[spcopula-commits] r107 - pkg/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon Sep 9 08:49:39 CEST 2013
Author: ben_graeler
Date: 2013-09-09 08:49:39 +0200 (Mon, 09 Sep 2013)
New Revision: 107
Modified:
pkg/man/calcBins.Rd
pkg/man/composeSpCopula.Rd
pkg/man/dependencePlot.Rd
pkg/man/fitCorFun.Rd
pkg/man/fitSpCopula.Rd
pkg/man/getNeighbours.Rd
pkg/man/getStNeighbours.Rd
pkg/man/loglikByCopulasLags.Rd
pkg/man/spCopPredict.Rd
pkg/man/stCopPredict.Rd
Log:
- corrected line width in several man pages (\usage <= 90, \examples <= 100)
Modified: pkg/man/calcBins.Rd
===================================================================
--- pkg/man/calcBins.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/calcBins.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -14,7 +14,8 @@
The (spatio-temporal) space is subdivided into pairs of observations that belong to certain spatial/spatio-temporal distance classes. For each distance class, the mean separating distance of all pairs involved is calculated alongside a correlation measure. The spatial/spatio-temporal correlogram is plotted by default.
}
\usage{
-calcBins(data, var, nbins = 15, boundaries = NA, cutoff = NA, cor.method="kendall", plot=TRUE, ...)
+calcBins(data, var, nbins = 15, boundaries = NA, cutoff = NA, cor.method="kendall",
+ plot=TRUE, ...)
}
\arguments{
Modified: pkg/man/composeSpCopula.Rd
===================================================================
--- pkg/man/composeSpCopula.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/composeSpCopula.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -34,7 +34,7 @@
}
\examples{
-composeSpCopula(c(1,1,2,3),families=list(frankCopula(.4), gumbelCopula(1.6),gumbelCopula(1.4)),
+composeSpCopula(c(1,1,2,3),families=list(frankCopula(.4), gumbelCopula(1.6),gumbelCopula(1.4)),
bins=data.frame(meanDists=c(500,1000,1500,2000,2500)),range=2250)
}
Modified: pkg/man/dependencePlot.Rd
===================================================================
--- pkg/man/dependencePlot.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/dependencePlot.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -7,7 +7,8 @@
Plots a kernel smoothed scatter plot of the provided rank-transformed sample. The work is done by the function \code{\link{panel.smoothScatter}}.
}
\usage{
-dependencePlot(var = NULL, smpl, bandwidth = 0.075, main="Stength of dependece", transformation = function(x) x, ...)
+dependencePlot(var = NULL, smpl, bandwidth = 0.075, main="Stength of dependece",
+ transformation = function(x) x, ...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
Modified: pkg/man/fitCorFun.Rd
===================================================================
--- pkg/man/fitCorFun.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/fitCorFun.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -8,7 +8,8 @@
Polynomials of different degrees can be fitted to the correlogram calculated using \code{\link{calcBins}}. This function will be used to adjust the copula parameter in the spatial/spatio-temporal copula.
}
\usage{
-fitCorFun(bins, degree = 3, cutoff = NA, bounds = c(0, 1), cor.method = NULL, weighted = FALSE)
+fitCorFun(bins, degree = 3, cutoff = NA, bounds = c(0, 1), cor.method = NULL,
+ weighted = FALSE)
}
\arguments{
\item{bins}{
Modified: pkg/man/fitSpCopula.Rd
===================================================================
--- pkg/man/fitSpCopula.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/fitSpCopula.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -8,7 +8,8 @@
A bivariate spatial copula is composed out of a set of bivariate copulas. These are combined using a convex linear combination with weights based on distances where for copulas with a 1-1 correspondence of Kendall's tau or Spearman's rho a dependence function providing measures of association based on distances might be used. This function estimates a spatial dependence function, evaluates the log-likelihood per family and lag class, selects the best fits and composes a spatial bivariate copula.
}
\usage{
-fitSpCopula(bins, cutoff = NA, families = c(normalCopula(0), tCopula(0, dispstr = "un"), claytonCopula(0), frankCopula(1), gumbelCopula(1)), ...)
+fitSpCopula(bins, cutoff = NA, families = c(normalCopula(0), tCopula(0, dispstr = "un"),
+ claytonCopula(0), frankCopula(1), gumbelCopula(1)), ...)
}
\arguments{
\item{bins}{
Modified: pkg/man/getNeighbours.Rd
===================================================================
--- pkg/man/getNeighbours.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/getNeighbours.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -8,7 +8,8 @@
This function calculates a local neighbourhood to be used for fitting of spatial/spatio-temporal vine copulas and for prediction using spatial/spatio-temporal vine copulas.
}
\usage{
-getNeighbours(dataLocs, predLocs, var = names(dataLocs)[1], size = 5, prediction=FALSE, min.dist = 0.01)
+getNeighbours(dataLocs, predLocs, var = names(dataLocs)[1], size = 5, prediction=FALSE,
+ min.dist = 0.01)
}
\arguments{
\item{dataLocs}{
Modified: pkg/man/getStNeighbours.Rd
===================================================================
--- pkg/man/getStNeighbours.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/getStNeighbours.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -8,7 +8,8 @@
This function calculates local spatio-temporal neighbourhoods to be used for fitting of spatio-temporal vine copulas and for prediction using spatio-temporal vine copulas.
}
\usage{
-getStNeighbours(stData, ST, var = names(stData at data)[1], spSize = 4, t.lags=-(0:2), timeSteps=NA, prediction=FALSE, min.dist = 0.01)
+getStNeighbours(stData, ST, var = names(stData at data)[1], spSize = 4, t.lags=-(0:2),
+ timeSteps=NA, prediction=FALSE, min.dist = 0.01)
}
\arguments{
\item{stData}{
Modified: pkg/man/loglikByCopulasLags.Rd
===================================================================
--- pkg/man/loglikByCopulasLags.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/loglikByCopulasLags.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -7,7 +7,8 @@
This function calculates the log-likelihood for a set of provided copula families per lag class. The copulas' parameters are either fitted by a provided distance dependent function, or through the function \code{\link{fitCopula}} per lag and copula family.
}
\usage{
-loglikByCopulasLags(bins, families = c(normalCopula(0), tCopula(0, dispstr = "un"), claytonCopula(0), frankCopula(1), gumbelCopula(1)), calcCor)
+loglikByCopulasLags(bins, families = c(normalCopula(0), tCopula(0, dispstr = "un"),
+ claytonCopula(0), frankCopula(1), gumbelCopula(1)), calcCor)
}
\arguments{
Modified: pkg/man/spCopPredict.Rd
===================================================================
--- pkg/man/spCopPredict.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/spCopPredict.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -57,7 +57,8 @@
meuse$rtZinc <- rank(meuse$zinc)/(length(meuse)+1)
-predMeuseNeigh <- getNeighbours(meuse[1:4,], meuse.grid[c(9:12,15:19,24:28,34:38),],"rtZinc",5L,TRUE,-1)
+predMeuseNeigh <- getNeighbours(meuse[1:4,], meuse.grid[c(9:12,15:19,24:28,34:38),],
+ "rtZinc", 5L, TRUE, -1)
qMar <- function(x) {
qlnorm(x,mean(log(meuse$zinc)),sd(log(meuse$zinc)))
Modified: pkg/man/stCopPredict.Rd
===================================================================
--- pkg/man/stCopPredict.Rd 2013-09-09 06:31:19 UTC (rev 106)
+++ pkg/man/stCopPredict.Rd 2013-09-09 06:49:39 UTC (rev 107)
@@ -55,7 +55,8 @@
meuse$rtZinc <- rank(meuse$zinc)/(length(meuse)+1)
-predMeuseNeigh <- getNeighbours(meuse[1:4,], meuse.grid[c(9:12,15:19,24:28,34:38),],"rtZinc",5L,TRUE,-1)
+predMeuseNeigh <- getNeighbours(meuse[1:4,], meuse.grid[c(9:12,15:19,24:28,34:38),],
+ "rtZinc", 5L, TRUE, -1)
qMar <- function(x) {
qlnorm(x,mean(log(meuse$zinc)),sd(log(meuse$zinc)))
More information about the spcopula-commits
mailing list