[Traminer-users] IDs in graphs/ table of values
Judith Krüger
judithkrueger1 at googlemail.com
Thu Sep 29 09:50:11 CEST 2011
Hey everyone,
I use R and the package TraMineR to analyse payment data in 151 cases. As
you might expect, I have some trouble...
Question 1: I successfully calculated an optimal matching analysis and a
cluster analysis. I also generated the necessary graphs.* How to I get the
IDs into the graphs* OR *How can I get a table of every cluster and the
relevant sequences?*
Question 2: E.g., when plotting the mean times spent in each state per
cluster (seqmtplot) oder other graphs, *how can I get a table with the
corresponding values *(since I can only guess the values in the graphs)*?*
Thanks a lot in advance and good luck with all your projects!
Greetz
Judie
> library(TraMineR)
> library(foreign)
> library(cluster)
> library(RColorBrewer)
> datenR <-
read.spss("Y:\\DOKTORARBEIT\\1_Dissertation\\3_Methode\\2_Erwerbsverläufe\\5_R\\datenR.sav",
to.data.frame=TRUE, use.value.labels=FALSE)
> datenR.labels <- c("ES6", "ES7", "ES8", "ES9", "ES10", "ES11", "ES12",
"ES13", "ES14", "Ruhendes Arb.verh.", "Austritt", "Muttersch.,
Erz.-Elt.zeit", "Wehrdienst", "Weiterbildung")
> datenR.seq <- seqdef(datenR, var=20:103, labels=datenR.labels, id="auto")
[>] found missing values ('NA') in sequence data
[>] preparing 151 sequences
[>] coding void elements with '%' and missing values with '*'
[>] 14 distinct states appear in the data:
1 = 6
2 = 7
3 = 8
4 = 9
5 = 10
6 = 11
7 = 12
8 = 13
9 = 14
10 = 44
11 = 55
12 = 66
...
[>] alphabet (state labels):
1 = 6 (ES6)
2 = 7 (ES7)
3 = 8 (ES8)
4 = 9 (ES9)
5 = 10 (ES10)
6 = 11 (ES11)
7 = 12 (ES12)
8 = 13 (ES13)
9 = 14 (ES14)
10 = 44 (Ruhendes Arb.verh.)
11 = 55 (Austritt)
12 = 66 (Muttersch., Erz.-Elt.zeit)
... (14 states)
[>] no color palette attributed, provide one to use graphical functions
[>] 151 sequences in the data set
[>] min/max sequence length: 2/84
Warnmeldung:
[!] no automatic color palete attributed, number of states>12.
Use 'cpal' argument to define one.
> cpal(datenR.seq) <- c("white", "yellow", "orange", "hotpink", "red1",
"red3", "darkred", "skyblue", "blue", "grey80", "grey60", "springgreen",
"grey20", "purple")
> subcostmatrix <- seqsubm(datenR.seq, method="TRATE")
[>] creating substitution-cost matrix using transition rates ...
[>] computing transition rates for states
6/7/8/9/10/11/12/13/14/44/55/66/77/88 ...
> round(subcostmatrix, 2)
6-> 7-> 8-> 9-> 10-> 11-> 12-> 13-> 14-> 44-> 55-> 66-> 77-> 88->
6-> 0.00 1.75 2.00 1.75 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0
7-> 1.75 0.00 1.89 1.98 1.99 2.00 2.00 2.00 2.00 2.00 1.93 1.92 1.72 2.0
8-> 2.00 1.89 0.00 1.89 1.99 2.00 2.00 2.00 2.00 2.00 1.86 1.88 1.90 1.4
9-> 1.75 1.98 1.89 0.00 1.82 2.00 2.00 2.00 2.00 1.75 2.00 1.98 1.95 2.0
10-> 2.00 1.99 1.99 1.82 0.00 1.85 2.00 2.00 2.00 2.00 2.00 1.99 1.98 2.0
11-> 2.00 2.00 2.00 2.00 1.85 0.00 1.91 2.00 2.00 2.00 2.00 1.90 2.00 2.0
12-> 2.00 2.00 2.00 2.00 2.00 1.91 0.00 1.99 2.00 2.00 2.00 1.92 2.00 2.0
13-> 2.00 2.00 2.00 2.00 2.00 2.00 1.99 0.00 1.99 2.00 2.00 1.97 2.00 2.0
14-> 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 0.00 2.00 2.00 2.00 2.00 2.0
44-> 2.00 2.00 2.00 1.75 2.00 2.00 2.00 2.00 2.00 0.00 2.00 1.75 2.00 2.0
55-> 2.00 1.93 1.86 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.00 1.98 2.00 2.0
66-> 2.00 1.92 1.88 1.98 1.99 1.90 1.92 1.97 2.00 1.75 1.98 0.00 2.00 2.0
77-> 2.00 1.72 1.90 1.95 1.98 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.00 2.0
88-> 2.00 2.00 1.40 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.0
> datenR.om <- seqdist(datenR.seq, method="OM", indel=2, sm=subcostmatrix)
[>] 151 sequences with 14 distinct events/states
[>] 147 distinct sequences
[>] min/max sequence length: 2/84
[>] computing distances using OM metric
[>] total time: 0.33 secs
Warnmeldung:
The substitution cost matrix is not symmetric.
> clusterward <- agnes(datenR.om, diss=TRUE, method="ward")
> plot(clusterward, which.plots=2)
> cluster4 <- cutree(clusterward, k=4)
> cluster4 <- factor(cluster4, labels=c("Cluster 1", "Cluster 2", "Cluster
3", "Cluster 4"))
> table(cluster4)
cluster4
Cluster 1 Cluster 2 Cluster 3 Cluster 4
32 17 35 67
> seqfplot(datenR.seq, group=cluster4, pbarw=T, tlim=0, border=NA)
> seqmtplot(datenR.seq, group=cluster4)
Judith Krüger
Ph.D. Student
Germany
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.r-forge.r-project.org/pipermail/traminer-users/attachments/20110929/e15dec7c/attachment.htm>
More information about the Traminer-users
mailing list