊâÔ\sÕ±-ÉÂ8L bydÖíÏ:®N-þïòZ0ÀO&95 =@B.(ãÜsÑqK'\@ªA(àâLç\õgdÄT¦ðÄ´'¦ýi `gH3àgbÚßöðQ1Íñ²Ù×ݨm×ûê®Ô[7_Ú¾?çÕnëM[|Ùü½¹Æ¼ÎÚñÿ´5ÿÂ¥û{øJæó>áKÿÈ}Äp`Xb>u¨bÊå'&"¾Ê³åB
endstream
endobj
-87 0 obj <<
+68 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./figure/ex1.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 81 0 R
+/BBox [0 0 504 504]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 82 0 R/F3 83 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 84 0 R
+>>>>
+/Length 2416
+/Filter /FlateDecode
+>>
+stream
+xÍË·÷ç)z©YfïKYXdaxaØraFI$Éãç¯K7y¬#gf<¼Ð¥ºM²X¬ï'm/6ÚÞlÿ>ý>ÿÍW_lÏ^b1në߯}§lÿ9}ûÝ·O´½À7'¶§ÜCn[*5TÞnaæónßìv»Úòú¯ÌãíW2ízVbkÐëöîõö·íínÌþ Õ@q»ÝüõBËÛÍö¡ÞÍÅ?z¨yúÍþÌh~7¿uxøgÿ_\{¸~x!\ïx{úü9#®²Ðwùë3ýÛ¢
ñÕ8n×·ÛÏbà«íúÍéO×úñ»´)Ä®ñô3P7¾oÏ9õ@{Ïù£µµýcOð¥ÇPuÚß>yúòé^Ûë«ï¶ëò!IسȩÒÎ3öwekÍ2cèHSÿcËBAúZ~R2ÉS·iD0
ÕUÌ.sÄJK`jb
fßn¤v£##Ô!60°Q0¢¡~4ä©«ÓCA¹4´¿&c¥Â¡vå±Øäö§"¤ýs»¥@Ø
+½¦ãëQÆ/íêï-°|/
ÄÆ8k¦ycÃæÓ£Ú-´¤¡l2^¦,Ëvþ{ªVØQ·&ì.ɶ½rÈUÇCú~FîïkÿD¨2Þdñá¢ÒµRÅÄ%C/³¥X±ø2jFâÉ:þÎ6þáýaâߣjñáQ%°ºÒ_)T[OT þÌj7ùPNÕÖ;q$ãcÙ(°v|¯ÙxÚ¥T!mÔs(ÕútJùbWêûAâm¼©Ý5Y~¤ÆR³R¯6±».5Í2öþð.óAØuüHDªÚ_ÑJüQã;ÔFba3dn!ÚH¤ùe=3WÙIÂ&ßÏ)ÉÂ$ìV?JìÔ®²R¶2Ö/jéUPÀ1d{5ÛO¹6YoÝ/õÀUFuhåbux$yÏܾ¹À·3µ>c°?û~´1ï$ôíQ³¾¾}èWFº¹øQpR~3?2I$Ãî7sa8 {0ÜÌÅÏ,søÍ\üIwÚá7sñÛÿßã0óÌe<ËÕ2>¡¨ú@Ƨ<fÏ÷g<XÕ$ÂÓ_}½·¿Óæ}´3êÚ¥k¹1´s+VMº¿Ü¥íhOìx ¾´ ñVÉí\u´Ëñv»ßÐ.CSt:Úy8í1rh¿¡ÚÑ4'hg~îí<ØJóv Ȥ¡=E/¥v®dÒÂѸﶢ]¨(s´A[hOæàöikq´3¤hr´'4c¢Qñshx)jíôZÐ0êí*1G»ÄCããhÒD{B®¶1Ñ0,ý£]ây¢=
*]íZÁúD»$ÛvI<Ñbµ|q´ËúZvÙ¥FG»LËÆghõyA{,&Åí5ñr´k
ävÆ1A×ÛÑ.aU©çh|SÏvEÇëh?6£]òW¥¥£]¾¯óu´ëûy¢]÷Ãv
+khgL[uövBuIþéÐî=tûæ6ϸxÖúíþì¢ýÑÆìn°Û£"¦ß>ô+Ý\ü]Eòá7sA{ÌgÒÀÌÅÏÝâ7sñ'MØÃoæ*=tÀSzãt*{>ÐM÷(¥8@ïÛQ[°÷¬qº7}Iðíýì·Ø¿±ÏÂBLf§0¡ çqPPxx°9ÖÂ,Õ'
eWIa:(jö®
+ª¨RÉ)LBLÂ1hUu
+ªhìÂK?P
AÍQ&
e.µM
+Kÿ¦ÂÕ4),vJÂÔLÇîÏØ×(L8°Ö6),ã³µSX6SùP¦æ÷Naürñ^(\Uu§°ä¾QÜ)åPã&ÏBaRË)L=ÙÎ),ã¯4)Lø¬àÂâ7ª
%v`6
+àQÆBa9Iác>Naé_Çç&¤`LÂ:å-aoË[Öó¤°ÄOUSXÅ.Â(^¥N
+¼V'
ÅÖø8
¥:QÓæ>)|Ç),ù¬*q§0>ꤰīÄIaj$i{PXâ£NaɯN
O9þÂ8ËÅË·o¿hEKul6S
+ø¹Û-Ö+xeÏöv¸wóðË@ïþÝ<üsBj÷ïæôdäéwóð
+wþðß?³ðO øC®ð¤ hv Ú¶Þ/.û]3éÞ=k<îÜ
ì¬1RøâõRãd³Æy1^(ÉrG¹6>»k&ÂÉí:JkÛ3©g>¦ôî±ü¹ Á%;S!þç·?¾¾B¢nOþ{Pü%¢çï+$Gþ´¬ÃúʬEþÉròÏÌÅÏz§{øÍ\üÖÝá½ßQ$U%ËåôCã^¬j4`ô0iG.fÿÿne>&íÀ
+¶®¿üòÃ[WìÇs9®*òE9Ô¨Ýx9IÅ¡9Ósº3sÂø>Å uL-F&r¢,â¢ä$.ËO%çq!¹¥ºÃu±_ï:ÛÙm|Í~¸qGõìvK20ÕkvWq
]Äá¡^ªïN~ÈSÃ7®áH½¨q 7ü¾+8P*EÁ%6»#(8=Ç»ÃB´å
+m[éB®%צßÆ~)ãòM.)xÊ·î?/íê
+Q¤<Õ>©âÄÅÜ -7($'NíÖ\îÒM~ûSºAéuÜ®Ü Äµ)7B¬í¾Ã
+7N.ÄL¸aÝ"MÝFØ*ª£]·á%¥.Ûb²ärÙyEµÉ¼íòÜTMUè®ÚhWq¦ÚZ¶¨ºh~sæ
+Gh.ÙsÉ.ÙxØÉ%¶*ÜWwNrèLÞXañò«QQçù?ÞáìX¶'ïÞÿówÛ_¾÷¿Bi^oϾÿ×öÍëy÷öýÙùÛKɪ¿+ÊÏWrB'ÝS;*OÿC T
+endstream
+endobj
+86 0 obj
+<<
+/Alternate /DeviceRGB
+/N 3
+/Length 2596
+/Filter /FlateDecode
+>>
+stream
+xwTSÙϽ7½PÐkhRH
+½H.*1 JÀ "6DTpDQ¦2(à£C±"
Q±ëDÔqpIdß¼yïÍß÷~k½ÏÝgï}Öº üÂLX ¡XáçÅg`ð l àp³³BøF|Ølø½º ùû*Ó?Á ÿ¹Y"1 PçòøÙ\É8=W%·Oɶ4MÎ0JÎ"Y2Vsò,[|öe9ó2<ËsÎâeðäÜ'ã9¾`çø¹2¾&ctI@Æoä±|N6 (Ü.æsSdl-c(2-ãy àHÉ_ðÒ/XÌÏËÅÎÌZ.$§&\SáÏÏMçÅÌ07#â1ØYár fÏüYym²";Ø8980m-m¾(Ô]ü÷v^îDøÃöW~
+ °¦eµÙúmi ]ëP»ýÍ`/ ²¾u}qº|^RÄâ,g+«ÜÜ\Kk)/èïúC_|ÏR¾Ýïåaxó8t1C^7nfz¦DÄÈÎâpùæøþuü$¾/ED˦L Lµ[ÈB@øøÃþ¤Ù¹ÚøÐX¥!@~ (* {d+Ðï}ÆGùÍÑûÏþ}W¸LþÈ$cGD2¸QÎìüZ4 E@ê@èÀ¶À¸ àA(q`1àD µ `'¨u 46ptcà48.Ë`ÜR0)ð
+Ì@
ÈRt CȲ
XäCP%CBH@ë R¨ªê¡fè[è(tº
+C· Qhúz#0 ¦ÁZ°l³`O8ÁÉð28.·Àp|îOÃàX
+?§:¢0ÂFBx$ !«¤i@Ú¤¹H§È[EE1PLÊ
⢡V¡6£ªQP¨>ÔUÔ(j
+õMFk¢ÍÑÎè t,:.FW Ðè³èô8ú¡c1L&³³³Ó9
Æa¦±X¬:Öë
+År°bl1¶
+{{{;}#âtp¶8_\<N+ÄUàZp'pWp¸¼ÞïÅóðËñeøF|~?!( ®HB*a-¡ÐF8K¸KxA$õNÄp¢¸XI<D<O%¾%QHf$6)$!m!í'"Ý"½ ÉFdr<YLÞBn&!ß'¿Q *X*(ðV+Ô(t*\Qx¦W4TôT\¬¯X¡xDqHñ©^ÉHÄQZ¥T£tTéÒ´2UÙF9T9Cy³ròåG,ÅâCáQ(û(g(cTªOeS¹ÔuÔFêYê8
+C3¦ÐRi¥´oh´)J´JJÊq)¡Ñèéô2úaúuú;U-UOU¾ê&Õ6Õ+ª¯Õæ¨y¨ñÕJÔÚÕFÔÞ©3Ô}ÔÓÔ·©w©ßÓ@iikäjìÑ8«ñtmËî9çÜÖ5Í4#4WhîÓÐÖÒÖòÓÊÒªÒ:£õT®í¡ª½Cûö¤UÇMG ³Cç¤Îc
+ÃΨdô1¦t5uýu%ºõºº3zÆzQz
zíz÷ô ú,ý$ýú½úS:!·
+ñ,ÃÃ]ý¯b6u=2V30Î7n5¾kB6q7YfÒ`rÍcÊ2M3ÝmzÙ6³7K1«12ÍÌæ»Í-ÐNBLÓÃleZÒ---»,YXÅ[m³ê·úhmonÝh}ÇbhShÓcó«-׶ÆöÚ\ò\ß¹«çvÏ}ngnÇ·ÛcwÓjb¿Á¾×þ£È¡ÍaÒÑÀ1ѱÖñÆ
+cmfwB;y9v:æôÖÙÁYì|Øù¦KKË£yÆóøóç¹ê¹r\ë]¥n·D·½nRw]w{û}Gǧ©gªçAÏg^Ö^"¯¯×lgöJö)oÄÛÏ»Ä{ÐâåSísßWÏ7Ù·ÕwÊÏÞo
ß)´ÿ6ÿZÜæ©@ÇÀ}A¤ AÕAÍEÁ=!pH`Èö»ó
+ççw
ÐÐí¡÷ÂÃ
} ¯ aQÑ¿º`ɯ"½"Ë"ïDDI¢z££¢£_ÇxÇÇHcbWÆ^ÓÄuÇcã£ãâ§ú,ܹp<Á>¡8áú"ãEy.,ÖX¾øøÅ%%GÑ1-ï9¡ÎôÒ¥µK§¸lî.îooïÊ/çO$¹&'=JvMÞ<âRòTÀT§ú§Ö¥¾NMÛö)=&½=qTH¦ û2µ3ó2³Ì³³¤Ëí\6%
+5eCÙ²»Å4ÙÏÔÄD²^2ãSó&7:÷Hr0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵µik(´.,/|¹.f]OVÑ¢±õ~ë[EÅ76¸l¨ÛÚ(Ø8¸iMKx%KK+Jßoæn¾øÍW_}Ú´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉ;ì¼PaWQ·°K²KZ\Ù]ePµµê}uJõHWM{fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ}}9û6F7öÍúº¹I£©´éÃ~á~é}ÍÍÍ--ep«¤uò`ÂÁËßxÓÝÆl«o§·$øíõÃA{°´}gø]mµ£¤ê\Þ9ÕÒ%íë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠¢Næ>uêééäÓc½Kzï=s/¼oðlÐÙóç|Ïé÷ì?yÞõü±Î^d]ìºäp©sÀ~ ãû:;º/;]î7|âûÓW½¯»píÒÈüáëQ×oÞH¸!½É»ùèVúç·snÏÜYs}·äÒ½û÷~4ý±]ê =>ê=:ð`Á;cܱ'?eÿô~¼è!ùaÅÎDó#ÛGÇ&}'/?^øxüIÖ§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯_¨¿ØÿÒîeïtØôýW¯f^¼Qsà-ëmÿ»w3¹ï±ï+?~èùôñî§O~÷óû
+endstream
+endobj
+90 0 obj <<
+/Length 976
+/Filter /FlateDecode
+>>
+stream
+xÚíX]oÛ6}÷¯ P`åå·u at 64ÈRï)íbË©Gî$:+þø]#©
+»{¿®/yÎå=2£B*BX¿i®ãØ\ü:c¶GýêçùìÅ©äæJq2_«)A*gä2ÊÓ«äuëªÛÂi&>.ʶ
+ýÒmºMßÍ{q
+ä4×\{d\R¡MpÖs!DRv.°ß/ÓLJ´Û+×WÕ×~Y&·LhYµ7Ùª)£ÝQ¿ó¡0às?î5;ëϧ¶~=ý9 VP°he©4,ng~^
+@¬%j ¤)ÉjöûÁ:,àÇ´Ö£
+žÕÁv<yY§e"t:·´<yfßsÌ÷;íU]¹ªXWË0qU®6Mú[WáÊ:Á6´¿Åßé?÷¶ý'Zb\bH}041¤òc/K7÷#%ü3ïÐΡ¹ÜEúcvÔFÏ7O8u/NAæC3IcjO÷ðobÛ,nèrõ<¼ÿfÕà,L MBá©DXlÖuq[N
+j¥è³§ãÑDÉWSÂnå|O
Å@+Êôq2n¿ù>ê'Á².=É&Ú#Ä(
Æ:(¼Má$jQ V.JëÊ®w¶Áe¹F£Kþ¨«»Tó¤h*/z¾(.RnmMôâ§)¯¼M«M¦°Ú«³ÔdFE½Òj ´î]ýU¹÷á²®5ÅåûW"Zõ+u
Úv6¯Ò°¢K-ì
+x`?ÄÞnòÝ,Íùx7ø·ÝòÎpLѶ¥û¡D0æóHÊ©RöeHæxá2ô³ê)»íÝMÕ!
å]VM
+/G&sþ ^¹|~ÔH2Fòèª.wÆ÷`ãF1½ªô¶¹qËR
ÅäÂ×¥{ã
+WaáX|cá¾½;dz&Y<("j±
+×ÞGÚþñoõ[Òø Û4¾"ù®Í]±ÞF³sÿEÂ~úä>u/gñ¾+ÖÞÑ%|,÷ Pq yAY¬ûåÁCÐÚ>ðÏþ¯JçݧïS®öþä<®KÐùgñ H-_Ôóõ&¾eáÐÛé£ð¹E×&þ}°®êrÊ$á?ì7½¿"+§Pð#MZ© £Ò´!
+yÄáQ±ý<?
+endstream
+endobj
+95 0 obj <<
/Length 682
/Filter /FlateDecode
>>
stream
-xÚ½VßkÛ0~Ï_!Ø
-ªÓo1è¶vt4Ðe~ëúZ¥ÅNg;cþñ;Yvë¤{!Á`Ntº»OÒq&&êq»ß5³/Np`»×,À9 À)
-+È}1ù5aNIcZÄ@lúyâôª òy=ù_¿Bûµé`ñùäôR À2ÉÄ
AI$¢%üÜ&ÀTJN.M³,S*N>ßL£4]cÉ_¥TsL7«fù´òqøzYúyµMïò¯§¸¡eF`*ÆF»³T¸dSâ){kR%¬|]/SHÖeT-ÖUDOÏS'<,¾g8n#ýAӢߪ÷F_äd9ÉÀ)J2!Æ4½jÌ:C*O!{îj?6ÖaW£§(vWÈF
-hÐQP(ǸTx¼BþM¯§QhÙ0&ÇAþ_°Ã?"qKr`Y&EÜN±*FYÇ,aOËðÏúlëGn[ßÓQ6¬´oì*£fà!^
-p8:xìø
-¤°Þú®¹ÿ3óͦ*ëÛq¡FvqÆu®îÍ®ò5Ø0ÆH{ Ãxûµ%gÞm"4pwÏØóê§o0pL&Rmª;q2Râ~íG'¤ò!Ðø2ô¶ëMyø{Lç·ïà<^x£©p84¡F0k4¹LwïE÷`Ì|ý´.k{XäQjOéË._'£u³,æM7ë{óÀ¢tQU¡ÐbßóÕ¦ÝT!Pç>Jÿ[? îªl|uïâé¢ ±6³ڥT;V½d<%¾¡ò>
-¬ºr§FÀpG¨RëA
-¬þ AZ
+xÚ½VÝkÛ0Ï_!Ø
+µªÓ·Ëd[[6ѵ~ëú5Næ$úÇïdY u:ÝÝï¾t£B*BX©ï^î»åò|Ä\wÒÔa0 ¡)Nn£ß#j¥ÐºèíQÔëÇ|\¾á/:E²h;ë_Ï$' 4WbN¬?D ´ RÌÈuT¦ WÉñÅ$ÍQÉd+$³²:I3ÅX2ÙTnq_áxÜ4¥ëÈÕ´úÛ,ô¦ø||ä4×\{,F2.©Ð&à\¦Ü&ª ¡Lêò®.fB²^y+;&!^î÷½¥~ÍÞYú´èUÁ
+
+VJÆüz¾wlL²Â´×%ûúìèÕnïSZ[
"muÝf¢dÛ\ZöêÝõ2jþ»kòePvOÍ×u ÆqqÉó¯9]Í¢F1¨)<Ñÿ>Éö¿(1=æÿÕr:wJøosøräº
+ñm6Ãód"Ô½q<hÀã`[æcÏsèßbåÃeé6õª¹>jlGFòÙUñm3
+C@Ú àÏÛ_k,9Ù³·Øk]঻kËúÃJÀ!»0S*!»Û&B;ÜîÊMÝ¢qÛæ]©Ñ\õ»/þàìOd§7Ôâ,NYm±§¸åÔ¡¬WnFuZ×qÚº°üVNì¢öñ¾{t1à§!(í·3¹ºÿ9¥ÏS_
+¨`ç²,͸ƿ3þA¡ßä,
+ÖÖðÿü(·ßZípÊ5xó@àÃ" cC¼5{üûí^[¯³$á·©
+í0k
endstream
endobj
-80 0 obj <<
+87 0 obj <<
/Type /XObject
/Subtype /Form
/FormType 1
/PTEX.FileName (./figure/ex4.pdf)
/PTEX.PageNumber 1
-/PTEX.InfoDict 89 0 R
+/PTEX.InfoDict 97 0 R
/BBox [0 0 504 504]
/Resources <<
/ProcSet [ /PDF /Text ]
-/Font << /F2 90 0 R/F3 91 0 R>>
+/Font << /F2 98 0 R/F3 99 0 R>>
/ExtGState <<
>>/ColorSpace <<
-/sRGB 92 0 R
+/sRGB 100 0 R
>>>>
-/Length 4308
+/Length 4292
/Filter /FlateDecode
>>
stream
-xµ[M¯%·Ý¿_QËîE*ú*UÕb`À8Ý@NΧo2
-ÌßÉs¤Û07Y¸©C±ôAªºyûbËÛwÛ÷/_mßoǽ§¶uomk¹ígÙê÷£lÿüvûãö÷_ÿðÿüÍöù»´§¶õßwÿIÏcû¿¯ÿ¼¥í¯/yûÂþûî%{íËmkéÜKÛêÕ÷rlUrîg5tíí0tí÷aèÞï&ôêsÞ[ú\ö>¹Ba)±é[÷c±(Z«oêé¸O~¿¾¼³öµd¬Ò}¬¼ßÙPÙK7T÷lݺMè5Z{©Sß}Ð(l£5$õ
-·ÉgLm¡5ú~»úg)͵å»íígc¿ÍÐa#y:÷|j{¾^£õ±÷>õ}¿.QØFkJÊ~ß÷s±Ù7õôÜÕoÎËöjóºÑcØhØØ¡ã4d£Q
-Õ=B1vfìhSø\¢°Ö4Áµ5´ØÖìzúEîê7¥Õ¾×+|éÜ/ØʶGm{2ÚªmßK(Ö´M²÷G½-®sr`)Y7±×h(Z³oéé)¸O~k^b¡~ì-q^(±åpÇØU[ÓýÚsq½ÆîÜkúËÃÒà
m´¦¤îwܲí@óèzúEîê7ç¥Å«¶XeHl1_âOµ
~'C1(Dé¡¿÷ká
m´¦¤ø\[Jí@h;©§_ä®~sïwÛqwDý2$ej8uV
-8QìOë¡¿÷cá
m´ÄEYq-2ÕiÑ·ôðKÜÕoÎK¶¸hÝÖºó"Ió¥Ý2£èáÑ£åÓ''Æþ /iï+¶£µ$y¿òä&Àa;l³oê鹫ßÓlÑ¡fÎ%rîI[Ùv\²nOó%ÅØeO÷ÔW7#®PØFkJJl
-q³¶i£oèå¸O~sï=[pÅóeHºÏeõÃÓc|=o¢ØgÄ¡È3¸Da)±({MnÙëb;Z³oê鹫ß|ÛXKüºÇ$±]uÅV;r~¶ÿ|«¥$ýÙ6çÉúî!gpÂ6ZS}47Eí4b¤ú¦~»úæö(6çEÛq}«¶X=³ðMkcSKd@Ñ-Ø3O}ó#spÂ6ZSrìõÜL¶rÑ7ôòÜ'¿uV^U+ùÞ}¬âAÏÏ3bù¥~ÖâfõIúÁ%J#RPrÞ²àï_ÙÒ9ì}SO¿È}òÏbç°ÔÉØZ'SR#^ø66
Tv!å²ý¸DEQvHÒ~µÁ5a¶Ð}KO¿È]ýæ«i{ÔÎÈa$±AñôÜFËÇ/ÛÍ-rv¢X6Ò~þJo`áÁ6ZSb!à\KGÚ´
-Öèzy
-îßÉW$¡Ùþ\<+%ðéËå¶ýiU/Ï+N[¢W$KCg÷à
m´¦$Å#k«&OÛ@h¾¥§_ä®~+&7?°ó=÷¾$Ø¿'ú»±·-¦¶*¸yù '½u'Whî}I°ÅÅÞí¹÷Õ7õôÜÕoÍË#ö±JpÂ×ôu{æ[¬|ôX±»½PÞÂç=¹Ba;ZKÒÜÉÁE&Û`}ShiwõÏbõ¶|ËNl n/Aí@òÃÕ2[°6x_6l^XQ{zÌ ¬FS
-¬Ú8Åóp1¬DSôI-½oõ¡ËÏÊ´S1$6;µ=Õi1ÍOô$¤êFZ½mr
Â6Hëéâ´
-Ûè[zø%îê·ÒüeOÏÅ4[~,Ïåª/+/}ê{Wâ
m´¦$ÜɧlBköM=ý"wõ[ó#[x`/íÌ8é"RXX·üÇ WÎbkSß½h\ ØÖHäÔØ:×3±iÑ·ôôÜÕo=KõíYj=ù,Ø×
-5°¶¹/õB§%Cãð&h$C¼:×R>m¡5ú~»úÍ0|
¬Y!ÀRrHâÞÃo Ì^³lÉòVÒz
-!°?C¾.QV))=_g[®HEiÑ·ôðKÜÕo,q{åN*,Y(bÔ+j?ì¤òi@(+z%éÏ(IÄ%
-Û¯,\bg sAçÚª©Ó6Z£oéḫßs^<õ·5ÂòkHºP>6DJrl¼; i^ê=õW$â*¿¤z 5¸ÅbØ.*¿FßÔÓ/rW¿NÆ6Í&ËcôD«ã,ØúØøt§êQèÉç§þÃ[\¢cD=IªßÁ-í2¢ú¦~»ú£þFº|<VU9çkW¢;²F"Þ5î¤oq .Q+¨¸v~¤iH÷M=ý"÷ÉoÍKõZÌ+ÐÊEæÉd*QÁZ5ÞRm±;½fúÛg~p¶Òüä¸t7E¹#ÛiCêzúEîê7çÅËh/I®1/X6âckn¡R2n÷)%ÂÄ'ô(Äm´¦$îåŵ¤$MÛ@h¾¥§§ä®~sï§8
òÎ,I´ßr-®#ªßÆÑDûÓª¡#}#S\¡°ÖàE¸1ÒÃvñ^}SO¿À}ò{¦Æ7.Rù,ØÌ?QdçÛO_ýJHk:JWèý.ar`)9£î"·#Ñ6Ð(pêÔÓSpü9gÍVèÚU«ÔÁÖÁ}Æ*õa8xÒ~+>¸DǸv¤úÊÜE»lqíª¾©§_ä®~«üByÙãæï±J:ÎW¦=z¡tÒËÔ£ì(l£5%UndÕÃv ´fßÐË/püæ¼+zÜNUæüt/8ýÛËsëvþN(Æî¸ý½ôÝrúÉ:F/ ò5qã!í@°Ýu+zúEîê·^
1W@zFI÷ú§X>Ï6îÅ¿ë yFÁ¦¾Æ"W¨©êéýàfàÃvV=ú^~ûä7×m«jÚc¸>ñ$¯x¯rBCzF}p`[©!Áõ ¹öämÚÖìzy
-îߺÚ/~ßä'µrIúí_!eµb5Nù6rþWú+⪸Deä0¤ÈCȵ¼MÛ@h¾¥§_ä®~syBÅ%±ÄÎÉ7ü
-Ø¥tèuU±ôþìS_½ W(l£5%ñ"pSÄsÙN#Þ«oèå¸O~Ïßó;ÛQí9Hº-
-Ú6ôÒÜÌBzÅc¥ÑÐ[ð_¸Da[9HJëâ&¸LÛ´£oê鹫ß3ë÷z|,$9Uó:ÁϤtEÎäY:ò±¨ý¨¿ã(l+IU>v!ôÅv åàÑ7õô«*ëíwÊ\Þ±Çd<$%ÒVqmy·
-·v$*üñþö+¯Á%ʪ%± åA®Åó>m¡5ú~»ú{+òî<VÉåÙ¢ßÄÕ>®¤[ÇÕþ¼²n®ö©¿qO.Q× Crø-Úà6a»éÑ7õôÜÕoÎw7¡ÌJ
-nìQ1§`VcµÅÈYø:î©?<.
-pKM
-pâØ@ÓèVZ8DÞâ®2Ê·~~wÉ%ÉéÇ)3·ì7¡gäx~¬ï]K=rDq
qBJÒ[âí2NHõM=ý"wõÏ;*Ìrk:$©ñnס¯TMëÕ+Ðk´Fu+=z¨kæ!9ý`_öÈv×Ìê[zzJîê·^LÖȯS|ÝðX%¨C,¨ZBUR|áégê@xyxúù=ôwKâ
m´¦$¾\Ô!²=?vRßÔÓ/rW¿çí×ÑãócÔH$lm×/ýæ*r¶Þ§ø}©ô·¿w\¢<ïS(wâZtº§m åÒÞ·ôôÜÕo±»¸G"ðX%
-âJÊGõÀwù®%u` y'½7¹BE±nH²¯qlØÂCßÒÓ/püæÞ·l¦ðeNÈ!©qjPc´ñ¢o9búGuêc1.QVÎ6$¸ä'·Þ(ïa»Ûvõ-=ý"wõ{V-þµOí>`UW#^9øûýM6HU¾#Ã%W(l£j¡$®U¯de;ªèzúEîê÷|ÉzùGtqµþX%^}f?Å2º¿=º^²Zé5ôß¹.QØÖKÖÄÝàÆEý°H/Y£oèå¸O~ÏÌÅRUIL/ØýD.¸ ¸ã5rÿÀjGeÜê¨%`;¸^í¤9ú¦~»úgÁ»Tü}¬ ù)BJá¤,ÌßHJÇý¢¸Da[O ®¿ =m"eaþzYzúEîê÷¬Z¼MñIìcô¸I³ÃÈt;1b&|FpªâóÊÃI_}q+¶Uµ¤QqKd ²HUKô
-½ü÷ÉoÆä32Ëx$ÁåÙµ¿°ÉN
;Å[Û¸ 3ý
Ä=´ñ9
-y§®$8â '¯ù¬6Ý©OhéÍ¡k÷6¢°?¼>ªñI|0çutö/=»n/§½ªB©üGú3rmq
êø"VâÈàfOxí<¾UßÔÓ/püVrÆ;_JîCRSöä x|a[<ú7«åÜ,Be¥/ñÙ.¹@´Ö\¾ëÉõ}m"ç1ôòÜ'¿¥¸q¼=VIÇMSâÛ¸ªXû&uê|ÒuKuÛhMIeqã¶Ça:ú¦~»úíÏòÕöý¿÷±¿_8ü)ÁonÂÛ»Ô@=Bk=×)÷PN½66½ÒN½ûÐNý;û©ÿÍ{>üë?ñð?¼þýå׿³¬i{ÿßïTà`ß#Vó~J¼lo~å{æíöþ»ß¾ë?O÷÷ÏüôËù ý&uå§Oèß7¨ßd
-¾ë>~Ç'OôÑ;~cMéÙ0rRïx/ícÿ±àÔû2¶ãAz©÷`fÙôýì}¼å~µ<jk|KËá-?5<?Ë6YãóÉtÙskx?½wÿ¹
ÐÛóäp_¼4
-«môAпE±ÜàÕ!äl¤Ê¥Ô>ZJM+ÙÅÖo_÷öóÏ~ÿåöûÿøñ¶ßáø{³ñõÇ7ÿ|krloþöÖ2íÍ·?¾ýóöþ_8ö¿7Þ1?ûò³·þáÕöæý0ôÿÿ*XÇ7~Æ0?þS¡½ 6¼ö[[Øùh¸l¢ êOé£9ϸ"ðI.Ìë7þ÷¾Ùþco0þôÆþZô§·?9Ë?g1ÇoÜâ_¾ýÑ
-ÆO¡ÌàéUý4øÕË¿ `/ev
+xµ[M¯%7Ý¿_ÑË¿Úݽ`"@DXáB."¿OUslßQeXd^NO¹Úå*wß¼}¶åíí»/¶ï¶ãÞSÛκ·¶µÜö³lõÌûQ¶}½ýaûÇËÏ¿ÿýo~¹}úî%í)¥mý÷ݧ¿5éylÿyùòO[Úþò·Ïì¿o^²7Ø>ٶν´^}/ÇöX%ç~VC×ÞC×~îýnB¯Þ:罡Ïeï+¶Ñ{>¹u?Û¢µú¦~ûä÷ëË;k_KöÁ*-¹ÙÇ*Éû
+½tCuÏÖm©ûÙ^£õ±:õÝ}pÂ6ZCR¯pÜzÆÑ6Z£oéḫßxrØØ\[¾ÛÞÎx!9öÛ6·¡sϧ¡¶çKè5Z{ïSß÷ká
m´¦¤ì÷=¹y?ÛÐ}SO¿È]ýæ¼Üi¯6©û=V:NC6ÕPÝÓ!cgÆ6õ¯éÁ%
+ÛhMIó)\[Cí@h;©§_ä®~ãYZí{½ÂÎýBí©l{Ô&¸'CÙ©Úö½bMÛ${ÔÛâ:'¶ÑEqÓ{¶¢5ûûä·æ%zéÇÞç
[w]µ5ݯ=§×«aìν¦©¿<,
+.QØFkJê~É-û¹Ø¤9¾©§_ä®~s^Z,¸jµàYÄóe(þT[èw2Bú{¿.QØFkJ¯ÁÁµ¥´ØÖìzúEîê7÷~·wGäIØ/CRÆ æSgÕÅþ´ ±¹ú{?.QØFkHl9Y×"S¶Ð}K¿Ä]ýæ¼dÖm{¹1/4_Ú-3=Z>}pbÜèúö>¹Ba;ZK÷+Onò¶Á6û¦~»úy9ý(Èjæ¼Pb!ç´umÇ%ëö4_²PÝYötO}u3â
+
m´¦¤ÄÖ7»Ña;f1ú^~ûä7÷¾Ù³WìØJ8_¤û\VO9ÌP9=Æ׳ù¶ ýyF<ú<K¶Ñ²×ä½.¶¡5û¦~»úÍg±e±ÄO qLÛUWlµ#ÇégûÏ·ZJBÑms¬¡ïr(l£5%ÙGspSÄ@ÙN#Fªoê鹫ßÊan?bãq^$±×·jÕ3ß´66µDÖýÙ=óÔ7?2(l£5%Ç^ïÉmÀd»)§}C/¿À}ò[gååYE¹ïÝÇ*)ôü<³A)ßY:ágÝq !nVä¡ \¢4"%ç(îyùþm ÃÞ7õôÜ'¿ù,¶yK,y2%5â
ocãXØHÙiR.kYÉÐßKTe$íW\öiÑ·ôôÜÕo®±¶GíFOÏm´Láqü²ÝÜ"g'u`#íç¯ô¶ .l£5%ÎÁµt¤MÛ@h¾©§à>ùÍ|EíÏųR¾\nÛV5øò¼â´%¸yE²4ôqv.QØFkJR<¹¶jò´
+Öè[zúEîê·bró;ßsïKý{¢¿{Ûbj«BpÒ[Gyr
æÞûW\ìmÙ{_}SO¿È]ýÖ¼Ð8b«Ç°)|M_·g¾ÅÊG5@»Û%é-|Þ+¶£µ$Í\a²¶Ù7õFpW¿ñ,Vo{À·üáÄvàöÔ$?\-ó°k#a))÷eÃæ
µ§ÇñÂj4¥ÀªS<Ã*@4EÔÒðV_ºü¬LHË0C)a³SÛSÃÑüDOBHªn¤uÐÛ!Ð&W(l£)¡¸.NÛ@°¾¥_â®~+ÍÏQÆøô\Ló)±¥áÇBñ\®ú²¹âHð H©øѧ¾Gy%.QØFkJÂÁ|Êv ´fßÔÓ/rW¿5/9¹
¦ùØÎy."
uËüH zå,¶6õÝöÁmtHNs=¶Ð}KOOÉ]ýÖ³TÐ¥ÖÏBqÝPÃiûRO!ôwúY2ô7orF8$É«q-åéÓ6Z£oé鹫ßÃWÈ,%$î=üÊì5Ë,oõ)§kø3ôáëàeØ#ùu¹åT¶Ð}K¿Ä]ýVÉ·W~è¤Â
(F½¢öCÀN*ÙyY²¢GPþD\¢°ýÊrÈ%v0t®:m¡5ú~»ú=çÅS[#,¿¤{ åcÓJ¤t)ÇÆ»æ¥ÞSEI".Ñ¡òkHªP[ü!í¢òkôM=ý"wõ[édlÓl²Ì8&II´:ÎOwª%^|yê8¼Å%:FÔ¤zøÜâ±hØ.#ê©oê鹫ß:êo¤É×ÈcXãp®¸võ!º#k$Âá]ã.Aúw ⥱")©qkçG¶xßÔÓ/rüÖ¼T¯Å¼,Y$iÜøH¦¬Uã-õØ@»Ók¡¿}æ(l+ÍIK'qS;²F9¤¾©§_ä®~s^¼öäóBe#>¶æ*%cévR"\@qbH¢H\ ØFkJâ^^\KJÒ´
+Öè[zzJîê7÷~¨X(ïÉÄHû-çÑâ:¢ú
+hMD±?:òÐç82Å
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/uwgarp -r 92
More information about the Uwgarp-commits
mailing list