[Uwgarp-commits] r92 - in pkg/GARPFRM: R sandbox vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Feb 21 22:01:09 CET 2014
Author: tfillebeen
Date: 2014-02-21 22:01:08 +0100 (Fri, 21 Feb 2014)
New Revision: 92
Added:
pkg/GARPFRM/vignettes/Correlation_Volatility_TF.pdf
pkg/GARPFRM/vignettes/Correlation_Volatility_TF.tex
Modified:
pkg/GARPFRM/R/capm.R
pkg/GARPFRM/sandbox/test_EWMA_GARCH.R
pkg/GARPFRM/vignettes/CAPM_TF.Rnw
pkg/GARPFRM/vignettes/CAPM_TF.pdf
Log:
Vignette update CAPM, draft of Correlation_Volatility vignette added
Modified: pkg/GARPFRM/R/capm.R
===================================================================
--- pkg/GARPFRM/R/capm.R 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/R/capm.R 2014-02-21 21:01:08 UTC (rev 92)
@@ -125,8 +125,12 @@
getStatistics.capm_uv <- function(object){
if(!inherits(object, "capm_uv")) stop("object must be of class capm_uv")
tmp_sm <- summary.lm(object)
- # gets t-value, and p-value of model
+ # Gets t-value, and p-value of model
result = coef(tmp_sm)[,c(1:4)]
+ tstat = (result[2,1] - 1 )/result[2,2]
+ # Two sided t-test
+ pvalue= (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2)))
+ result[2,3:4] = cbind(tstat, pvalue)
rownames(result) = cbind(c(paste("alpha.", colnames(object$y_data))),c(paste("beta. ", colnames(object$y_data))))
return(result)
}
@@ -146,6 +150,10 @@
n = i*2 +1
}
rownames(tmp_sm) <- c(holder)
+ tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
+ #' Two sided t-test
+ pvalue = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2)))
+ tmp_sm[seq(2,nrow(tmp_sm),2),3:4] = cbind(tstat,pvalue)
return(tmp_sm)
}
@@ -154,13 +162,13 @@
plot.capm_uv <- function(object){
xlab <- colnames(object$x_data)
ylab <- colnames(object$y_data)
- plot(x=coredata(object$x_data), y=(object$y_data), xlab=xlab, ylab=ylab, main="CAPM Plot")
+ plot(x=coredata(object$x_data), y=(object$y_data), xlab=xlab, ylab=ylab, main="CAPM")
abline(object)
abline(h=0,v=0,lty=3)
alpha = coef(summary(object))[1,1]
- a_tstat = coef(summary(object))[1,3]
+ a_tstat = coef(summary(object))[1,2]
beta = coef(summary(object))[2,1]
- b_tstat = coef(summary(object))[2,3]
+ b_tstat = coef(summary(object))[2,2]
legend("topleft", legend=c(paste("alpha =", round(alpha,dig=2),"(", round(a_tstat,dig=2),")"),
paste("beta =", round(beta,dig=2),"(", round(b_tstat,dig=2),")")), cex=.8, bty="n")
@@ -215,10 +223,11 @@
hypTest.capm_uv <- function(object,CI = 0.05){
if(!inherits(object, "capm_uv")) stop("object must be of class capm_uv")
tmp_sm = getStatistics(object)
- tmp_A = tmp_sm[1,3] < CI
- tstat = (tmp_sm[2,2] - 1 )/tmp_sm[2,3]
+ tmp_A = tmp_sm[1,4] < CI
+ # tstat = (tmp_sm[2,1] - 1 )/tmp_sm[2,2]
#' Two sided t-test
- tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-1))) < CI
+ # tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ tmp_B = tmp_sm[2,4] < CI
result = list(alpha = tmp_A, beta = tmp_B)
return(result)
}
@@ -229,9 +238,10 @@
if(!inherits(object, "capm_mlm")) stop("object must be of class capm_mlm")
tmp_sm = getStatistics(object)
tmp_A = tmp_sm[seq(1,nrow(tmp_sm),2),4] < CI
- tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
+ # tstat = (tmp_sm[seq(2,nrow(tmp_sm),2),1] - 1 )/tmp_sm[seq(2,nrow(tmp_sm),2),2]
#' Two sided t-test
- tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ # tmp_B = (2*(1 - pt(abs(tstat),df=nrow(object$x_data)-2))) < CI
+ tmp_B = tmp_sm[seq(2,nrow(tmp_sm),2),4] < CI
result = list(alpha = tmp_A, beta = tmp_B)
return(result)
}
\ No newline at end of file
Modified: pkg/GARPFRM/sandbox/test_EWMA_GARCH.R
===================================================================
--- pkg/GARPFRM/sandbox/test_EWMA_GARCH.R 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/sandbox/test_EWMA_GARCH.R 2014-02-21 21:01:08 UTC (rev 92)
@@ -6,20 +6,18 @@
R <- largecap.ts[, 1:4]
options(digits=4)
-
# Remember: log-returns for GARCH analysis
-temp_1 = R[,1]
-temp_2 = R[,3]
+asset1 = R[,1]
+asset2 = R[,3]
# Create combined data series
-temp = merge(temp_1,temp_2)
+cAssets = cbind(asset1,asset2)
# Scatterplot of returns
-plot(coredata(temp_1), coredata(temp_2), xlab=colnames(temp_1), ylab=colnames(temp_2),
- main ="Scatterplot of Returns")
+plot(coredata(asset1), coredata(asset2), xlab=colnames(asset1), ylab=colnames(asset2), main ="Scatterplot of Returns")
abline(h=0,v=0,lty=3)
-# Compute rolling cor
+# Compute rolling cor to illustrate the later smoothing effect of EWMA
cor.fun = function(x){
cor(x)[1,2]
}
@@ -28,51 +26,47 @@
cov(x)[1,2]
}
-roll.cov = rollapply(as.zoo(temp), FUN=cov.fun, width=20,
- by.column=FALSE, align="right")
-roll.cor = rollapply(as.zoo(temp), FUN=cor.fun, width=20,
- by.column=FALSE, align="right")
+rollCov = rollapply(cAssets, FUN=cov.fun, width=10, by.column=FALSE, align="right")
+rollCor = rollapply(cAssets, FUN=cor.fun, width=10, by.column=FALSE, align="right")
par(mfrow=c(2,1))
# First Rolling Cov
-plot(roll.cov, main="20-Day Rolling Cov",
- ylab="covariance", lwd=3, col="blue")
+plot(na.omit(rollCov), main="20-Day Rolling Cov", ylab="covariance")
grid()
-abline(h=cov(temp)[1,2], lwd=3, col="red")
+abline(h=cov(cAssets)[1,2], lwd=3, col="red")
# Second Rolling Cor
-plot(roll.cor, main="20-Day Rolling Cor",
- ylab="correlation", lwd=3, col="blue")
+plot(na.omit(rollCor), main="20-Day Rolling Cor",ylab="correlation")
grid()
-abline(h=cor(temp)[1,2], lwd=3, col="red")
+abline(h=cor(cAssets)[1,2], lwd=3, col="red")
par(mfrow=c(1,1))
# Calculate EWMA cov and cor, applying default lambda - 0.96
-tempEWMACov <- EWMA(temp,lambda=0.94, initialWindow=10, cor=FALSE)
-tempEWMACor <- EWMA(temp,lambda=0.94, initialWindow=10, cor=TRUE)
+cAssetsEWMACov <- EWMA(cAssets,lambda=0.94, initialWindow=30, cor=FALSE)
+cAssetsEWMACor <- EWMA(cAssets,lambda=0.94, initialWindow=30, cor=TRUE)
# Plots
par(mfrow=c(2,1))
-plot(tempEWMACov,asset1=1,asset2=2)
-plot(tempEWMACor, asset1=1,asset2=2)
+plot(cAssetsEWMACov,asset1=1,asset2=2)
+plot(cAssetsEWMACor, asset1=1,asset2=2)
par(mfrow=c(1,1))
# Compute EWMA cov and cor for longer half-life of
halfLife = log(0.5)/log(0.94) + 5
lambda = exp(log(0.5)/halfLife)
-covEwma <- EWMA(temp, lambda)
+covEwma <- EWMA(cAssets, lambda)
# Garch11 testing
data(returns)
-tempReturns = cbind(returns[, "SPY"],returns[,"AAPL"])
+cAssetsReturns = cbind(returns[, "SPY"],returns[,"AAPL"])
# Dynamic Conditional Cor/Cov
-garch11 <- garch11(tempReturns)
+garch11 <- garch11(cAssetsReturns)
# many extractor functions - see help on DCCfit object
# coef, likelihood, rshape, rskew, fitted, sigma, residuals, plot, infocriteria, rcor, rcov show, nisurface
# show dcc fit
garch11
-# Conditional sd of each series
+# Conditional Sigma (vs Realized Absolute Returns)
plot(garch11, which=2)
# Conditional covar of each series
Modified: pkg/GARPFRM/vignettes/CAPM_TF.Rnw
===================================================================
--- pkg/GARPFRM/vignettes/CAPM_TF.Rnw 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/vignettes/CAPM_TF.Rnw 2014-02-21 21:01:08 UTC (rev 92)
@@ -59,67 +59,60 @@
\section{Fitting CAPM}
\subsection{Selected Returns Time Series}
<<ex1>>=
-# 'Load the GARPFRM package and the CAPM dataset.
+# 'Load the GARPFRM package and CRSP dataset for CAPM analysis.
suppressMessages(library(GARPFRM))
options(digits=3)
data(crsp.short)
-data(cons)
stock.df <- largecap.ts[, 1:20]
-cons <- xts(cons[,2], index(largecap.ts))
-colnames(cons)= c("CONS")
-R.market <- largecap.ts[, "market"]
+mrkt <- largecap.ts[, "market"]
rfr <- largecap.ts[, "t90"]
-colnames(stock.df)
+# Plot first four stocks from
+plot.zoo(stock.df[,1:4], main="First Four Large Cap Returns")
@
-Summarize the first and last data values corresponding to the first 5 dates for the first 5 returns.
+Summarize the start and end dates corresponding to the first 4 large cap returns.
<<ex2>>=
-head(stock.df[,1:5])
-tail(stock.df[,1:5])
-# Count the number of rows
+# Illustrate the type of data being analzyed: start-end dates.
+start(stock.df[,1:4])
+end(stock.df[,1:4])
+# Count the number of rows: sample size.
nrow(stock.df)
@
\subsection{Estimate Excess Returns}
Estimate excess returns: subtracting off risk-free rate.
-To strip off the dates and just return a plain vector/matrix coredata() can be used.
<<ex3>>=
-# Excess Returns
+# Excess Returns initialized before utilizing in CAPM
exReturns <- Return.excess(stock.df, rfr)
colnames(exReturns)= c(colnames(stock.df))
@
\subsection{Fitting CAPM Model: Univariate}
-Run CAPM regression for AMAT
+Run CAPM regression for AMAT and estimate CAPM with $\alpha=0$ \& $\beta=1$ for asset.
<<ex4>>=
# Univariate CAPM
-uv <- CAPM(exReturns[,1], R.market)
-coef(summary(uv))
+uv <- CAPM(exReturns[,1], mrkt)
+getStatistics(uv)
# Plot data with regression line
plot(uv)
@
-\subsection{Fitting CAPM Model: Multiple Linear Model}
-Run CAPM regression for AMAT
+\subsection{CAPM Model: Multiple Asset Analysis}
+Run CAPM regression
<<ex5>>=
-# MLM CAPM
-mlm <- CAPM(exReturns[,1:3], R.market)
-coef(summary(mlm))
+# MLM CAPM for AMAT, AMGN, and CAT
+mlm <- CAPM(exReturns[,1:3], mrkt)
+getStatistics(mlm)
# Plot data with regression line
plot(mlm)
@
\section{Testing CAPM}
-\subsection{Retrieve CAPM Statistics}
-Estimating CAPM with $\alpha=0$ \& $\beta=1$ for asset.
+\subsection{Retrieve $\alpha$ \& $\beta$ and Estimate Result Significance}
+Retrieve $\alpha$ \& $\beta$ from CAPM object for one or multiple assets and run hypothesis test.
<<ex6>>=
-getStatistics(uv)
-@
-\subsection{Estimate Significance and Test Beta Results}
-Retrieve tstats from function for assets.
-<<ex7>>=
# For uv
getBetas(uv)
getAlphas(uv)
@@ -133,9 +126,9 @@
\subsection{Estimate Expected Returns and Plot}
Plot expected return versus beta.
Estimate expected returns
-<<ex8>>=
+<<ex7>>=
# MLM CAPM
-mlm <- CAPM(exReturns[,], R.market)
+mlm <- CAPM(exReturns[,], mrkt)
# Plot expected returns versus betas
chartSML(mlm)
@@ -144,10 +137,15 @@
\section{Consumption-Oriented CAPM}
\subsection{Fitting C-CAPM}
Run C-CAPM regression for CONS (Consumption).
-<<ex9>>=
-capm.cons = CAPM(cons, R.market)
-summary(capm.cons)
+<<ex8>>=
+# Load FED consumption data: CONS
+data(cons)
+cons <- xts(cons[,2], index(largecap.ts))
+colnames(cons)= c("CONS")
+capm.cons = CAPM(cons, mrkt)
+coef(summary(capm.cons))
+
# Plot data with regression line
plot(capm.cons)
@
Modified: pkg/GARPFRM/vignettes/CAPM_TF.pdf
===================================================================
--- pkg/GARPFRM/vignettes/CAPM_TF.pdf 2014-02-19 07:27:38 UTC (rev 91)
+++ pkg/GARPFRM/vignettes/CAPM_TF.pdf 2014-02-21 21:01:08 UTC (rev 92)
@@ -1,126 +1,181 @@
%PDF-1.5
%ÐÔÅØ
-60 0 obj <<
-/Length 1242
+55 0 obj <<
+/Length 1333
/Filter /FlateDecode
>>
stream
-xÚÝXMsÛ6½çWðÍ”ñI¢>9»ÓNݺ±zJz€)Øâ„"5 »ýõ]pAY¶åLÓIëåb±ûöñR‘]eEöÛâ‘ç»ù›·'¬ÊXI9S2›_f¼Të2Ó¦¢šeóEöžÎrQprÒ„ÐtW8±ÝóYiˆÆ7Ì‚&cŒ¥x)+*u•åBÑJk9_ö+;Àr®!hÛº‹YÎKâ\#dyA¥R˜he.9™Uœ¸¿±þϸ°$L‡xÁd\÷ À·'²È*j´Æâ-
-d"2…=¼‚·uxd½0;ës¦UeLŒÑ¤ZÎ a}C
-r4cÄ®›`[œƒ8<óM
-o@˜ŸöP´!7ºrò±PEÄž=>BNˆË q°‡„öhÝÛˆ¿mÀ%E[Ø`éˆf‰k*EµÛNYT1·Íjš¾¢ÁFg¹V’ü¸€F at j¡©cñU3>Ïx[ÝûC\/{XïÐq
-U:´û).r~8 äħøw‚Òf¸¾¿}åS˜¥CV0A+.R5«ì
-vLA²ÓhÙû毾;ˆìDиyE~é“Ÿ·Ý ‡²ÑP÷CpØûäcoÜÖË´þÈ&ÿÈÕ
-\}³¼F#ö›F6àÓ7çüÒ»”·ÁìkŒŠ•ˆN!0[¨ìßwm$¾4¤ÁŽ6{1R¨ßœ¯qêÃeß6=ÚÜ
-Z]Ðo1¼ß¥(]2~ž©:ÙØ®Ž® ʼnNyZÿiì¼
-) NƒèÅ/ÑjÛv_}ëÍEÛÔX„ˆmX¸E"vüHdë¾&Ï—±^ØúöK”ÍõM"Î&¾E¡‚Q3jdÒÙ¶‡t¯úM²„=ÂrhVë6/{¿ÂÑXÊ®[ŒMqx|S»uØCÉTgXŽ…J«KråGZ_‡%Î#p„•©s‘òqV’Æ·5£ai¡¢!rëÖÖÀÎ~ãoûmÝ=÷ÕÔÙ°·o‰T[Nņ¥&ŽÀÐt Ujã"qÆ7æ(·•)L ›ºÌ3&A…õxDä\RS”£2Æ“NAš˜æð1¤…"3 È\ÇuE:"’ƒj®vN©J 'bQ’8‡¬I¾xT•;á@m$UôND#Dò¤—œ“s×Æ(‚-yádŽâ#$8ùúãàE©Î¨¢øziÌWùâÇî™}È™©yk-x|'ðŽáÈZ!-¯ø
-
-Ã} ÿõ2¾)zO€È÷ƒ¸e H ÞR[ˆIî€sãM¢iÞµßÇãJ‘ß»ä\rŽ¨ë׈œx9ùåÈnÚÐà™ ¾?7³Ç“w¼±I]|s@ž‡çî½øž|æ ÁFÊ»÷lŽ":ŸM¶×Ì'„T¿XHùVH዇Ã/y؇©#"^§\)šA‹×òÑ¿¸aúI>óGäô¼¹êšøk¡¶xƒ
-ou€í|VÉØJœ½¯o'ïÝ dÒ[ÿo0*ŸÁH<rä¬Ç¯÷±#|‹×YÛÇß"â?ŠÈS|~ˆ–&ÕK€@ xxÙ<]¶'=ȹb’³G¦À»[¸+Ç9Xc@`&ÄÔ¬|•ÿ?#½ÙûEÆŒ¢LÎUA%“;—ÛÏñüÍß7>h
+xÚåXKoã6¾ï¯Ð©Š+>E6§4HŠH›fÝÓ¦Åfb!²dHô>úë;£¡l9q¶»èAÛÉg8óÍðãØyrŸäɯògÆïç¯^_p›ð‚ ®U2¿KD®˜1Ebœe†'óeò6=;½ºœe2éEBÕÜÓ¢l–4™Ï
+—ú~øòûü'0éΙÓZ Ie™26ɤfÖ29_µë²uaÀh]ûÛY&ŠÔû-$YÎ”Ö ˆ˜ušT.fV¤þ¶Û–ÝGT,RÁ¿%"ç
+õžøúBå‰eÎ
+N³Â¡'FAfOoûЕ‹ðŒ¾týŒkÉtŽqô’dáM $ÊÁP2=›ñ´ÜT¡¬i}Ú÷>Ðôª«ð• „õeA»té‡"½ÉuŽXÃÈiÇM.Õˆ¸yˆhÒm¿³øë¶DkË2”l at 3üUÊ$*·èÛv½ UÛô(p)g³Ìh•þ¸„D€k¡Z`ø©ïfÂbªÛ®'ïW-MÊÎÓÆ
+DéIÊTò]ðIŒöŒãa¤ßî?uÑÌÊSUpɬ1KÑôåN“\ƒ³ãlÕvÕms‚Õ¡RÉðp›þÜÆ}]Ùôq›‹¶=MÛ.î)?ø>ꫨVÆýX«¶v-zùž„”˜Ô~œ•Æ®ê²»ÎGïº2ø“ƒÄÄP4T:!p;¨%œß65¾réb eåíPBí6ÐzCË.ܵuÕ’Ì ©_å·$Û®‰Vš(|7Ód²*›nE ´HMôë²ì†¼À§=Ò©=ôðŽ¤e]+¼Íö¶®„Ä4,ý26^’žªõX’ç+ŒŽ>ƒóbÉf¿tU,œÁ~%¢‚Y5pxÒ”uîÞ·Û( -í£É¾Zoê8¿k»5͆P¦ÛÐ6£éù‡…ß„çK2¬†ÌCEí"½ï†²~V´Æ TÄÌaÉãj1PHœïc&Áª„ˆúhÈoêrA LÎ{j—o”5¶¯Ç̆£y‹Eµ«)LXLâ`U\¥·gøâa-¡äv4EP’—E“ÊOD&sy‘dŠ3."Œë™„Jó4ôQQ&YÔËŸ`M'ô䕲’jƒRÜÁ;ä@'ª˜˜¶QLä÷‚9ù\še<"}ãk¼D¶”é5D‹9‘T°©« ?>Z¦P3:Ï¿Þ œûê6?{˜¾‘ÉÛŒ;« Ƚ4žˆàÓµ¦²¼ðõýc ÿñ0^½O€(ƒ(Feq_ÚRŽt57t¨ê®þŸ+þÖT@çf sBÝüÛ•ŸŠÈ=«À¶+"u¹Cµìêx…Çž
+0>…äcω3îߊÑasüˆC3àa§TdÒØŸbÒùÌ™t×k~‚MÍ_³i¬e±cS¸öð‚S§¹}ªn“…¸É¹<r†c…äãžoŽXß!ùÞÍ›øCá‰eŸ‡š!¤¨Âºö=”I¤øê¾ÁFÛóÅÐ+eÆÚ笧©7”˜½²
+?ïïˆx–¢7«<÷äE TzU·Ø»KýâÅÿÅ ƒ¬øüÛûI·åis*ElNÇ«“ ÍOí‘"
+OS#w—åø3¢A(B°ixñŸ|(ÿéÙÇi<ì8G¸§'‚ÍÈBï(,ìÿÖ€—F欰ŴKDíI—êû+‹Ø%zè}O.‚S:I†î>9&¾žþ5qP=‚çŒçô߆bÒã~¡ýóù«?e)±
endstream
endobj
-74 0 obj <<
-/Length 1368
+71 0 obj <<
+/Length 705
/Filter /FlateDecode
>>
stream
-xÚíYÝSã6Ï_á MfÎ:}Ëêô(aZBh’ÎÝ•òà&&dIÎ1kÿú®-ÙVs€™˜\‡apV«•V»ZýVØ›xØë4°ýýyØxÌ©G8b\RoxåÅ<%â8cï¢EÚ>!T´Ž§I2OÚ>S¢u°Þm_1¤…È:ÀžÏ0R²mQÞzÍ¢QMó~”ÜÅó•)§·‘¡Q<Vi¿
-cž·öO¼‡Ø}0 i©Ó²ó“Ißg?[úhØøÒ `öˆ0DîqJÓÄÝ6R>g`¨âUi`Ç‘wÕøíÙ£zžÅÛ”–*€¢ K¤‘ÝdömIîi0‚J'‚ QFLì™H‘‘#q™z5“øÁJ¸= è ¯?]„9â(¹ŽÑÙïŸ÷»¦°G7áÄÖ„óMÙ,Z3j&á*JP¥SL¥EÁÒ¯¶^Ùd‚$"C|"„¨ð‰Bš1cÑên¹Œ£Õªÿ0òjAŸî·u¿f@Ì#–ÍŸõíŸXà:ÝáÎëlúWÆÿÔi<“Hæo# H’þ×T Aµ
-‹¸‹e2]ÌW¯ë•jÚYj«”™Ý@Ù
-&H‚Žñt2M¶k£w‘ù•”d+a¡SÌË{“Y*a[¶¤U{hÚXC>ëK
-Ù‘R7,Gñj‰V׋8©Ý!v0»æ@ŠÊ®xrüÆ3Hä&‡%‹Ñ
-_U[_úþ$lðÊÕõ“_PÌÂxÂ%JVïê J“–íDÓúìÏ€Ã[m‹âmãÛåvàõu;ªš_ëÛŠ Å
-x‘ÿ&µn ìw˜êYFtë±ù®Îy”)€XëÊé|}5ÅÀ N¬¥_g“Ì%â‚l®àÙ<¼÷à´¾Â^œ}Ÿ…%j……°*Õéc‘ݼô B4D0â:½«Œä:Ë,ìæAïlÐÜÙûÓ·gš#ÂÕú
-é£Û0¾‰’·íÙó¢"SÖ4¾kþO¶=öf!¾Šß¢¡J4$ïh(TDxlrr—²i~ |`nGÚóíp}ªP í xo¯íxë‚\šææ~wØ,èÎYNdìL¸yx˜’B»%˜£³?ráN·8éí~íìÓÓáA‘›'›tHi¤Rwp\©×?8ÍéóNÑÝùÉ~¡eÐ+ØÃO¥ò߇Ÿ
-úc9¾Ÿ
-öç“^/_&[|ú°ïWï‰rO iÎa~$±ŸÁÝ-àøôßœ,¤y BA°1·Ik•˜rödJÌÂœ•Ýìd¼¿Ûð gw°:²šÑ"Ž£Õ
-ªµ˜³7±”Ÿ,Ö´H£%ïOtkú‘«El~«AlžÊÐwð*F˜B
-Ž›¯b”"Bè÷ÿ*öT¨5¯bòþ«ãÀömô:
-ǯ{u˜ÃíÛe×úe—Øz¦ßÉ—_ñf N–ÙD€óiZ³™*Íj@Êìa˜LBýá¡%:ßJJDkåcâ3bS¨WLÌd`$
-5Dr©J9Éøšú
-¹ lB+É=8ÀÂ|("U–8ÖÛÃ2{ò&ÇNAèBB:zˆtJ%ëá>Ã¥CæØ#˜ÊõÂ1-k@‘ãEµá·õˆu=ºœ,Â{ ¡‰ã^Íyä`ê£ó#]=à*Zøƒ0\ÆÖA9ó°é‰YÇ:ª¾Çv×RNgo€ÿø» øΉß|F`ÉÀO©§>üñ±ZH)´‹ø¬\Ϋ@— @(/[1†_ëdN€¡pb¦(PvûVåÑ6Íÿ$’
+xÚíXÍoÛ ¿ç¯@ía©ÔP0†i;tÓRij¥,Ëë%Njåø‡î¯/ÒØd¯šª(?û}ðÞƒ‚„2 PµÑ«ú84Ó«v
+Øö¸· äÒ+M‰~I>ýg€D` Ä‚Æ Œ‘ óíÀÑ)ÁÇ`I è,?Žé8u»DóXØ!³šÚ¾àÛ$Zä—ÙàbÌ)V‰ˆƒÙn-A at LŒˆ ³¸žžÝ;[«à0‚”;«–ˆQý³ØÏ_gjq6b÷‰ï\]N'ãéäj¾V«0£vûuúsâ{U(“~°Ìt˜¿œÜì_Q›G“èä8ÚZ1‰Ý÷”ÁZM¢EZyEÁfKlÛJB¼¦æ!ÏubÌý[L+\§ú|ÆVŸ^ R];R®k°ù/ÄPŸæ¨®÷&ý•~ìSyÂ!Ǥª|ð0ÛÅî߯kD²H߈¼PY^¤ÙÎü[«´ãNœ®œ—zÛ¾Ç6ˆiy,ÒUZt«#¸-ƒþs+&e„@Ĥ˅û„Þ$˜Ž5öîšÁ%jYËå×>Ý2²»fUÝr®MÍ}¦‹ÖyµÑGýˆ0(¬q|â.²ù.–íœJ¾\ŠíàRŸF}DÇFéU2W9,Ìíy‘ÒjÑÊc™›/>">v,í0B]õ]·P}_Ùêuñî¶{†XÚÄ©tÇ\á‘uÒÙÉVéuRœü'î’¹^êwohã
+…DoÔ^[Ï5J0TßâN}±4ÙdûJ*Õ湨zUU¹š@ÕÙ¶ÏÃI#±åVRø7Ëú<šP˜÷'ƒ÷m´¾ÒÎcå¼ãb¥4øV¥»·[®“¿Æ‡p?‡óµK¡á¾Då¾3MŠ½3'o¶¶éðÞ-\N^Œq\½ÎâFœå"fÔBøo³Á‹L\7
endstream
endobj
-83 0 obj <<
-/Length 1213
+79 0 obj <<
+/Length 635
/Filter /FlateDecode
>>
stream
-xÚíXÝoÛ6Ï_! /2P1<~‰¶YÑ sݧ4Ž-§Zl)ÓGšýãw4‹²³uv%ö"ñÈÓñîx¼ûé(áBF
-_ÕuŸö¯ñÏG4Â¥ßû}EŒ2–^kîÝé½¹ÿ8ÔˆFiN@‹HC@šh¶:²ó‚TD 5a<ª²hqôÛÞícíO“£ãSÅ#ƒŸ3M‘V¨R¡‰à,šÌ£‹øÕ«Q"™Œ¥PpptB UTÐQTÒ)&E·d˜TÅeÀgL:ºœüŠ6'óøF&azó=çƘNšVtC ª@ƒ%Á:‚¥ýø#][äucx¨ÍY§6ZË;JIÝBÿƒ á@I*Ê@ šòN6@ÚñQ úë±Ð"J
-í$h
-:8#y„Ýhïû³·J5’/Žµr¼Û“ȉa*‚0EëYJ´‘ÞzgÛ²-7l>fnP´««¬rãráÞUù©>ȶ”§–”Ü>×v{Òi«úÚ†gUàþ»6|nxçÛ>¼Ó³c¨Åz÷x¾uSÎnÈ|cà÷áƃuêöØŸð\ºÞ§÷Ó%LJr|*X@Œ”ÌŸ¦PDIpª±P§·u“¯¦
-O‘ºŸeuíÆã¬i«bsǧn² \¥NX'B0g^„WNÄw£DŽëöª©FOgM^\[ˆË˜<s^ß$‹*CŽÌ-VV(Äd”¤TÆ“‘æqéxë¦ÊoÝ0°¾?v0ǽ
-Óbî¿·ujå—ËK·ËiŽëœóønÄtœÍš²:F«üÞN‹xV®õÄ}¦64×!é¦þëQb¿tD[gsrPÌ>]a;ÙíBH"ÔviDzªQÚ_FÚv Cì¡%ÑOß7ÆŽƒ3TšÜŠÜìþ[tÀ#Û)[s6Ù]¬ý>²)4óª/ÎHâSÍ€îî«V¥×¾J/ªƒëÓ®I€KÔª³rYLWÙ Î@´à¡s6áx°Oö
-Ɇt{Ê c›P˜
-éh‰ZúyH»íæ«_D”…Àðà@’%€Ù„§l™qÌNóÆá$ÆÞœœŸ¹ÑB ŽÐ#["¬’”Æï‹ün¤X<r‹—¾
-×ÆÒ´¦x¹ˆ\ªìºÂlš#¬)7µ(+ÇurvbÁ×ä_ aÀh’bMßiO"¥þÄD\Œ:Ó16„|ø¸RχbÚ»ÿ|Á(äzó7;´{wÿ¥7…ùâõa®Æ ³}ë]ùpw¶';gÓZ‹6]zø5&«iu“5ƒc0ɧ¢ßœ•Ùâyù¹pAÝ®ð>i<Ç
-=XÐÞ} xÊn‘b$UÒw‹T×-Rº×‘±ý®™ÿ§YU¥ï ú~áÝtÙz¶sûÛAüÒ|y0ø¯š–ɪYvëîIqÞ\°Ía¦˜#R±Y1Ô·±9–š,¡ðwðñêÆéGcF˜ØÈä`˜—™ª¥ïþ ”i^~ãVõŠæù²ôç`Û@nô)o>úA§,–²ô2/²çhß²‡–*û¬¹È]Ç‹Í{ˆ´A0©¢Ä(B•Gæü Ý¡þ <,ݽ
+xÚíWK›0¾çWXÛ‘Š×cƒ
+{ìSÛ[»Ü²9°¤«H
+Qµûë;~ÐúRÒV‘ðx<ž‡ý}`TD1!l8èÍáÜÞÎÁ%‚ãQ» ÷0P E„'«jöyF“HHi-¢]ê÷yÅåuäU3{¿>‘Þ$ì}‡ç/²ÙåÔ¥4•\’lý=H()É
+²nöU•ëûÇrŽ›EÐ}ôBÛåº3bäuáte/yW¶N\5Z—ínò$hêâ¾ÞxGÍÃ(¸e"šC [ï5rëÛ\o|ÈU¾sKºDÃn¯ë–Ηٻ#œaÁ©™ký£úhë×ÙàfA!‰EUlÏÜè#§¬P-U:+ÉÚÜÙ‘YWñ)¥Jpc¥('ÒÙŽ•hi'£àFAxÊiŒÞ,ÞžÍØÇÁõv»o;8rs+<ì¼Ô¬Ýˆ`ËtWZx1¯óíãCY\¹©Ekhñé·”±£„2ÓX˜gê«+ÑK•ƒR’PÑTW¥cÏ”øF>¿ÙŸ.¾ÄçxÔˆAæÂß²˜µ]³úD‹õâù¤<Ì¥2ÊâÔ\sÕ±-Éž8L bydÖíÏ:®Nœ-þïœòZ0ÀO&95 =@B.(ãÜsÑ“qK'\@šªA(àâLçš\†õgdÄT¦ðÄ´'¦ý‚i `gH3àgbÚßöðQ1Íñ²Ù×ݨm×ûê®Ô‡[7_Ú¾?çÕnëM[|Ùü—½¹Æ¼ÎÚšñŽÿ´5ÿŸÂ¥û{øJæó>áKÿÈ}Äp`Xb>u¨bÊå'&œ"¾Ê³åB
endstream
endobj
-87 0 obj <<
+68 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./figure/ex1.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 81 0 R
+/BBox [0 0 504 504]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 82 0 R/F3 83 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 84 0 R
+>>>>
+/Length 2416
+/Filter /FlateDecode
+>>
+stream
+xœÍ™ËŽ·†÷ç)z©Y˜fïKYŽŒ‘XdaxaØraFI$Éãç¯K7y¬#gf<¼Ð¥ºšM²X¬ï'm/6ÚÞlÿ>ý>ÿÍW_lÏ^bˆ1në߯ž}§lÿ9}ûÝ·O´½ÀŸ7'’¶—§ÜCn[*5TÞnaæónßìv†»Úòú¯ÌãíW2ízVbkŒÐëöîõö·íínÌþ Õ@q»ÝüõœBËÛÍö¡ÞÍÅ?z¨yúÍœþÌh~7¿uxøgÿ_\{¸~x!\ïx{úü9#®²Ðwùë3ýÛ–¢…ˆñÕ8n×·Û“Ïbà«íúÍéO×úñ»´)Ä®ñôž3•P“7¾oÏ9õ@{Ïù£‰µµýcOð¥ŠÇPuÚß>yúòé^ŒÛ“ë«ï¶ëò!IسŒÈ©„ÒÎ3öwekÍ2€œcèHŸSÿcË‘BAúœZ“~R2É›S·—i„D0…”ÕUÌ.sÄJ˜K`‰jb…fßn¤v£##Ô!6—0°Q0¢¡~4ä©«ÓC—A¹†4´¿&c¥Â¡v‡å±Ø’äö›Ž§"‚¤ýs»¥@Ø
+½„¦ãëQÆ/“íêï-°|/…‘ÄƇ8k¦yŸcÃæÓ£Ú-´¤¡l2^¦,˘v—þ{ªVØQ·&ì.ɶ½ŸrÈUÇCú~FîïkÿŒD¨2Þdñá¢ÒµRÅÄ%C/³‡¥X±ø2jFâÉ:þÎ6þáýaâߣjñáQ%°ºžÒ_Š)T[OT þÌj7ùPNÕÖ;q$ãcÙ(°vˆ|¯ÙxÚ¥T!mÔŸs(Õú“tJ“ùbWêûAâ™m¼©Ý‡5Y~¤ÆR³R¯6±».5’ŠÍ2öþðŸ.óAØuüHDªÚ_ÑJŒüQã;ÔFba3dn!“ÚH”¤ùe=3WÙIÂ&ßÏ)ÉÂ$ìV?›JìžÔ®²R¶›2Ö/jéUPÀ1d{5ÛO¹6YoÝ/õÀ™UFuhåbux$žyÏܾ¹À·3€µ>c°?û„~´1ïš$ôíQ‘³¾¾}èWFº¹øQpR~3?2I$Ãî7sa8 {0ÜÌÅÏ,™søÍ\üIwÚá7sñÛ„ÿœßã0žóÌe<ËšÕ2>¡¨•ú@Ƨ<fÏ÷g<XÕ$ÂÓ—_}½·¿Óæ}´3êÚ¥Šk¹1´s+VMº¿Ü¥†íhO‚ìx ¾´ ñVÉí\u‰´Ë’ñ‚v»ßÐ.CSt:Úy8ŠíŒ1ršh¿¡ÚÑ4'žhg”~îí<ØJóŽv Ȥ‡¡=E/¥Žv®dÒÂÑž¸ï¶¢]ˆ¨(s´A[hOæà‰ö„ikq´3¤hr´'4c¢Qñs™h—x)jíôZÐŽ0ê혟*1G»ÄCããh›ÒD{B®¶1Ñž0,ýž£]ây¢=…*]íZÁúD»$“Û†vI‹<Ñžbµ|q´ËúZ†vÙ¥ŠFG»LËÆgh—õyA{,&Åí5ñr´k…ä‰vÆ1A×ÛÑ.aU©çh—|‘SÏv„EÇëh?6‹£]òW¥¥£]¾¯óu´ëûy¢]÷Âv
+kœhgL[uöŠvBuIþéÐî=˜tûæ6ϸxÖúíþì¢ýÑÆìšn°Û£"›¦ß>ô+Ý\ü]Eòá7sA{ÌgÒÀÌÅϘÝâ7sñ'MØÃoæ*=tÀSzãt*{>ÐM÷(¥8@ïÛ˜Q[°÷¬qº7}Ið—í„ýì·Ø¿±ÏÂBLf§0¡ çqP˜Pxx°9Ö•Â,Õ™'…eWIa:(jö®
+ª¨RÉ)LBL“„1hUu
+ªhì“ÂK?P…AÍQ&…e.µM
+Kÿ¦ŒÂÕ4),vJ“ÂÔLÇî–ÏØ×(L8°Ö6),ã³µSX6Sš–ùP¦æ÷Naür›–ñ^(\’Uu§°ä¾QÜ)ŒåPã&ÏBa™ŸRË)L=ÙÎ),ã¯4)Lø¬àÂâ7ª…%Œv`6
+àQÆBa9€—Iác>Naé_Çç&¤`L“Â:žå€-aoË[Ö‡ó¤°ÄOU•SX–Å.œÂ(^¥N
+“¼V'…ÅÖø8…¥:œQÓæ>)|ŒÇ),ù¬*q§0>“ꤰīÄIaj$i{PXâ£NaɯN…‘O9þŠÂ8ËÅË·o¿hEK€u€l6S
+ø¹Û-Ö+xeÏöv¸wóðËž@ŽïþÝ<ü’sBj÷ïæô‹däéwóðŸ
+wŽþðß?³ðO øC®ð¤€ hŒv —Ú¶ƒÞ/.û]3éÞ=k<îÜ…ì¬1Røâ‰õRãd‡ž³Æ™y1^(ÉrG¹6>Ž»k&ÂÉí‚Ž:JkÛ3©g>¦ôî±ü¹ ‹’Á%;S!þç·?¾¾B¢nOþ{Pü%¢žçï+$Gþ´¬ÃúʬEþÉrŸòÏÌÅÏz§{øÍ\üÖÝ៽ßQ$U%ËåôCã^¬j4`ô0iG˜.fÿÿne>&íÀ
+¶®¿üòÃ[•WìÇs9®—*òE9Ôœ¨Ýxˆ9IÅ¡‰9Ós”º‹3sÂø>Åœ uL-‡FŠ&—r¢,â¢ä$.ËO%çq!¹¥ºÃu±_„ï:ŽÛÙmŠ|Í~¸qGõì‡vK™20ÕkvWq ……]Äá¡^ªïN~ÈSÉ7®áH½¨q 7üœ¾+8P*EÁ%6»‚#(8=Ç»‚ÃB´å
+m[éB®%ׇ¦ßÆ~)ãòM.)xÊ·î?/íê
+Q¤<Õ>©âÄÅ›Ü -7($’'NíÖ\šîÒM~û‰SºA‰éuÜ®Ü Äµ)7B¬í¾Ã”›
+7N.ÄL¸aÝ"MÝFØ*ª£]·á%“¥.Ûb²ärÙ†yEµÉ¼íòÜT›ŒMUè®ÚhWq¦ÚZ¶¨ºh~sæš
+G“h.ÙsÉ.ÙxØÉ%¶–*ÜWw†NrèLÞXañòÂ’«Q‹Qçù?ÞáìX¶'ïÞžÿó—wÛ_¾÷¿Bi^oϾÿ×öÍëŸy÷öýÙùÛKɪ¿+ÊÏWrB'ÝS;*OÿC –T
+endstream
+endobj
+86 0 obj
+<<
+/Alternate /DeviceRGB
+/N 3
+/Length 2596
+/Filter /FlateDecode
+>>
+stream
+xœ–wTSهϽ7½P’Š”ÐkhRH
+½H‘.*1 JÀ "6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Idß¼yïÍ›ß÷~kŸ½ÏÝgï}Öº üƒÂLX €¡Xáçň‹g`ð l àp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁ ÿŸ”¹Y"1 P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6 (’Ü.æsSdl-c’(2‚-ãy àHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™Yár fÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™
+ °¦eµÙú‡mi ]ëP»ý‡Í`/ Š²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~ (* {d+Ðï}ÆGùÍ‹Ñ™˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸ àA(ˆq`1à‚D €µ ”‚`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð
+Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº
+C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX
+?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL”ʅ⢖¡V¡6£ªQP¨>ÔUÔ(j
+õMFk¢ÍÑÎè t,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ
+År°bl1¶
+{{{;Ž}ƒ#âtp¶8_\<Nˆ+ÄUàZp'pWp¸¼ÞïŒÅóðËñeøF|~?ŽŸ!(Œ ®„HB*a-¡’ÐF8K¸KxA$õˆNÄp¢€¸†XI<D<O%¾%QHf$6)$!m!í'"Ý"½ “ÉFdr<YLÞBn&Ÿ!ß'¿Q *X*(ðV+Ô(t*\Qx¦ˆW4TôT\¬˜¯X¡xDqHñ©^ÉH‰ÄQZ¥T£tTé†Ò´2UÙF9T9Cy³r‹òåG,ňâCáQŠ(û(g(cT„ªOeS¹ÔuÔFêYê8
+C3¦ÐRi¥´ohƒ´)ŠŠJ´JžJÊq)¡Ñèéô2úaúuú;U-UOU¾ê&Õ6Õ+ª¯Õæ¨y¨ñÕJÔÚÕFÔÞ©3Ô}ÔÓÔ·©w©ßÓ@i˜i„käjìÑ8«ñtmŽË9‡çÜÖ„5Í4#4WhîÓÐœÖÒÖòÓÊÒªÒ:£õT›®í¡ª½Cû„ö¤UÇMG ³Cç¤Îc†
+Ó‘Ψdô1¦t5uýu%ºõºƒº3zÆzQz…zíz÷ô ú,ý$ýú½úS:!·
+ñ†,ÃÃ]†ý†¯ŒbŒ6u=2V30Î7n5¾kB6q7YfÒ`rÍcÊ2M3ÝmzÙ6³7K1«12‡ÍÌæ»Í‡-ÐNB‹‹LÓ“™ÃleŽZÒ-ƒ--»,ŸYXÅ[m³ê·úhmonÝh}džbhShÓcó«™-׶ÆöÚ\ò\ß¹«çvÏ}ngnÇ·ÛcwÓžjb¿Á¾×þƒƒ£ƒÈ¡ÍaÒÑÀ1ѱÖñ‹Æ
+cmfwB;y9v:æôÖÙÁYì|Øù¦KšK‹Ë£yÆóøóç¹ê¹r\ë]¥n·D·½nRw]wŽ{ƒû}žG“Ç„§©gªçAÏg^Ö^"¯¯×lgöJö)oÄÛÏ»Ä{ЇâåSísßWÏ7Ù·ÕwÊÏÞo…ß)´ÿ6ÿZ܀怩@ÇÀ•}A¤ AÕA‚Í‚EÁ=!pH`Èö»ó
+ççw…‚ЀÐí¡÷΅…}Ž ¯ aQÑ¿€º`É‚–¯"½"Ë"ïD™DI¢z££¢›£_ÇxÇ”ÇHcbWÆ^ŠÓˆÄuÇcã£ã›â§ú,ܹp<Á>¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀTž§ú§Ö¥¾NMÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6%
+5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%KK+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-ep«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s/¼oðlÐÙóç|Ïé÷ì?yÞõü±ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVúç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñOŸ~÷„óû
+endstream
+endobj
+90 0 obj <<
+/Length 976
+/Filter /FlateDecode
+>>
+stream
+xÚíX]oÛ6}÷¯ P`€Šåå·Šu at 64ÈRï)íƒbË©Gî$:+†þø]š”#©
+»ˆš{¿®/yÎå=2£B*BX¿i®‡ãØ\ü:c—¶GýêçùìÅ©ä€æJq2_«)AŒ*g–ä2ÊÓ€«äuëªÛ•i&Ž>.ʶ
+ý‹Òm›ºMßÍ{q
+†ä4×\{Œd\R¡MpÖs!DRv.°ß/ÓLJ™´Û+×WÕ×~Y&›·LˆhYµ7Ùª)£“ÝQ¿ó¡0às?î5;ëϧ¶~=Ÿý9ž VP°’he©4–,ng~^
+@¬%‘–j ¤)ÉjöûÁ‡:,àÇ´Ö£
+žÕÁv<yY§e"‘t:·´<y–fŠßsÌ÷;ŽíU]¹ªXW—Ë0qU®6Mú[WáÊŽ:Á6´¿œœŸÅßé?÷¶ý'Zb\bH}041¤òc/K‡7÷#%ü3ïÐΡ¹ÜEúcvÔF˜Ï7O†8u/NAæC3IcjO÷ðo™bÛ,nèrõ<¼ÿfÕà,L MBᩆDXlÖuq[N
+Žj¥èƒ³§ãјDÉWSÂnå|O…Å”@+Êôqž2n¿ù>ê'Á².=ÉŽ&Ú#–Ä(…Æ:(¼M„á$“šjQ V.JëÊ®w¶Á’e¹F£Kþ¨«»Tó¤h*/z¾(.Rn“m„Mô‹â§)¯¼M«’M¦°Ú«“³“ÔŠdFE½ŒÒj ´î]ýU¹÷á²®5ÅåûW"Zõ+uŽ…Úv6¯ÒŒ›°¢K-ì
+x`?Äš™ÞnòÝ,Íùx7ø·ÝòÎpLѶ¥û„¡D0æóH‚Ê©RöeH”æxá™2ô™³ê)ˆ»íÝMÕ!…å]VM
+/G&sþ ^¹|~ÔH2F™òèª.wÆ“÷`ãF‹1½‹ªô¶¹q“ËR… ÅäÂ×¥{ã
+WaáX|cá¾½;‘dz&Y<("j±
+×ÞGÚþñoõ[Òø Û4¾"ù®Í]±ÞF³sÿEÂ~úä>u/–gñ¾+ÖÞÑ%–|,÷ Pq yAY¬š‡‘û•œåÁCÐÚ>ðχþ¯JçݧïŸS®öþä<®KÐùgŒñ žH-_šÔóõ&¾’eáŠÐÛé£ð¹E×&þ}°®êrÊ$áƒ?ì7½¿"+§Pð#MˆZ© –£Ò´!
+yÄáQ±ý<?–
+endstream
+endobj
+95 0 obj <<
/Length 682
/Filter /FlateDecode
>>
stream
-xÚ½VßkÛ0~Ï_!Ø‹
-•ªÓo—1è¶vt4Ðe~ëúZ¥„ÅNg;cƒþñ;Yvë¤{‰!Á`NŸtº»OÒq&•&„›êq»ß5³/Npˆ`»×,À9œ À)
-+È}1ù5aNIcZÄ@l‡úyâôª òy=ù†_¿‘Bûµé`ñùäôR À2ÉÄ…AI$¢%üÜ&ÀTJ„N.—M³,S*N>ßL£4]cɃ_¥TsžL7«fù´òqøzYúyµMïò¯§—¸¡ŒeF˜`›*“ÆF»³T¸dSâ){kR%•¬|]/SHÖeT-ÖUDOÏS'“<,¾g8n#ýAӢߪ÷F_äƒd9ÉÀ)J2!Æ4½’˜‹jÌ:C*O!{îj?‰6ÖaW£§(‡vW‰È–ƒF
-hÐQP(Ǹ‰Tx‡¼BþM¯§QhÙ0&ÇAþ_°Ã?"qKr›™`Y&EÜN±*FYÇ,aOËðÏúlëGn[ßÓQ6¬´oì*£‡fà!^
-p8:xìø
-¤°€Þú®¹ÿ3óͦ*ëÛ“q¡FvqÆuˆ®îÍ®ò5Ø0ÆH{ Ãxûµ‹%gÞm"š4pwÏØŒóê§o0pL&Rm™–ª;q2Râ~íG'¤ò˜!Ðø2ô¶ëMyø{Lç·ï‚à<^x£©p84¡F0k4––¹LwïE÷`Ì|ý´.k{XäQjOéË._'‡£u³,æM7ë{óÀ¢tQU¡Ðb›ßóÕ¦ƒÝT!Pž›ç>Jÿ[? îªl|uïŸâé¢ ±6³ڥT;V½Œd<‹“%¾¡žò>
-¬ºr§FÀpG¨Š—Rë™A
-¬‰þ AZ…
+xÚ½VÝkÛ0Ï_!Ø‹
+µªÓ·Ëd[[6–ѵ~ëú5Næ$ŒúÇïdY›Â †„€u:ÝÝï¾t£B*BX©ï^î»åò|Ä\wÒÔa0 †¡)Nn—£ß#j¥Ðº•è‘íQÔëÇŸ–œ|\¾á/:E²h;ë_ŒŽÏ$' 4WŠ“bN¬?D ´ RÌÈuT¦ WɇñÅ$Í„QÉd+$³²:I3ÅX2ÙTnq_•áxÜ4¥ëÈÕ´úÛ,šô¦ø||†ä4×\{,F2.©Ð&à\¦Ü&›ª ¡„Lêò®.›f‘B²^y+;&—!^î÷½¥•~ÍÞYú´èUÁ
+
+VŠJ„Æüz¾˜wƒlL²Â´×%™ûúìèÕnïSZ‹[…‘"muÝf¢dÛ\ZöêÝõ—–2jþ»kòeˆPvOÍ×u Æ“qqÉó¯9]Í¢F1¨)<Ñÿ>Éö¿(‰1ˆ—=†æ‚ÿ—Õr:–wJøosø’‡räº
+ñm6Ãód›"Ô½q<hÀã`[æ—cÏsˆèß™båÃeé6õª¹>–jlGF™òÙUñ–m3Ÿ“
+C@Ú àÏÛ_k,9Ù³·‰Øk]঻kËú—ÃJÀ!»0S†*!»Û&B;Ü•îÊMÝ¢q‹Ûæ]©Ñ‰\õ»/þà”ìOšd§7Ôâ†,NYm±§˜¸åÔ•¡¬WnFuZ×qÚº°ü™V›Nì¢öñ¾{t1à§!(ží·3¹ºÿ9¥ÏS_
+¨™`炲,͸ƿ3þA¡Œßä,
+ƒÖÖðÿü(·ßZípÊ5€xó@àÃ" cŒC¼5{üûíž^[¯Œ³$“á·‘©
+„Ž–í0k
endstream
endobj
-80 0 obj <<
+87 0 obj <<
/Type /XObject
/Subtype /Form
/FormType 1
/PTEX.FileName (./figure/ex4.pdf)
/PTEX.PageNumber 1
-/PTEX.InfoDict 89 0 R
+/PTEX.InfoDict 97 0 R
/BBox [0 0 504 504]
/Resources <<
/ProcSet [ /PDF /Text ]
-/Font << /F2 90 0 R/F3 91 0 R>>
+/Font << /F2 98 0 R/F3 99 0 R>>
/ExtGState <<
>>/ColorSpace <<
-/sRGB 92 0 R
+/sRGB 100 0 R
>>>>
-/Length 4308
+/Length 4292
/Filter /FlateDecode
>>
stream
-xœµ[M¯%·Ý¿_QËîE*ú*UÕbŽ‘`Àƒ8Ý@N΋§o2Ž
-ÌßÉsŽ¤Û07‚Y¸Ÿ©C±ôA‘ªºyûbËÛwÛ÷/_mßoǽ§¶uomk¹ígÙê™÷£lÿüvûãö÷—_ÿð‡ÿüÍöù»—´§”¶õßwŸÿ—IÏcû¿—¯ÿ¼¥í¯/yûÂþûî%{ƒíË—mkéÜKÛêÕ÷rlUrîg5tíí0tí÷aèÞï&ôêsÞ[ú\ö>¹Ba)±é“[÷c±(Z«oêé¸O~¿¾¼³öµd¬Ò’›}¬’¼ßÙPÙK7T÷lÝ–ºŸMè5Z{©Sß}З(l£5$õ
-·ÉgLm¡5ú–~‰»úg)‡Íµå»ííŒg’c¿ÍÐa#y:÷|j{¾„^£õ±÷>õ}¿.QØFkJÊ~ß“›÷s±Ù7õô‹ÜÕoÎËöjó˜ºÑc•ØhØØš¡ã4d£Q
-Õ=B1vfìhSøš\¢°Ö”4Ÿ‚Áµ5´Ø„Öì›zúEîê7ž¥Õ¾×+|éÜ/”؞ʶGm‚{2”ÚªmßK(Ö´M²÷G½-®sr‰`)‰Y7±×h(Z³oéé)¸O~k^b¡—~ì-q^(±åpÇØU[ÓýÚsŠq½ŠÆîÜkšúËÃÒà…m´¦¤îw™Ü²Ÿ‹í@šóè›zúEîê7ç¥Å‚«¶XžeHl1_†âOµ…~'C1(D阡¿÷ká…m´¦¤ø\[J‹í@h;©§_ä®~sïwÛqwDž„ý2$ejŽ8uV
-8QìO››ë¡¿÷cá…m´†Ä–“EYq-2ÕiÑ·ôðKÜÕoÎK¶¸hÝÖº—ó"Ió¥Ý2£èáÑ£åÓ'˜'Æþ /iï“+¶£µ$y¿òä&Àa;l³oê鹫ߚ—Ó‚lÑ¡fÎ%rîI[—Ùv\²nOó%ÅØeO÷ÔW7#®PØFkJJl
-q³¶i£oèå¸O~sï›=[pÅŽ„óeHºÏeõ”ÕÓc|=›o¢ØŸgÄ“¡È3¸Da)±({MnÙëb;Z³oê鹫ß|ÛXKüºÇ$±]uÅV;rœ~¶ÿ|«¥$ýÙ6çÉúî!gp‰Â6ZS’}47E”í4b¤ú¦ž~‘»úæöƒ(6çEÛq}«¶X=³ðMkcSKd@ÑŸ-Ø3O}ó#sp‰Â6ZSrìõžÜL¶›rŠÑ7ôòÜ'¿uV^žU”+ùÞ}¬’âAÏÏ3”bù¥~Ö—âfõIú˜Á%J#RPrÞˆ²àž—ï_ÙÒ9ì}SO¿È}ò›Ïb›ç°ÔÉØZ™'SR#^ø66Ž…T‘v!å²–•ý‰˜¸DEQvHÒ~µÁ5aŸ¶Ð}KO¿È]ýæ«‘i{ÔÎÈa$±AñôÜFËÇ/ÛÍ-rv¢X6Ò~þJo`áÁ6ZSb!à\KGÚ´
-„Öè›zy
-î“ߌÉW$¡Ùþ\<+%‰ðéËå¶ýiUƒ/Ï+N[¢ˆ›W$KCg÷à…m´¦$Å#‘k«&OÛ@h¾¥§_ä®~+&7?°ó=÷¾$Ø¿'ú»±·-¦¶*„¸yù '½u”'Whî}I°ÅÅÞ–í¹÷Õ7õô‹ÜÕoÍË#ö±Jp›Â×ôu{æ[¬|ôX„±»½P’ÞÂç=¹Ba;ZKÒÜÉÁE&Û`›}ShiwõÏbõ¶|ËNl n/Aí@òÃÕ2[°6–’x_6l^XQ{zÌ ¬FS
-¬Ú8Åóp1¬DSôI-½oõ•¡ËÏÊ„´S1$‘6;µ=Õi1ÍOô$„¤êFZ½mr…Â6ŠHŠëéâ´
-Ûè[zø%îê·ÒüeŒOÏÅ4Ÿ[~,Ïåª/›+Ž/‘€”Š}ê{”Wâ…m´¦$ÜɧlBköM=ý"wõ[ó’#[x`š/‰í̘—8é"RXX·üÇ WÎbkSß½h\ ØÖH‡äÔØ:×3±iÑ·ôô”ÜÕo=KõíYj=ù,”Ø×
-5°‘¶¹/õB§Ÿ%Cãð&—h$ˆC’¼:×Rž>m¡5ú–ž~‘»úÍ0|…¬Y!ÀRrHâÞÃo Ì^³lÉòVŸÒz
-!°†?C¾.QV))‰=’_g[®HEiÑ·ôðKÜÕo•,q{å‡N*,Y(‰bÔ+j?ì¤òˆi™—@(+z%éÏ(IÄ%
-Û¯,‡\bg sAçÚª©Ó6Z£oéá—¸«ßs^<õ·5ÂòkHº—P>6DJ—rl¼; i^ê=õW”$â*¿†¤z 5¸ÅbØ.*¿FßÔÓ/rW¿•NÆ6Í&ËŒc’ô˜D«ã,ØúØøt§êQ’è•É癧þˆÃ[\¢cD=Iª‡ßÁ-‹†í2¢žú¦ž~‘»ú£þFº˜|<V‰U9çŠkW¢;²F"Þ5î¤oq— .Q+’’‡¨¸v~¤iH‰÷M=ý"÷ÉoÍKõZÌ+ÐÊ’E’æÉd*QÁZ5ÞRm„±;½fúÛg~p‰Â¶Òüä¸t7E¹#Ûi”Cê›zúEîê7çÅËh/I®1/”X6âckn™¡R2–n÷)%ÂÄ'†ô(ŠÄ‚m´¦$îåŵ¤$MÛ@h¾¥§§ä®~sï§8ˆŠ…òΘ,IŒ´ßr-®#ªß€ÆÑDûÓª¡#}Ž#S\¡°Ö”àE€¸1ÒÃvñ^}SO¿À}ò{¦Æ7.Rù,’ØÌš?QdçŒÛO_ýJHk:JWèý.ar‰`)9£î"·#€Ñ6Ð(pêÔÓSpŸüž9ŒgÍVèÚU’«Ô‡ÁÖÁ}Æ*õa8„”•xÒŸ~+>¸DǸv•¤úÊÜE»l—qíª¾©§_ä®~«üByÙãæï±J:ÎW”¦=Šz¡tÒËÔ£ì—(l£5%‘UndÕÃv ´fßÐË/pŸüæ¼+zÜNUæü’t/8›ý‰ÛËsëvœþN(Æî¸ý½šôÝrúÉ:F/ ò5qã!†í@°Ýu+zúEîê·^…1W–@zFI÷ú§X>Ï6îÅ¿ë yFÁš¦¾Æ"W¨©ˆ’êéýàfàÃvV=ú†^~ûä7טm«ŽjÚc‘œ¸>ñ$¯x¯rBŽCzF}p‰`[©!Áõ ¹öämÚŠÖì›zy
-î“ߺÚ/~ßä'µrIˆúí–_!eµb5Nù6rþWžú+⪸Deä0’¤ÈCȵ“¼MÛ@h¾¥§_ä®~syBÅ‘“%±ÄÎÉ7ü
-ØŒ¥tèuU±ôþìS_½ W(l£5%ñ"pSÄsÙN#Þ«oèå¸O~Ïœßó;ÛQí9Hº-‘
-Ú6ôÒÜÌBzÅc¥ÑÐ[ð_¸Da[9HJëâ&¸LÛ´£oê鹫ß3ë÷z|,$9Uó:ÁϤtEÎäY:ò±¨ý¨¿ã—(l+IU>v!ôÅv åàÑ7õô«*ë‹íwÊ\Þ±Çd<$%ÒVqmy·
-š·v$–*„“üŠñ‘þö+¯Á%ʪ‘%± åA®Åó>m¡5ú–~‰»ú{˜Š+òî<VÉå٢ߕÄÕ>®¤[ÇÕþ¼²n®ö©¿q™O.Q× Crø-Úà6ˆa»é€Ñ7õô‹ÜÕo΋w‘7¡Ì›J
-n„‰ìQ1§„`VcµÅÈYø:î©?<.‰
-pKM
-pâ‹Ø@ÓèVZ8DÞâ®2Ê·~~wÉ•%ÉéÇ)3·ì7¡gäx~„¬ïŠ]K=rDq…ŽqBJÒ’[â”í2NHõM=ý"wõÏ’;*Ìrk:$©ñn×—¡¯TMë›Õ+Ðk´Fu+=z¨Œkæ!9ý`_öÈv×Ìê[zzJîê·^LÖȯS|ÝðX%¨C,¨ZBUR|áé•gê@xyxúù=ôwKâ…m´¦$¾œ\Ô!²=?vRßÔÓ/rW¿çí‹×Ñãóc•ÔH$lm×/™ýæ*r¶Þ§ø}©ô·¿w\¢<ïS(‰wâZtº§m åÒÞ·ôô‹ÜÕo±»¸G"ðX%
-âJÊGõÀwù®%Šu` —y'½7¹BE±nH²¯qlØÂCßÒÓ/pŸüæÞ·l¦ðeNÈ!©qj™Pc´ñ¢o9€búGuêc1.QVÎ6$¸ä'·Þ(ïa»ŽÛvõ-=ý"wõ{V-þµOí>`UW#^9øûýM6„œHU‹“¾#Ã%W(l£j¡$®U¯de;ª–è›zúEîê÷|ÉzùGtqµþX%^}f?Å2‚º¿=º^²Zé5ô‡ß¹.QØÖKÖÄÝàÆEý°H/Y£oèå¸O~ÏÌÅ“ŒRUIL/ØýD.¸ ¸ã5‘rÿÀ’jGeÜꨌ%‰`;¸^‡í¤9ú¦ž~‘»úgÁ»ŽTü}¬’ž ù“)BJᙤ,ÌßHJÇý¢¸Da[O’„‘ ®¿ =‡m"eaþzYzúEîê÷¬Z¼ˆMñIìc•ô¸I³ÃÈt;1b&|FpªâóÊÛI_}q‰+¶Uµ„¤†QqKd ²HUKô
-½ü÷ÉoÆä32Ëx‘$ÁåÙµ¿°ÉN…;Å[Û¸ 3ý…Ä=´ñ9
-y§®$8â '¯ù‘¬6Ý©OhéÍ¡k÷6¢°?¼>ªñ˜I|0çutö/=»‡n/§½ªB©žü‚Gú3rmq…êø"V’â‰ÈàfOx‡í<¾ˆUßÔÓ/pŸüVrÆ;_†JîCRSöä x|a[<ú7«åÜ,BeŽœ¥/ñÙ.¹@´Ö”\¾ëÉõ}ž†m"ç1ôòÜ'¿•‚¥¸œq¼=VIÇMSŽâÛ‰¸“ªXû”&uê|ÒuKuÛhMI‹eq㈶Ça:ú¦ž~‘»úíÏòÕöý¿÷±¿_8ü)ÁonÂÛ»Ô@=Bk=×)÷PN½—66½ÒN½ŸûÐNý“;û©ÿÍ{>üë?ñð?¼þýå׿³¬i{ÿß–‚ïTà`ß#VóŸ~J¼lo~å{æíöþ»—ß¾ë?O÷‹÷ÏüôËù ý&uå§Oèß7¨ßd
-¾ë>~Ç'•OôÑ;~c’MéÙ0rRïx/ícÿ±•àÔû2¶ãAz©÷`fÙ†ô„‹ýì}¼å™~µ<j‹”k|KËá-?5<?Ë—6YãóÉtÙskx?½wÿ¹…ÐÛóäp_¼4
-«môAпE±ÜàÕ!ä—l¤Ê¥Ô>ZJM+ÙŽÅÖoŸ_÷öóÏ~ÿåöûÿøñ¶ƒßáø{³ñõ›Ç7ÿ|kƒrloþöÖ2ƒíÍ·?¾ýóöþ‹_8„ö¿7Þ1—?ûò³·þáÕöæý0ôÿÿ‹*XÇ7~Æ0?þS¡Œ½ 6¼ö[[Øùh‘¸l¢Ÿ šêOŒé£9‰Ï¸"ðI.Ìë7þ÷¾Ùþc‹o0þôÆþZô§·?9Ë?g1ÇoÜâ_¾ýÑ
-ÆO¡ÌàéUý4øÕË¿ `/ev
+xœµ[M¯%7Ý¿_ÑË™¿Úݽ`"@ŠD˜‘Xá„B."‰¿OUslßQe„Xd^N•O¹Úå*wß¼}¶åí›í»—/¶ï¶ãÞSÛκ·¶µÜö³lõÌûQ¶}½ýaûÇËÏ¿ÿýo~¹}úî%í)¥mý÷ݧ¿5éylÿyùòO[Úþò’·Ïì¿o^²7Ø>Ù¶–ν´^}/ÇöX%ç~VC×ÞC×~†îýnB¯Þ:罕¡Ïeï“+¶Ñš{>¹u?Û¢µú¦ž~ûä÷ëË;k_KöÁ*-¹ÙÇ*Éû
+•½tCuÏÖm©ûÙ„^£õ±—:õÝ}p‰Â6ZCR¯p›ÜzÆÑ6Z£oéá—¸«ßx–rØØ\[¾ÛÞÎx–!9öÛ6’·¡sϧ¡¶çKè5Z{ïSß÷ká…m´¦¤ì÷=¹y?ÛК}SO¿È]ýæ¼Üi¯6©û=V‰†:NC6ÕPÝÓ!cgÆŽ6õ‡¯éÁ%
+ÛhMIó)\[C‹í@h;©§_ä®~ãYZí{½Â—ÎýB‰í©l{Ô&¸'CÙ©Úö½„bMÛ${ÔÛâ:'—¶Ñš’˜EqÓ{¶¢5û–žž‚ûä·æ%zéÇÞç…[wŒ]µ5ݯ=§×«aìν¦©¿<,
+.QØFkJê~—É-û¹Ø¤9¾©§_ä®~s^Z,¸j‹µàY†Äóe(þT[èw2ƒB„‘Žú{¿.QØFkJŠ¯ÁÁµ¥´Ø„Öì›zúEîê7÷~·wGäIØ/CRÆ æˆSgÕ€Åþ´ ±¹ú{?.QØFkHl9Y”×"S¶Ð}K¿Ä]ýæ¼d‹‹Öm{¹1/’4_Ú-3Š=Z>}‚‰pbÜèú’ö>¹Ba;ZK’÷+Onò¶Á6û¦ž~‘»úy9ý(Èjæ¼Pb!玑´u™mÇ%ëö4_²PŒÝYötO}u3â
+…m´¦¤ÄÖ7»Ña;f1ú†^~ûä7÷¾Ù³WìØJ8_†¤û\VO9ÌP9=Æ׳ù¶ ŠýyF<úˆ<ƒK¶Ñš‹²×ä–½.¶¡5û¦ž~‘»úÍg±e±ÄO ‹qLÛUWlµ#ÇégûÏ·ZJBÑŸmsž¬¡ïr—(l£5%ÙGspSÄ@ÙN#Fªoê鹫ßÊan?ˆbãq^$±×·j‹Õ3ß´66µDÖýÙ‚=óÔ7?2—(l£5%Ç^ïÉmÀd»)§}C/¿À}ò[gååYE¹’ïÝÇ*)ôü<³A)–ßY:ágÝq !nVŸä¡ \¢4"%ç(îyùþ•m ÃÞ7õô‹Ü'¿ù,¶yK,•y2%5â…ocãXØHÙiR.kYÉÐß‘ˆ‰KTe‡$íW\öiÑ·ôô‹ÜÕo®±™¶GíŒFOÏm´Láqü²ÝÜ"g'Šu`#íç¯ô¶ .l£5%ÎÁµt¤MÛ@h¾©—§à>ù͘|EšíÏųR’Ÿ¾\nÛŸV5øò¼â´%Š¸yE²4ôqv.QØFkJR<¹¶jò´
+„Öè[zúEîê·bró;ßsïK‚ý{¢¿{Ûbj«Bˆ›—ŸpÒ[Gyr…æÞ—ûW\ìmÙž{_}SO¿È]ýÖ¼Ð8b«Ç°)|M_·g¾ÅÊG5@»Û%é-|Þ“+¶£µ$Í\a²¶Ù7õ‡–FpW¿ñ,Vo{À·üáÄv‘àöÔ$?\-ó°k#a))÷eÃæ…µ§ÇñÂj4¥ÀªS<Ã*@4EŸÔÒðV_ºü¬LHË0C)a³SÛSÃÑüDOBHªn¤uÐÛ!Ð&W(l£)¡¸ž.NÛ@°¾¥‡_â®~+ÍÏQÆøô\Ló)±¥áÇBñ\®ú²¹âHð H©øѧ¾Gy%.QØFkJ‘Á‘|Êv ´fßÔÓ/rW¿5/9¹…¦ù’ØÎŒy‰“."……uËüH zå,¶6õÝ‹öÁ‚mtHNs=›¶Ð}KOOÉ]ýÖ³TО¥Ö“ÏB‰qÝPÃi›ûRO!ôwúY2ô7or‰F‚8$É«q-åéÓ6Z£oé鹫ßÃWÈš,%‡$î=üÊì5Ë–,oõ)§kø3ôáëàe•’’Ø#ùu¹åŠT”¶Ð}K¿Ä]ýVÉ·W~è¤Â’…’(F½¢öCÀN*˜–ÙyY„²¢GP’þŒ’D\¢°ýÊrÈ%v–0t®š:m¡5ú–~‰»ú=çÅS[#,¿†¤{ åcÓJ¤t)ÇÆ»“æ¥ÞSEI".Ñ¡òkHª—Pƒ[ü!†í¢òkôM=ý"wõ[édlÓl²Ì8&II´:΂Owª%‰^™|žyê8¼Å%:FÔ“¤zøÜâ±hØ.#ê©oê鹫ß:êo¤‹É×Èc•X‘ãp®¸võ!º#k$Âá]ã.Aúw ⥱")©qˆŠkçGš¶”xßÔÓ/rŸüÖ¼T¯Å¼,Y$ižÜøH¦¬Uã-õ؆@»Ók†¡¿}æ—(l+ÍIŽK'qS”;²F9¤¾©§_ä®~s^¼Œö’äóB‰e#>¶æ–*%cévŸR"\@œqbH¢H\ ØFkJâ^^\KJÒ´
+„Öè[zzJîê7÷~Šƒ¨X(ïŒÉ’ÄHû-çÑâ:¢ú
+hMD±?:òÐç82Å
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/uwgarp -r 92
More information about the Uwgarp-commits
mailing list