[Splm-commits] r98 - / pkg pkg/R pkg/chm pkg/data pkg/inst pkg/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Apr 13 18:40:19 CEST 2011


Author: gpiras
Date: 2011-04-13 18:40:19 +0200 (Wed, 13 Apr 2011)
New Revision: 98

Added:
   pkg/
   pkg/ChangeLog
   pkg/DESCRIPTION
   pkg/NAMESPACE
   pkg/R/
   pkg/R/.Rapp.history
   pkg/R/LMHtest.R
   pkg/R/LMHtest.model.R
   pkg/R/REmod.R
   pkg/R/bsjktest.R
   pkg/R/bsjktest.formula.R
   pkg/R/bsktest.R
   pkg/R/bsktest.formula.R
   pkg/R/bsktest.lm.R
   pkg/R/bsktest.splm.R
   pkg/R/clmltest.R
   pkg/R/clmltest.model.R
   pkg/R/clmmtest.R
   pkg/R/clmmtest.model.R
   pkg/R/fixed_effects.R
   pkg/R/ivplm.b2sls.R
   pkg/R/ivplm.ec2sls.R
   pkg/R/ivplm.g2sls.R
   pkg/R/ivplm.w2sls.R
   pkg/R/ivsplm.R
   pkg/R/likelihoodsFE.R
   pkg/R/listw2dgCMatrix.R
   pkg/R/lrtest.splm.R
   pkg/R/olsmod.R
   pkg/R/pbsjkARtest.R
   pkg/R/pbsjkJtest.R
   pkg/R/pbsjkREtest.R
   pkg/R/pbsjkSDtest.R
   pkg/R/print.splm.R
   pkg/R/print.summary.splm.R
   pkg/R/sarREmod.R
   pkg/R/sarem2REmod.R
   pkg/R/saremREmod.R
   pkg/R/saremmod.R
   pkg/R/saremsrREmod.R
   pkg/R/saremsrmod.R
   pkg/R/sarmod.R
   pkg/R/sarsrREmod.R
   pkg/R/sarsrmod.R
   pkg/R/sem2REmod.R
   pkg/R/semREmod.R
   pkg/R/semmod.R
   pkg/R/semsrREmod.R
   pkg/R/semsrmod.R
   pkg/R/slm1test.R
   pkg/R/slm1test.model.R
   pkg/R/slm2test.R
   pkg/R/slm2test.model.R
   pkg/R/spfeml.R
   pkg/R/spgm.R
   pkg/R/sphtest.R
   pkg/R/spreml.R
   pkg/R/spsegm.R
   pkg/R/spseml.R
   pkg/R/ssrREmod.R
   pkg/R/ssrmod.R
   pkg/R/summary.effects.splm.R.old
   pkg/R/summary.splm.R
   pkg/R/sumres.R
   pkg/R/tss.R
   pkg/R/utilities_GM.R
   pkg/R/vcov.splm.R
   pkg/chm/
   pkg/chm/00Index.html
   pkg/chm/Rchm.css
   pkg/chm/bsjktest.html
   pkg/chm/bsktest.html
   pkg/chm/effects.splm.html
   pkg/chm/logo.jpg
   pkg/chm/print.splm.html
   pkg/chm/spfeml.html
   pkg/chm/splm-package.html
   pkg/chm/splm.hhp
   pkg/chm/splm.toc
   pkg/chm/spregm.html
   pkg/chm/spreml.html
   pkg/chm/spsegm.html
   pkg/chm/summary.splm.html
   pkg/data/
   pkg/data/usaww.rda
   pkg/inst/
   pkg/inst/doc/
   pkg/man/
   pkg/man/bsjktest.Rd
   pkg/man/bsktest.Rd
   pkg/man/effects.splm.Rd
   pkg/man/listw2dgCMatrix.Rd
   pkg/man/print.effects.splm.Rd
   pkg/man/print.splm.Rd
   pkg/man/spfeml.Rd
   pkg/man/spgm.Rd
   pkg/man/splm-package.Rd
   pkg/man/spreml.Rd
   pkg/man/spsegm.Rd
   pkg/man/spseml.Rd
   pkg/man/summary.effects.splm.Rd.old
   pkg/man/summary.splm.Rd
   pkg/man/usaww.Rd
   pkg/man/write.effects.splm.Rd
Log:
upload version 0.8.2

Added: pkg/ChangeLog
===================================================================
--- pkg/ChangeLog	                        (rev 0)
+++ pkg/ChangeLog	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,23 @@
+Changes in Version 0.8-01
+  o added spgm: general function that deals with all the GM estimators
+  o added the methodologies in Mutl and Pfaffermeyer (2011) and Piras (2011) 
+  for the estimation of the GM models sperrorgm and spsarargm
+  o includes the following estimators: ivplm.w2sls, ivplm.b2sls, ivplm.ec2sls, ivplm.g2sls
+  along with ivsplm that is the wrapper to use them. 
+  
+Changes in Version 0.2-04
+  o dependency changed from kinship to bdsmatrix; removed require(kinship) from all functions
+
+Changes in Version 0.2-02
+  o spfeml: Added methods for Jacobian
+
+
+Changes in Version 0.2-01
+
+
+  o spregm: modified to allow for additional endogenous variables and lag of the dependent variable
+  o Added spfegm 
+  o Added spseml
+  o spsegm: improved substantially and now reads a list of formulas. 
+ 
+  

Added: pkg/DESCRIPTION
===================================================================
--- pkg/DESCRIPTION	                        (rev 0)
+++ pkg/DESCRIPTION	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,10 @@
+Package: splm
+Title: Econometric Models for Spatial Panel Data
+Version: 0.8-02
+Date: 2011-04-13
+Author: Giovanni Millo <giovanni.millo at generali.com>, Gianfranco Piras <gpiras at mac.com>
+Maintainer: Giovanni Millo <giovanni.millo at generali.com>
+Description: ML and GM estimation and diagnostic testing of econometric models for spatial panel data.
+Depends: R (>= 2.11.1), MASS, nlme, spdep, plm, Matrix, bdsmatrix, spam
+License: GPL-2
+LazyLoad: yes


Property changes on: pkg/DESCRIPTION
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/NAMESPACE
===================================================================
--- pkg/NAMESPACE	                        (rev 0)
+++ pkg/NAMESPACE	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,25 @@
+importFrom(stats, model.matrix, model.response, aggregate, effects)
+import(nlme)
+import(spdep)
+import(Matrix)
+importFrom(bdsmatrix,bdsmatrix)
+importFrom(MASS,ginv)
+
+export(bsjktest, bsktest, 
+effects.splm, print.effects.splm, write.effects.splm, 
+print.splm, spfeml, spgm, spreml, summary.splm,
+spseml, spsegm, lrtest.splm, sphtest, listw2dgCMatrix)
+
+
+
+S3method(print,splm)
+S3method(print,summary.splm)
+S3method(bsjktest,formula)
+S3method(effects,splm)
+S3method(print,effects.splm)
+S3method(bsktest,formula)
+S3method(bsktest,lm)
+S3method(bsktest, splm)
+S3method(sphtest,formula)
+S3method(sphtest, splm)
+


Property changes on: pkg/NAMESPACE
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/.Rapp.history
===================================================================
--- pkg/R/.Rapp.history	                        (rev 0)
+++ pkg/R/.Rapp.history	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,16 @@
+system.time()
+help(time)
+proc.time()
+date()
+date()[4]
+sys.time()
+Sys.time()
+p1<-Sys.time()
+p2<-Sys.time()
+p2-p1
+lagsarlm
+library(spdep)
+lagsarlm
+proc.time()
+help(Matrix)
+    p0

Added: pkg/R/LMHtest.R
===================================================================
--- pkg/R/LMHtest.R	                        (rev 0)
+++ pkg/R/LMHtest.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,97 @@
+`LMHtest` <-
+function(formula, data, index=NULL, listw){
+    ## depends on listw2dgCMatrix.R
+  if(!is.null(index)) { ####can be deleted when using the wrapper
+    require(plm)
+    data <- plm.data(data, index)
+    }
+
+  index <- data[,1]
+  tindex <- data[,2]
+
+  x<-model.matrix(formula,data=data)
+  y<-model.response(model.frame(formula,data=data))
+   cl<-match.call()
+	names(index)<-row.names(data)
+  ind<-index[which(names(index)%in%row.names(x))]
+  tind<-tindex[which(names(index)%in%row.names(x))]
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  x<-x[oo,]
+  y<-y[oo]
+  ind<-ind[oo]
+  tind<-tind[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(x)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(x[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+	ols<-lm(y~x)
+	XpXi<-solve(crossprod(x))
+   n<-dim(ols$model)[1]
+
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+	bOLS<-coefficients(ols)
+	e<-as.matrix(residuals(ols))
+	ee<-crossprod(e)
+####calculate the elements of LMj, LM1, SLM1
+
+		JIe<-tapply(e,inde1,sum)
+		JIe<-rep(JIe,T) ####calculates (J_T kronecker I_N)*u
+		G<-(crossprod(e,JIe)/crossprod(e))-1 ###calculate G in LMj (same notation as in the paper)
+tr<-function(R) sum(diag(R))
+		LM1<-sqrt((NT/(2*(T-1))))*as.numeric(G) ###same notation as in Baltagi et al.
+
+
+####calculate the elements of LMj, LM1, SLM1
+		Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+		Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+		WWp<-(Ws+Wst)/2 ##generate (W+W')/2
+yy<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-WWp%*%q
+	wq<-as.matrix(wq)
+	}
+		IWWpe<-unlist(tapply(e,inde,yy)) ####calculates (I_T kronecker (W+W')/2)*u
+		H<-crossprod(e,IWWpe)/crossprod(e) #calculate H (same notation as in the paper)
+		W2<-Ws%*%Ws ####generate W^2
+		WW<-crossprod(Ws) ####generate W'*W
+		b<-tr(W2+WW) ###generates b (same notation as the paper)
+#		LMj<-(NT/(2*(T-1)))*as.numeric(G)^2 + ((N^2*T)/b)*as.numeric(H)^2   ###LMj as in the paper
+		LM2<-sqrt((N^2*T)/b)*as.numeric(H)^2 ###same notation as in Baltagi et al.
+if (LM1<=0){
+		if (LM2<=0) JOINT<-0
+		else JOINT<-LM2^2
+		}		####this is chi-square_m in teh notation of the paper.
+	else{
+		if (LM2<=0) JOINT<-LM1^2
+		else JOINT<-LM1^2 + LM2^2
+		}
+STAT<- qchisq(0.05,1,lower.tail=FALSE)
+STAT1<- qchisq(0.05,2,lower.tail=FALSE)
+if (JOINT>=2.952) {
+		if (JOINT<7.289 & JOINT>=4.321) pval<-0.05
+		if (JOINT >= 7.289) pval<-0.01
+		if (JOINT<= 4.321)	pval<-0.1
+	}
+else pval<-1
+
+	statistics<-JOINT
+
+  names(statistics)="LM-H"
+	method<- "Baltagi, Song and Koh LM-H one-sided joint test"
+	#alt<-"serial corr. in error terms, sub RE and spatial dependence"
+  ##(insert usual htest features)
+  dname <- deparse(formula)
+  RVAL <- list(statistic = statistics,
+               method = method,
+               p.value = pval, data.name=deparse(formula), alternative="Random Regional Effects and Spatial autocorrelation")
+  class(RVAL) <- "htest"
+  return(RVAL)
+}
+


Property changes on: pkg/R/LMHtest.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/LMHtest.model.R
===================================================================
--- pkg/R/LMHtest.model.R	                        (rev 0)
+++ pkg/R/LMHtest.model.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,102 @@
+`LMHtest.model` <-
+function(x, listw, index){
+## depends on listw2dgCMatrix.R
+
+if(!inherits(x,"lm")) stop("argument should be an object of class lm")
+
+  if(is.null(index))  stop("index should be specified to retrieve information on time and cross-sectional dimentions")
+
+  if(!inherits(listw,"listw")) stop("object w should be of class listw")
+
+  ind <- index[,1]
+  tind <- index[,2]
+
+###extract objects from x
+  y<-model.response(x$model)
+  e<-as.matrix(residuals(x))
+  	ee<-crossprod(e)
+   n<-dim(x$model)[1]
+  	bOLS<-coefficients(x)
+  	  	  form<-x$call
+  x<-model.matrix(eval(x$call),x$model)
+  #print(x)
+	XpXi<-solve(crossprod(x))
+
+   cl<-match.call()
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  x<-x[oo,]
+  y<-y[oo]
+  e<-e[oo]
+  ind<-ind[oo]
+  tind<-tind[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(x)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(x[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+#print(c(N,k,T,NT))
+#   print(ols$model)
+#	k<-dim(ols$model)[2]-1
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+####calculate the elements of LMj, LM1, SLM1
+
+		JIe<-tapply(e,inde1,sum)
+		JIe<-rep(JIe,T) ####calculates (J_T kronecker I_N)*u
+		G<-(crossprod(e,JIe)/crossprod(e))-1 ###calculate G in LMj (same notation as in the paper)
+tr<-function(R) sum(diag(R))
+		LM1<-sqrt((NT/(2*(T-1))))*as.numeric(G) ###same notation as in Baltagi et al.
+
+
+####calculate the elements of LMj, LM1, SLM1
+		Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+		Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+		WWp<-(Ws+Wst)/2 ##generate (W+W')/2
+yy<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-WWp%*%q
+	wq<-as.matrix(wq)
+	}
+		IWWpe<-unlist(tapply(e,inde,yy)) ####calculates (I_T kronecker (W+W')/2)*u
+		H<-crossprod(e,IWWpe)/crossprod(e) #calculate H (same notation as in the paper)
+		W2<-Ws%*%Ws ####generate W^2
+		WW<-crossprod(Ws) ####generate W'*W
+		b<-tr(W2+WW) ###generates b (same notation as the paper)
+#		LMj<-(NT/(2*(T-1)))*as.numeric(G)^2 + ((N^2*T)/b)*as.numeric(H)^2   ###LMj as in the paper
+		LM2<-sqrt((N^2*T)/b)*as.numeric(H)^2 ###same notation as in Baltagi et al.
+if (LM1<=0){
+		if (LM2<=0) JOINT<-0
+		else JOINT<-LM2^2
+		}		####this is chi-square_m in teh notation of the paper.
+	else{
+		if (LM2<=0) JOINT<-LM1^2
+		else JOINT<-LM1^2 + LM2^2
+		}
+STAT<- qchisq(0.05,1,lower.tail=FALSE)
+STAT1<- qchisq(0.05,2,lower.tail=FALSE)
+if (JOINT>=2.952) {
+		if (JOINT<7.289 & JOINT>=4.321) pval<-0.05
+		if (JOINT >= 7.289) pval<-0.01
+		if (JOINT<= 4.321)	pval<-0.1
+	}
+else pval<-1
+
+	statistics<-JOINT
+
+  names(statistics)="LM-H"
+	method<- "Baltagi, Song and Koh LM-H one-sided joint test"
+	#alt<-"serial corr. in error terms, sub RE and spatial dependence"
+  ##(insert usual htest features)
+  dname <- deparse(formula)
+  RVAL <- list(statistic = statistics,
+               method = method,
+               p.value = pval, data.name=deparse(form), alternative="Random Regional Effects and Spatial autocorrelation")
+  class(RVAL) <- "htest"
+  return(RVAL)
+}
+


Property changes on: pkg/R/LMHtest.model.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/REmod.R
===================================================================
--- pkg/R/REmod.R	                        (rev 0)
+++ pkg/R/REmod.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,157 @@
+REmod <-
+function (X, y, ind, tind, n, k, t, nT, w, w2, coef0 = rep(0, 2),
+    hess = FALSE, trace = trace, x.tol = 1.5e-18, rel.tol = 1e-15,
+    ...)
+{
+
+## optimizing version 1:
+    ##
+    ## exploit ordering reversal
+    ## and bdsmatrix functions as in ssrmod, sarsrmod, sarREmod...
+    ##
+    ## a) lag y etc.
+    ## b) reverse ordering and exploit bds nature of vcov(e)
+    ##
+    ## maybe exploit analytical inverse of the submatrix block (gains on
+    ## large-N problems)?? but how likely is it to have laaaarge T?
+
+    ## extensive function rewriting, Giovanni Millo 04/10/2010
+    ## structure:
+    ## a) specific part
+    ## - set names, bounds and initial values for parms
+    ## - define building blocks for likelihood and GLS as functions of parms
+    ## - define likelihood
+    ## b) generic part(independent from ll.c() and #parms)
+    ## - fetch covariance parms from max lik
+    ## - calc last GLS step
+    ## - fetch betas
+    ## - calc final covariances
+    ## - make list of results
+
+    ## change this to 'bdsmatrix'
+    #require(kinship)
+
+    ## set names for final parms vectors
+    nam.beta <- dimnames(X)[[2]]
+    nam.errcomp <- c("phi")
+
+    ## initialize values for optimizer
+    myparms0 <- coef0
+    ## set bounds for optimizer
+    lower.bounds <- c(1e-08)
+    upper.bounds <- c(1e+09)
+
+    ## rearranging module
+    ## save this for eventually re-rearranging output
+    oo.0 <- order(tind, ind)
+    ## reorder as stacked time series, as in std. panels
+    oo <- order(ind, tind)
+    X <- X[oo, ]
+    y <- y[oo]
+    #wy <- wy[oo]
+    ind <- ind[oo]
+    tind <- tind[oo]
+
+    ## modules for likelihood
+    bSigma <- function(phipsi, n, t, w) {
+        ## single block of the original *scaled* covariance
+        ## maintain w for homogeneity with generic part
+        Jt <- matrix(1, ncol = t, nrow = t)
+        It <- diag(1, t)
+        ## retrieve parms
+        phi <- phipsi[1]
+        ## psi not used: here passing 2 parms, but works anyway
+        ## because psi is last one
+        ## calc inverse
+        bSigma <- phi * Jt + It
+        bSigma
+    }
+    detSigma <- function(phi, n, t) {
+        detSigma <- -n/2 * log(t * phi + 1)
+        detSigma
+    }
+    fullSigma <- function(phipsi, n, t, w) {
+        sigma.i <- bSigma(phipsi, n, t, w)
+        fullSigma <- bdsmatrix(rep(t, n), rep(as.numeric(sigma.i),
+            n))
+        fullSigma
+    }
+
+    ## likelihood function, both steps included
+    ll.c <- function(phipsi, y, X, n, t, w, w2, wy) {
+        ## retrieve parms
+        phi <- phipsi[1]
+        ## calc inverse sigma
+        sigma <- fullSigma(phipsi, n, t, w)
+        ## do GLS step to get e, s2e
+        glsres <- GLSstepBDS(X, y, sigma)
+        e <- glsres[["ehat"]]
+        s2e <- glsres[["sigma2"]]
+        ## calc ll
+        due <- detSigma(phi, n, t)
+        tre <- -n * t/2 * log(s2e)
+        quattro <- -1/(2 * s2e) * crossprod(e, solve(sigma, e))
+        const <- -(n * t)/2 * log(2 * pi)
+        ll.c <- const + due + tre + quattro
+        ## invert sign for minimization
+        llc <- -ll.c
+    }
+
+    ## generic from here
+
+    ## GLS step function for bdsmatrices
+    GLSstepBDS <- function(X, y, sigma) {
+        b.hat <- solve(crossprod(X, solve(sigma, X)), crossprod(X,
+            solve(sigma, y)))
+        ehat <- y - X %*% b.hat
+        sigma2ehat <- crossprod(ehat, solve(sigma, ehat))/(n * t)
+        return(list(betahat=b.hat, ehat=ehat, sigma2=sigma2ehat))
+    }
+
+    ## lag y unneeded here, keep parm for compatibility
+    wy <- NULL
+
+    ## max likelihood
+    optimum <- nlminb(start = myparms0, objective = ll.c,
+                      gradient = NULL, hessian = NULL,
+                      y = y, X = X, n = n, t = t, w = w, w2 = w2, wy = wy,
+                      scale = 1, control = list(x.tol = x.tol,
+                                 rel.tol = rel.tol, trace = trace),
+                      lower = lower.bounds, upper = upper.bounds)
+
+    ## log likelihood at optimum (notice inverted sign)
+    myll <- -optimum$objective
+    ## retrieve optimal parms
+    myparms <- optimum$par
+
+    ## one last GLS step at optimal vcov parms
+    sigma <- fullSigma(myparms, n, t, w)
+    beta <- GLSstepBDS(X, y, sigma)
+
+    ## final vcov(beta)
+    covB <- as.numeric(beta[[3]]) *
+        solve(crossprod(X, solve(sigma, X)))
+
+    ## final vcov(errcomp)
+    covTheta <- solve(-fdHess(myparms, function(x) -ll.c(x,
+        y, X, n, t, w, w2, wy))$Hessian)          # lag-specific line: wy
+    nvcovpms <- length(nam.errcomp)
+    covAR <- NULL
+    covPRL <- covTheta[1:nvcovpms, 1:nvcovpms, drop=FALSE]
+
+    ## final parms
+    betas <- as.vector(beta[[1]])
+    arcoef <- NULL
+    errcomp <- myparms[which(nam.errcomp!="psi")]
+    names(betas) <- nam.beta
+    names(errcomp) <- nam.errcomp[which(nam.errcomp!="psi")]
+
+    dimnames(covB) <- list(nam.beta, nam.beta)
+    dimnames(covPRL) <- list(names(errcomp), names(errcomp))
+
+    ## result
+    RES <- list(betas = betas, arcoef=arcoef, errcomp = errcomp,
+                covB = covB, covAR=covAR, covPRL = covPRL, ll = myll)
+
+    return(RES)
+}


Property changes on: pkg/R/REmod.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsjktest.R
===================================================================
--- pkg/R/bsjktest.R	                        (rev 0)
+++ pkg/R/bsjktest.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,5 @@
+`bsjktest` <-
+function(x,...){
+  UseMethod("bsjktest")
+}
+


Property changes on: pkg/R/bsjktest.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsjktest.formula.R
===================================================================
--- pkg/R/bsjktest.formula.R	                        (rev 0)
+++ pkg/R/bsjktest.formula.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,34 @@
+`bsjktest.formula` <-
+function(x, data, w, test=c(paste("C",1:3,sep="."),"J"), index=NULL, ...){
+  ## transform data if needed
+
+  if(!is.null(index)) {
+    require(plm)
+    data <- plm.data(data, index)
+    }
+
+  gindex <- dimnames(data)[[2]][1]
+  tindex <- dimnames(data)[[2]][2]
+
+  switch(match.arg(test), C.1 = {
+
+    bsjk = pbsjkSDtest(formula=x, data=data, w=w, index=index, ...)
+
+  }, C.2 = {
+
+    bsjk = pbsjkARtest(formula=x, data=data, w=w, index=index, ...)
+
+  }, C.3 = {
+
+    bsjk = pbsjkREtest(formula=x, data=data, w=w, index=index, ...)
+
+  }, J = {
+
+    bsjk = pbsjkJtest(formula=x, data=data, w=w, index=index, ...)
+
+  })
+
+  return(bsjk)
+
+}
+


Property changes on: pkg/R/bsjktest.formula.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsktest.R
===================================================================
--- pkg/R/bsktest.R	                        (rev 0)
+++ pkg/R/bsktest.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,5 @@
+`bsktest` <-
+function(x,...){
+  UseMethod("bsktest")
+}
+


Property changes on: pkg/R/bsktest.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsktest.formula.R
===================================================================
--- pkg/R/bsktest.formula.R	                        (rev 0)
+++ pkg/R/bsktest.formula.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,30 @@
+`bsktest.formula` <-
+function(x, data, w, test=c("SLM1","SLM2","LMJOINT","CLMlambda","CLMmu"), index=NULL, ...){
+  
+
+switch(match.arg(test), SLM1 = {
+
+    bsk = slm1test(x, data, index,  w)
+
+  }, SLM2 = {
+
+    bsk = slm2test(x, data, index,  w)
+
+  }, LMJOINT = {
+
+    bsk = LMHtest(x, data, index,  w)
+
+  }, CLMlambda = {
+
+    bsk = clmltest(x, data, index,  w)
+
+  }, CLMmu = {
+
+    bsk = clmmtest(x, data, index,  w)
+
+  })
+
+  return(bsk)
+
+}
+


Property changes on: pkg/R/bsktest.formula.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsktest.lm.R
===================================================================
--- pkg/R/bsktest.lm.R	                        (rev 0)
+++ pkg/R/bsktest.lm.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,20 @@
+`bsktest.lm` <-
+function(x, w, index=NULL, test=c("SLM1","SLM2","LMJOINT"), ...){
+	
+	switch(match.arg(test), SLM1 = {
+
+    bsk = slm1test.model(x,w, index)
+
+  }, SLM2 = {
+
+    bsk = slm2test.model(x,w, index )
+
+  }, LMJOINT = {
+
+    bsk = LMHtest.model(x,w, index)
+
+  })
+
+  return(bsk)
+}
+


Property changes on: pkg/R/bsktest.lm.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/bsktest.splm.R
===================================================================
--- pkg/R/bsktest.splm.R	                        (rev 0)
+++ pkg/R/bsktest.splm.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,16 @@
+`bsktest.splm` <-
+function(x, w, index=NULL, test=c("CLMlambda","CLMmu"), ...){
+	
+	switch(match.arg(test), CLMlambda = {
+
+    bsk = clmltest.model(x,w, index)
+
+  }, CLMmu = {
+
+    bsk = clmmtest.model(x,w, index )
+
+  })
+
+  return(bsk)
+}
+


Property changes on: pkg/R/bsktest.splm.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/clmltest.R
===================================================================
--- pkg/R/clmltest.R	                        (rev 0)
+++ pkg/R/clmltest.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,81 @@
+`clmltest` <-
+function(formula, data, index=NULL, listw){
+    ## depends on listw2dgCMatrix.R, REmod.R, spreml.R
+
+	ml <- spreml(formula, data=data, w=listw2mat(listw), errors="re")
+	  if(!is.null(index)) {
+    require(plm)
+    data <- plm.data(data, index)
+    }
+  index <- data[,1]
+  tindex <- data[,2]
+  X<-model.matrix(formula,data=data)
+  y<-model.response(model.frame(formula,data=data))
+  ## reduce index accordingly
+   names(index)<-row.names(data)
+  ind<-index[which(names(index)%in%row.names(X))]
+  tind<-tindex[which(names(index)%in%row.names(X))]
+
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  X<-X[oo,]
+  y<-y[oo]
+  ind<-ind[oo]
+  tind<-tind[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(X)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(X[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+	eML<-residuals(ml)
+###maximum likelihood estimation under the null hypothesis that lambda is equal to zero. extract the residuals.
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+
+	eme<-tapply(eML,inde1,mean)
+	emme<-eML - rep(eme,T)
+	sigmav<-crossprod(eML,emme)/(N*(T-1)) ####estimate of the variance component sigma_v
+	sigma1<-crossprod(eML,rep(eme,T))/N ####estimate of the variance component sigma_1
+	c1<-sigmav/sigma1^2
+	c2<-1/sigmav
+	c1e<-as.numeric(c1)*eML
+	Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+	Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+	WpsW<-Wst+Ws
+yybis<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-(WpsW)%*%q
+	wq<-as.matrix(wq)
+	}
+	Wc1e<-unlist(tapply(eML,inde,yybis)) #### (W'+W)*u
+	sumWc1e<-tapply(Wc1e,inde1,sum)
+	prod1<-as.numeric(c1)*rep(sumWc1e,T)/T
+	prod2<-as.numeric(c2)* (Wc1e - rep(sumWc1e,T)/T)
+	prod<-prod1+prod2
+	D<-1/2*crossprod(eML,prod) ###calculates D in the notation of the paper.
+	W2<-Ws%*%Ws ####generate W^2
+	WW<-crossprod(Ws) ####generate W'*W
+tr<-function(R) sum(diag(R))
+	b<-tr(W2+WW) ###generates b (same notation as the paper)
+	LMl1<-D^2/(((T-1)+as.numeric(sigmav)^2/as.numeric(sigma1)^2)*b) ###conditional LM test for lambda equal to zero
+	LMlstar<-sqrt(LMl1) ###one-sided version
+	statistics<-LMlstar
+  pval <- pnorm(LMlstar, lower.tail=FALSE)
+
+  names(statistics)="LM*-lambda"
+	method<- "Baltagi, Song and Koh LM*-lambda conditional LM test (assuming sigma^2_mu >= 0)"
+	#alt<-"serial corr. in error terms, sub RE and spatial dependence"
+  ##(insert usual htest features)
+  dname <- deparse(formula)
+  RVAL <- list(statistic = statistics,
+               method = method,
+               p.value = pval, data.name=deparse(formula), alternative="Spatial autocorrelation")
+  class(RVAL) <- "htest"
+  return(RVAL)
+
+}
+


Property changes on: pkg/R/clmltest.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/clmltest.model.R
===================================================================
--- pkg/R/clmltest.model.R	                        (rev 0)
+++ pkg/R/clmltest.model.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,86 @@
+`clmltest.model` <-
+function(x, listw, index){
+    ## depends on:
+    ## listw2dgCMatrix.R
+    ## REmod.R
+    ## spreml.R
+if(!inherits(x,"splm")) stop("argument should be an object of class splm")
+frm<-x$call
+if(x$type != "random effects ML") stop("argument should be of type random effects ML")
+
+  if(is.null(index))  stop("index should be specified to retrieve information on time and cross-sectional dimentions")
+
+  if(!inherits(listw,"listw")) stop("object w should be of class listw")
+
+
+
+  ind <- index[,1]
+  tind <- index[,2]
+
+if(names(x$coefficients)[1]=="(Intercept)")  X<-data.frame(cbind(rep(1,ncol(x$model)), x$model[,-1]))
+else X<-x$model[,-1]
+  y<-x$model[,1]
+  	eML<-x$residuals
+
+  ## reduce index accordingly
+
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  X<-X[oo,]
+  y<-y[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(X)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(X[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+###maximum likelihood estimation under the null hypothesis that lambda is equal to zero. extract the residuals.
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+
+	eme<-tapply(eML,inde1,mean)
+	emme<-eML - rep(eme,T)
+	sigmav<-crossprod(eML,emme)/(N*(T-1)) ####estimate of the variance component sigma_v
+	sigma1<-crossprod(eML,rep(eme,T))/N ####estimate of the variance component sigma_1
+	c1<-sigmav/sigma1^2
+	c2<-1/sigmav
+	c1e<-as.numeric(c1)*eML
+	Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+	Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+	WpsW<-Wst+Ws
+yybis<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-(WpsW)%*%q
+	wq<-as.matrix(wq)
+	}
+	Wc1e<-unlist(tapply(eML,inde,yybis)) #### (W'+W)*u
+	sumWc1e<-tapply(Wc1e,inde1,sum)
+	prod1<-as.numeric(c1)*rep(sumWc1e,T)/T
+	prod2<-as.numeric(c2)* (Wc1e - rep(sumWc1e,T)/T)
+	prod<-prod1+prod2
+	D<-1/2*crossprod(eML,prod) ###calculates D in the notation of the paper.
+	W2<-Ws%*%Ws ####generate W^2
+	WW<-crossprod(Ws) ####generate W'*W
+tr<-function(R) sum(diag(R))
+	b<-tr(W2+WW) ###generates b (same notation as the paper)
+	LMl1<-D^2/(((T-1)+as.numeric(sigmav)^2/as.numeric(sigma1)^2)*b) ###conditional LM test for lambda equal to zero
+	LMlstar<-sqrt(LMl1) ###one-sided version
+	statistics<-LMlstar
+  pval <- pnorm(LMlstar, lower.tail=FALSE)
+
+  names(statistics)="LM*-lambda"
+	method<- "Baltagi, Song and Koh LM*-lambda conditional LM test (assuming sigma^2_mu >= 0)"
+	#alt<-"serial corr. in error terms, sub RE and spatial dependence"
+  ##(insert usual htest features)
+  dname <- deparse(formula)
+  RVAL <- list(statistic = statistics,
+               method = method,
+               p.value = pval, data.name=deparse(frm), alternative="Spatial autocorrelation")
+  class(RVAL) <- "htest"
+  return(RVAL)
+
+}
+


Property changes on: pkg/R/clmltest.model.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/clmmtest.R
===================================================================
--- pkg/R/clmmtest.R	                        (rev 0)
+++ pkg/R/clmmtest.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,104 @@
+`clmmtest` <-
+function(formula, data, index=NULL, listw){
+    ## depends on listw2dgCMatrix.R, spfeml.R
+
+	ml <- spfeml(formula, data=data, index=index, listw, model="error", effects="pooled")
+
+	  if(!is.null(index)) {
+    require(plm)
+    data <- plm.data(data, index)
+    }
+  index <- data[,1]
+  tindex <- data[,2]
+  X<-model.matrix(formula,data=data)
+  y<-model.response(model.frame(formula,data=data))
+  ## reduce index accordingly
+   names(index)<-row.names(data)
+  ind<-index[which(names(index)%in%row.names(X))]
+  tind<-tindex[which(names(index)%in%row.names(X))]
+
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  X<-X[oo,]
+  y<-y[oo]
+  ind<-ind[oo]
+  tind<-tind[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(X)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(X[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+
+###maximum likelihood estimation under the null hypothesis that lambda is equal to zero. extract the residuals.
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+
+	lambda<-ml$spat.coef
+	#print(lambda)
+	eML<-residuals(ml)
+#	print(length(eML))
+ 	Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+	Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+	B<- -lambda*Ws
+	diag(B)<- 1
+	BpB<-crossprod(B)
+	BpBi<- solve(BpB)
+vc<-function(R) {
+	BBu<-BpBi%*%R
+	BBu<-as.matrix(BBu)
+	}
+	eme<-unlist(tapply(eML,inde,vc))
+	sigmav2<-crossprod(eML,eme)/(N*(T-1)) ####estimate of the variance component sigma_v
+	sigmav4<-sigmav2^2
+
+tr<-function(R) sum(diag(R))
+	trBpB<-tr(BpB)
+	BpB2<-BpB%*%BpB
+yybis<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-rep(q,T)
+	tmp<-wq%*%eML
+					}
+	BBu<-apply(BpB2,1,yybis)
+	BBu<-rep(BBu,T)
+	upBBu<-crossprod(eML,BBu)
+	Dmu<--((T/(2*sigmav2))*trBpB) + ((1/(2*sigmav4))*upBBu)
+	WpB<-Wst%*%B
+	BpW<-t(B)%*%Ws
+	WpBplBpW <-WpB + BpW
+	G<-WpBplBpW %*% BpBi
+	e<-tr(BpB2)
+	d<-tr(WpBplBpW)
+	h<-trBpB
+	g<-tr(G)
+	c<-tr(G%*%G)
+	#print(c(e,d,h,g,c))
+	NUM<- ((2*sigmav4)/T)*((N*sigmav4*c)-(sigmav4*g^2))   ###equation 2.30 in the paper
+	DENft<- NT*sigmav4*e*c
+	DENst<- N*sigmav4*d^2
+	DENtt<- T*sigmav4*g^2 * e
+	DENfot<- 2* sigmav4 *g*h*d
+	DENfit<- sigmav4*h^2* c
+	DEN<- DENft - DENst - DENtt + DENfot - DENfit
+	LMmu <- Dmu^2*NUM / DEN
+	LMmustar<- sqrt(LMmu)
+	statistics<-LMmustar
+  pval <- pnorm(LMmustar, lower.tail=FALSE)
+
+  names(statistics)="LM*-mu"
+	method<- "Baltagi, Song and Koh LM*- mu conditional LM test (assuming lambda may or may not be = 0)"
+	#alt<-"serial corr. in error terms, sub RE and spatial dependence"
+  ##(insert usual htest features)
+  dname <- deparse(formula)
+  RVAL <- list(statistic = statistics,
+               method = method,
+               p.value = pval, data.name=deparse(formula), alternative="Random regional effects")
+  class(RVAL) <- "htest"
+  return(RVAL)
+
+}
+


Property changes on: pkg/R/clmmtest.R
___________________________________________________________________
Added: svn:executable
   + 

Added: pkg/R/clmmtest.model.R
===================================================================
--- pkg/R/clmmtest.model.R	                        (rev 0)
+++ pkg/R/clmmtest.model.R	2011-04-13 16:40:19 UTC (rev 98)
@@ -0,0 +1,105 @@
+`clmmtest.model` <-
+function(x, listw, index){
+    ## depends on listw2dgCMatrix.R, spfeml.R
+
+if(!inherits(x,"splm")) stop("argument should be an object of class splm")
+frm<-x$call
+if(x$type != "fixed effects error") stop("argument should be of type random effects ML")
+
+  if(is.null(index))  stop("index should be specified to retrieve information on time and cross-sectional dimentions")
+
+  if(!inherits(listw,"listw")) stop("object w should be of class listw")
+
+
+
+  ind <- index[,1]
+  tind <- index[,2]
+
+if(names(x$coefficients)[1]=="(Intercept)")  X<-data.frame(cbind(rep(1,ncol(x$model)), x$model[,-1]))
+else X<-x$model[,-1]
+  y<-x$model[,1]
+  	eML<-x$residuals
+
+  ## reduce index accordingly
+
+  ## reorder data by cross-sections, then time
+  oo<-order(tind,ind)
+  X<-X[oo,]
+  y<-y[oo]
+
+  ## det. number of groups and df
+  N<-length(unique(ind))
+  k<-dim(X)[[2]]
+  ## det. max. group numerosity
+  T<-max(tapply(X[,1],ind,length))
+  ## det. total number of obs. (robust vs. unbalanced panels)
+  NT<-length(ind)
+###maximum likelihood estimation under the null hypothesis that lambda is equal to zero. extract the residuals.
+	indic<-seq(1,T)
+	inde<-as.numeric(rep(indic,each=N)) ####indicator to get the cross-sectional observations
+	ind1<-seq(1,N)
+	inde1<-as.numeric(rep(ind1,T)) ####indicator to get the time periods observations
+
+	lambda<-x$spat.coef
+	#print(lambda)
+#	print(length(eML))
+ 	Wst<-listw2dgCMatrix(listw) ###transform the listw object in a sparse matrix
+	Ws<-t(Wst)  ### this is the real W since listw2dgCMatrix generate W'
+	B<- -lambda*Ws
+	diag(B)<- 1
+	BpB<-crossprod(B)
+	BpBi<- solve(BpB)
+vc<-function(R) {
+	BBu<-BpBi%*%R
+	BBu<-as.matrix(BBu)
+	}
+	eme<-unlist(tapply(eML,inde,vc))
+	sigmav2<-crossprod(eML,eme)/(N*(T-1)) ####estimate of the variance component sigma_v
+	sigmav4<-sigmav2^2
+
+tr<-function(R) sum(diag(R))
+	trBpB<-tr(BpB)
+	BpB2<-BpB%*%BpB
+yybis<-function(q){ #### for very big dimension of the data this can be changed looping over the rows and columns of W or either the listw object
+	wq<-rep(q,T)
+	tmp<-wq%*%eML
+					}
+	BBu<-apply(BpB2,1,yybis)
+	BBu<-rep(BBu,T)
+	upBBu<-crossprod(eML,BBu)
+	Dmu<--((T/(2*sigmav2))*trBpB) + ((1/(2*sigmav4))*upBBu)
+	WpB<-Wst%*%B
+	BpW<-t(B)%*%Ws
+	WpBplBpW <-WpB + BpW
+	G<-WpBplBpW %*% BpBi
+	e<-tr(BpB2)
+	d<-tr(WpBplBpW)
+	h<-trBpB
+	g<-tr(G)
+	c<-tr(G%*%G)
+	#print(c(e,d,h,g,c))
+	NUM<- ((2*sigmav4)/T)*((N*sigmav4*c)-(sigmav4*g^2))   ###equation 2.30 in the paper
+	DENft<- NT*sigmav4*e*c
+	DENst<- N*sigmav4*d^2
+	DENtt<- T*sigmav4*g^2 * e
+	DENfot<- 2* sigmav4 *g*h*d
+	DENfit<- sigmav4*h^2* c
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/splm -r 98


More information about the Splm-commits mailing list