[Robkalman-commits] r18 - branches/robKalman_itwm/pkg branches/robKalman_itwm/pkg/robKalman branches/robKalman_itwm/pkg/robKalman/R branches/robKalman_itwm/pkg/robKalman/chm branches/robKalman_itwm/pkg/robKalman/demo branches/robKalman_itwm/pkg/robKalman/inst branches/robKalman_itwm/pkg/robKalman/man branches/robkalman_pr/pkg branches/robkalman_pr/pkg/robKalman branches/robkalman_pr/pkg/robKalman/R branches/robkalman_pr/pkg/robKalman/chm branches/robkalman_pr/pkg/robKalman/demo branches/robkalman_pr/pkg/robKalman/inst branches/robkalman_pr/pkg/robKalman/man pkg pkg/robKalman pkg/robKalman/R pkg/robKalman/chm pkg/robKalman/demo pkg/robKalman/inst pkg/robKalman/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Mar 18 15:47:20 CET 2009


Author: ruckdeschel
Date: 2009-03-18 15:47:20 +0100 (Wed, 18 Mar 2009)
New Revision: 18

Added:
   branches/robKalman_itwm/pkg/robKalman/
   branches/robKalman_itwm/pkg/robKalman/DESCRIPTION
   branches/robKalman_itwm/pkg/robKalman/NAMESPACE
   branches/robKalman_itwm/pkg/robKalman/R/
   branches/robKalman_itwm/pkg/robKalman/R/0AllClass.R
   branches/robKalman_itwm/pkg/robKalman/R/ACMfilt.R
   branches/robKalman_itwm/pkg/robKalman/R/ACMfilter.R
   branches/robKalman_itwm/pkg/robKalman/R/AllGeneric.R
   branches/robKalman_itwm/pkg/robKalman/R/AllGenerics.R
   branches/robKalman_itwm/pkg/robKalman/R/AllInitialize.R
   branches/robKalman_itwm/pkg/robKalman/R/AllPlot.R
   branches/robKalman_itwm/pkg/robKalman/R/AllShow.R
   branches/robKalman_itwm/pkg/robKalman/R/Psi.R
   branches/robKalman_itwm/pkg/robKalman/R/Util.R
   branches/robKalman_itwm/pkg/robKalman/R/arGM.R
   branches/robKalman_itwm/pkg/robKalman/R/arGMinternal.R
   branches/robKalman_itwm/pkg/robKalman/R/calibrateRLS.R
   branches/robKalman_itwm/pkg/robKalman/R/classKalman.R
   branches/robKalman_itwm/pkg/robKalman/R/mACMfilter.R
   branches/robKalman_itwm/pkg/robKalman/R/mACMinternal.R
   branches/robKalman_itwm/pkg/robKalman/R/rLSfilter.R
   branches/robKalman_itwm/pkg/robKalman/R/recFilter.R
   branches/robKalman_itwm/pkg/robKalman/R/simulateSScont.R
   branches/robKalman_itwm/pkg/robKalman/chm/
   branches/robKalman_itwm/pkg/robKalman/chm/00Index.html
   branches/robKalman_itwm/pkg/robKalman/chm/0robKalman-package.html
   branches/robKalman_itwm/pkg/robKalman/chm/ACMfilt.html
   branches/robKalman_itwm/pkg/robKalman/chm/Logo.jpg
   branches/robKalman_itwm/pkg/robKalman/chm/Rchm.css
   branches/robKalman_itwm/pkg/robKalman/chm/arGM.html
   branches/robKalman_itwm/pkg/robKalman/chm/calibrateRLS.html
   branches/robKalman_itwm/pkg/robKalman/chm/internalACM.html
   branches/robKalman_itwm/pkg/robKalman/chm/internalKalman.html
   branches/robKalman_itwm/pkg/robKalman/chm/internalarGM.html
   branches/robKalman_itwm/pkg/robKalman/chm/internalpsi.html
   branches/robKalman_itwm/pkg/robKalman/chm/internalrLS.html
   branches/robKalman_itwm/pkg/robKalman/chm/recFilter.html
   branches/robKalman_itwm/pkg/robKalman/chm/robKalman.chm
   branches/robKalman_itwm/pkg/robKalman/chm/robKalman.hhp
   branches/robKalman_itwm/pkg/robKalman/chm/robKalman.toc
   branches/robKalman_itwm/pkg/robKalman/chm/simulateSScont.html
   branches/robKalman_itwm/pkg/robKalman/chm/util.html
   branches/robKalman_itwm/pkg/robKalman/demo/
   branches/robKalman_itwm/pkg/robKalman/demo/00Index
   branches/robKalman_itwm/pkg/robKalman/demo/ACMdemo.R
   branches/robKalman_itwm/pkg/robKalman/demo/rLSdemo.R
   branches/robKalman_itwm/pkg/robKalman/inst/
   branches/robKalman_itwm/pkg/robKalman/inst/NEWS
   branches/robKalman_itwm/pkg/robKalman/man/
   branches/robKalman_itwm/pkg/robKalman/man/0robKalman-package.Rd
   branches/robKalman_itwm/pkg/robKalman/man/ACMfilt.Rd
   branches/robKalman_itwm/pkg/robKalman/man/arGM.Rd
   branches/robKalman_itwm/pkg/robKalman/man/calibrateRLS.Rd
   branches/robKalman_itwm/pkg/robKalman/man/internalACM.Rd
   branches/robKalman_itwm/pkg/robKalman/man/internalKalman.Rd
   branches/robKalman_itwm/pkg/robKalman/man/internalarGM.Rd
   branches/robKalman_itwm/pkg/robKalman/man/internalpsi.Rd
   branches/robKalman_itwm/pkg/robKalman/man/internalrLS.Rd
   branches/robKalman_itwm/pkg/robKalman/man/recFilter.Rd
   branches/robKalman_itwm/pkg/robKalman/man/simulateSScont.Rd
   branches/robKalman_itwm/pkg/robKalman/man/util.Rd
   branches/robkalman_pr/pkg/robKalman/
   branches/robkalman_pr/pkg/robKalman/DESCRIPTION
   branches/robkalman_pr/pkg/robKalman/NAMESPACE
   branches/robkalman_pr/pkg/robKalman/R/
   branches/robkalman_pr/pkg/robKalman/R/0AllClass.R
   branches/robkalman_pr/pkg/robKalman/R/ACMfilt.R
   branches/robkalman_pr/pkg/robKalman/R/ACMfilter.R
   branches/robkalman_pr/pkg/robKalman/R/AllGeneric.R
   branches/robkalman_pr/pkg/robKalman/R/AllGenerics.R
   branches/robkalman_pr/pkg/robKalman/R/AllInitialize.R
   branches/robkalman_pr/pkg/robKalman/R/AllPlot.R
   branches/robkalman_pr/pkg/robKalman/R/AllShow.R
   branches/robkalman_pr/pkg/robKalman/R/Control.R
   branches/robkalman_pr/pkg/robKalman/R/PosDefSymmMatrix.R
   branches/robkalman_pr/pkg/robKalman/R/Psi.R
   branches/robkalman_pr/pkg/robKalman/R/SSM.R
   branches/robkalman_pr/pkg/robKalman/R/Util.R
   branches/robkalman_pr/pkg/robKalman/R/arGM.R
   branches/robkalman_pr/pkg/robKalman/R/arGMinternal.R
   branches/robkalman_pr/pkg/robKalman/R/calibrateRLS.R
   branches/robkalman_pr/pkg/robKalman/R/classKalman.R
   branches/robkalman_pr/pkg/robKalman/R/generateSSMDistr.R
   branches/robkalman_pr/pkg/robKalman/R/mACMfilter.R
   branches/robkalman_pr/pkg/robKalman/R/mACMinternal.R
   branches/robkalman_pr/pkg/robKalman/R/rLSfilter.R
   branches/robkalman_pr/pkg/robKalman/R/recFilter-Methods.R
   branches/robkalman_pr/pkg/robKalman/R/recFilter.R
   branches/robkalman_pr/pkg/robKalman/R/simulateSScont.R
   branches/robkalman_pr/pkg/robKalman/R/solve.R
   branches/robkalman_pr/pkg/robKalman/R/tests.R
   branches/robkalman_pr/pkg/robKalman/chm/
   branches/robkalman_pr/pkg/robKalman/chm/00Index.html
   branches/robkalman_pr/pkg/robKalman/chm/0robKalman-package.html
   branches/robkalman_pr/pkg/robKalman/chm/ACMfilt.html
   branches/robkalman_pr/pkg/robKalman/chm/Logo.jpg
   branches/robkalman_pr/pkg/robKalman/chm/Rchm.css
   branches/robkalman_pr/pkg/robKalman/chm/arGM.html
   branches/robkalman_pr/pkg/robKalman/chm/calibrateRLS.html
   branches/robkalman_pr/pkg/robKalman/chm/internalACM.html
   branches/robkalman_pr/pkg/robKalman/chm/internalKalman.html
   branches/robkalman_pr/pkg/robKalman/chm/internalarGM.html
   branches/robkalman_pr/pkg/robKalman/chm/internalpsi.html
   branches/robkalman_pr/pkg/robKalman/chm/internalrLS.html
   branches/robkalman_pr/pkg/robKalman/chm/recFilter.html
   branches/robkalman_pr/pkg/robKalman/chm/robKalman.chm
   branches/robkalman_pr/pkg/robKalman/chm/robKalman.hhp
   branches/robkalman_pr/pkg/robKalman/chm/robKalman.toc
   branches/robkalman_pr/pkg/robKalman/chm/simulateSScont.html
   branches/robkalman_pr/pkg/robKalman/chm/util.html
   branches/robkalman_pr/pkg/robKalman/demo/
   branches/robkalman_pr/pkg/robKalman/demo/00Index
   branches/robkalman_pr/pkg/robKalman/demo/ACMdemo.R
   branches/robkalman_pr/pkg/robKalman/demo/rLSdemo.R
   branches/robkalman_pr/pkg/robKalman/inst/
   branches/robkalman_pr/pkg/robKalman/inst/NEWS
   branches/robkalman_pr/pkg/robKalman/man/
   branches/robkalman_pr/pkg/robKalman/man/0robKalman-package.Rd
   branches/robkalman_pr/pkg/robKalman/man/ACMfilt.Rd
   branches/robkalman_pr/pkg/robKalman/man/InternalInfra.Rd
   branches/robkalman_pr/pkg/robKalman/man/PosDefSymmMatrix-class.Rd
   branches/robkalman_pr/pkg/robKalman/man/PosDefSymmMatrix.Rd
   branches/robkalman_pr/pkg/robKalman/man/SSM-class.Rd
   branches/robkalman_pr/pkg/robKalman/man/TI-SSM.Rd
   branches/robkalman_pr/pkg/robKalman/man/TimeInvariantSSM-class.Rd
   branches/robkalman_pr/pkg/robKalman/man/arGM.Rd
   branches/robkalman_pr/pkg/robKalman/man/calibrateRLS.Rd
   branches/robkalman_pr/pkg/robKalman/man/generateRecFilter.Rd
   branches/robkalman_pr/pkg/robKalman/man/generateRobRecFilter.Rd
   branches/robkalman_pr/pkg/robKalman/man/internalACM.Rd
   branches/robkalman_pr/pkg/robKalman/man/internalKalman.Rd
   branches/robkalman_pr/pkg/robKalman/man/internalarGM.Rd
   branches/robkalman_pr/pkg/robKalman/man/internalpsi.Rd
   branches/robkalman_pr/pkg/robKalman/man/internalrLS.Rd
   branches/robkalman_pr/pkg/robKalman/man/makeArrayRepresentation.Rd
   branches/robkalman_pr/pkg/robKalman/man/recFilter-class.Rd
   branches/robkalman_pr/pkg/robKalman/man/recFilter.Rd
   branches/robkalman_pr/pkg/robKalman/man/robrecFilter-class.Rd
   branches/robkalman_pr/pkg/robKalman/man/simulateSScont.Rd
   branches/robkalman_pr/pkg/robKalman/man/solve-methods.Rd
   branches/robkalman_pr/pkg/robKalman/man/util.Rd
   pkg/robKalman/
   pkg/robKalman/DESCRIPTION
   pkg/robKalman/NAMESPACE
   pkg/robKalman/R/
   pkg/robKalman/R/0AllClass.R
   pkg/robKalman/R/ACMfilt.R
   pkg/robKalman/R/ACMfilter.R
   pkg/robKalman/R/AllGeneric.R
   pkg/robKalman/R/AllGenerics.R
   pkg/robKalman/R/AllInitialize.R
   pkg/robKalman/R/AllPlot.R
   pkg/robKalman/R/AllShow.R
   pkg/robKalman/R/Psi.R
   pkg/robKalman/R/Util.R
   pkg/robKalman/R/arGM.R
   pkg/robKalman/R/arGMinternal.R
   pkg/robKalman/R/calibrateRLS.R
   pkg/robKalman/R/classKalman.R
   pkg/robKalman/R/mACMfilter.R
   pkg/robKalman/R/mACMinternal.R
   pkg/robKalman/R/rLSfilter.R
   pkg/robKalman/R/recFilter.R
   pkg/robKalman/R/recFilter.R.mine
   pkg/robKalman/R/recFilter.R.r15
   pkg/robKalman/R/recFilter.R.r4
   pkg/robKalman/R/simulateSScont.R
   pkg/robKalman/chm/
   pkg/robKalman/chm/00Index.html
   pkg/robKalman/chm/0robKalman-package.html
   pkg/robKalman/chm/ACMfilt.html
   pkg/robKalman/chm/Logo.jpg
   pkg/robKalman/chm/Rchm.css
   pkg/robKalman/chm/arGM.html
   pkg/robKalman/chm/calibrateRLS.html
   pkg/robKalman/chm/internalACM.html
   pkg/robKalman/chm/internalKalman.html
   pkg/robKalman/chm/internalarGM.html
   pkg/robKalman/chm/internalpsi.html
   pkg/robKalman/chm/internalrLS.html
   pkg/robKalman/chm/recFilter.html
   pkg/robKalman/chm/robKalman.chm
   pkg/robKalman/chm/robKalman.hhp
   pkg/robKalman/chm/robKalman.toc
   pkg/robKalman/chm/simulateSScont.html
   pkg/robKalman/chm/util.html
   pkg/robKalman/demo/
   pkg/robKalman/demo/00Index
   pkg/robKalman/demo/ACMdemo.R
   pkg/robKalman/demo/rLSdemo.R
   pkg/robKalman/inst/
   pkg/robKalman/inst/NEWS
   pkg/robKalman/man/
   pkg/robKalman/man/0robKalman-package.Rd
   pkg/robKalman/man/ACMfilt.Rd
   pkg/robKalman/man/arGM.Rd
   pkg/robKalman/man/calibrateRLS.Rd
   pkg/robKalman/man/internalACM.Rd
   pkg/robKalman/man/internalKalman.Rd
   pkg/robKalman/man/internalarGM.Rd
   pkg/robKalman/man/internalpsi.Rd
   pkg/robKalman/man/internalrLS.Rd
   pkg/robKalman/man/recFilter.Rd
   pkg/robKalman/man/simulateSScont.Rd
   pkg/robKalman/man/util.Rd
Log:
I created subfolder robKalman in folders [branches/robKalman_<...>/]pkg 
(i.e. in folder pkg and the respective versions in branches
robKalman_pr, robKalman_bs, and robKalman_itwm).

This will ease work with R CMD check, R CMD build, R CMD INSTALL 
on your working copy of the repository afterwords:
You may simply go to the corresponding [branches/robKalman_<...>]/pkg
folder, and in this folder call
R CMD check robKalman    (and correspondingly for build and INSTALL)

To this end I copied all contents of the respective [branches/robKalman_<...>/]pkg 
folder to the respective [branches/robKalman_<...>/]pkg/robKalman folder, but
but not the svn system folders. 
So in order to be able to track changes previous to this version, we will keep 
the contents of of the respective [branches/robKalman_<...>/]pkg  folder unchanged;

Subsequent work should be done in the respective 
[branches/robKalman_<...>/]pkg/robKalman folder, however. 



Added: branches/robKalman_itwm/pkg/robKalman/DESCRIPTION
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/DESCRIPTION	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/DESCRIPTION	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,13 @@
+Package: robKalman
+Version: 0.2
+Date: 2008-07-28
+Title: Robust Kalman Filtering
+Description: Routines for Robust Kalman Filtering --- the ACM- and rLS-filter
+Author: Peter Ruckdeschel, Bernhard Spangl
+Maintainer: Peter Ruckdeschel <Peter.Ruckdeschel at itwm.fraunhofer.de>
+Depends: R(>= 2.3.0), methods, graphics, startupmsg, dse1, dse2, MASS, limma, robustbase, numDeriv 
+Imports: stats, MASS
+SaveImage: no
+LazyLoad: yes
+License: GPL (version 2 or later)
+URL: https://r-forge.r-project.org/projects/robkalman

Added: branches/robKalman_itwm/pkg/robKalman/NAMESPACE
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/NAMESPACE	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/NAMESPACE	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,44 @@
+import("methods")
+import("stats")
+import("startupmsg")
+
+exportClasses("PosSemDefSymmMatrix","PosDefSymmMatrix")
+exportClasses("ArrayOrMatrix",
+              "Hyperparamtype",
+              "sHyperparamtype")
+exportClasses("SSM","TimeInvariantSSM")
+exportClasses("recFilter","robrecFilter")
+exportClasses("RecFiltControl","KalmanControl","robrecControl")
+exportClasses("SSMDistribution.f","SSMellDistribution.f",
+              "SSMConvDistribution.f")
+exportClasses("SSMwithDistribution","SSMwithConvDistribution")
+exportClasses("SSMDistr")
+exportClasses("SSMsimulation","SSMcontSimulation")
+exportMethods("getp","setp<-","getq","setq<-",
+              "getF","setF<-","getZ","setZ<-",
+              "getV","setV<-","getQ","setQ<-",
+              "geta","seta<-","getS","setS<-",
+              "time","time<-","name","name<-")
+exportMethods("SSM", "Y", "X.filtered", "X.predicted",
+              "Cov.filtered", "Cov.predicted","Kalman.Gain",
+              "X.rob.filtered", "X.rob.predicted", 
+              "Cov.rob.filtered", "Cov.rob.predicted","Kalman.rob.Gain")
+exportMethods("rob.correction.ctrl", "rob.prediction.ctrl")
+exportMethods("IndIO", "IndAO", "nsim", "RNGstate") 
+exportMethods("Cov.rob.filtered.sim", "Cov.rob.predicted.sim")
+exportMethods("init", "predict", "correct") 
+exportMethods("init.rob", "predict.rob", "correct.rob", "name.rob") 
+exportMethods("controls")
+exportMethods(".make.project", "kalman", "kalmanRob")
+exportMethods("solve", "simulate")
+export("TI.SSM", "makeArrayRepresentation")
+export("SSMellDistribution.f", "SSMContDistribution.f",
+       "SSMConvDistribution.f", "SSMwithDistribution",
+       "SSMwithConvDistribution")
+export("rcvcont")
+export("KalmanControl", "ACMControl", "rLSControl")
+export("generateRecFilter", "generateRobRecFilter")
+export("ACMfilt", "ACMfilter", "arGM", "Euclidnorm",  
+       "simulateState", "simulateObs", "rcvmvnorm", "Huberize",
+       "rLScalibrateB", "limitS", "rLSFilter", "KalmanFilter", 
+       "recursiveFilter")

Added: branches/robKalman_itwm/pkg/robKalman/R/0AllClass.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/0AllClass.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/0AllClass.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,335 @@
+################ general package preparation code, nothing to do with classes:
+
+.onLoad <- function(lib, pkg){
+    require("methods", character = TRUE, quietly = TRUE)
+
+}
+
+
+.onAttach <- function(library, pkg)
+{
+buildStartupMessage(pkg="robKalman", library=library, packageHelp=TRUE #, 
+                    #MANUAL=""
+                    )
+  invisible()
+}
+
+#.onUnload <- function(libpath)
+#{
+#    library.dynam.unload("distrEx", libpath)
+#}
+#
+
+
+################ Matrix class
+
+#### Code borrowed from package distrMod
+
+if (!(isClass("PosSemDefSymmMatrix")))
+setClass("PosSemDefSymmMatrix", contains = "matrix",
+            prototype = prototype(matrix(1)),
+            validity = function(object){
+                if(nrow(object) != ncol(object))
+                    stop("no square matrix")
+                if(any(!is.finite(object)))
+                    stop("inifinite or missing values in matrix")
+                if(!isTRUE(all.equal(object, t(object), .Machine$double.eps^0.5)))
+                    stop("matrix is not symmetric")
+                if(!all(eigen(object)$values > -100*.Machine$double.eps))
+                   stop("matrix is (numerically) not positive semi - definite")
+               return(TRUE)
+            })
+
+## positive definite, symmetric matrices with finite entries
+if (!(isClass("PosDefSymmMatrix")))
+setClass("PosDefSymmMatrix", contains = "PosSemDefSymmMatrix",
+            validity = function(object){
+               if(!all(eigen(object)$values > 100*.Machine$double.eps))
+                   stop("matrix is (numerically) not positive definite")
+               valid <- getValidity(getClass("PosSemDefSymmMatrix"))
+               valid(as(object, "PosSemDefSymmMatrix"))
+               return(TRUE)
+            })
+
+
+
+#
+## register zoo as "S4"-class
+setOldClass("zoo")
+#
+
+### infra-structure classes / class unions
+
+setClassUnion("IntegerOrNULL", c("integer", "NULL"))
+setClassUnion("ArrayOrNULL", c("array", "NULL"))
+setClassUnion("ArrayOrMatrix", c("array", "matrix"))
+setClassUnion("Hyperparamtype", 
+               c("NULL","ArrayOrMatrix", "OptionalFunction"))
+setClassUnion("sHyperparamtype", 
+               c("Hyperparamtype", "numeric"))
+setClassUnion("MatrixOrLogical", c("logical", "matrix"))
+
+
+###############################################################################
+#
+# State Space Model classes (SSMs)
+#
+###############################################################################
+
+
+# class SSM --- State space model
+setClass("SSM",
+          representation = representation(
+                                name = "character",   ## name of the ssm
+                                F = "Hyperparamtype", ## transition matrix/ces or NULL
+                                Z = "Hyperparamtype", ## observation matrix/ces or NULL
+                                Q = "Hyperparamtype", ## innovation covariance or NULL
+                                V = "Hyperparamtype", ## observation error covariance or NULL
+                                p = "numeric",  ## state dimension
+                                q = "numeric",  ## observation dimension
+                                a = "numeric", ##  mean value of starting state
+                                S = "Hyperparamtype", ##  variance of starting state
+                                time = "zoo"), ## time index
+          prototype = prototype(name = gettext("a state space"), 
+                                F = NULL,
+                                Z = NULL,
+                                Q = NULL,
+                                V = NULL,
+                                p = 1, 
+                                q = 1,
+                                a = 0,
+                                S = NULL,
+                                time = zoo(1)), 
+          )
+
+# class TimeInvariantSSM 
+setClass("TimeInvariantSSM",
+          prototype = prototype(name = gettext("a time-invariant state space"), 
+                                F = matrix(1),
+                                Z = matrix(1),
+                                Q = matrix(1),
+                                V = matrix(1),
+                                p = 1, 
+                                q = 1,
+                                a = 0,
+                                S = matrix(1)), 
+          validity = function(object){
+            if(!is.matrix(object at F)|!is.matrix(object at Z)|
+               !is.matrix(object at Q)|!is.matrix(object at V)|
+               !is.matrix(object at S))
+               stop("Hyperparameters have to be matrices")
+            return(TRUE)   
+          },
+          contains = "SSM")          
+
+###############################################################################
+#
+# Filter classes 
+#
+###############################################################################
+
+setClass("recFilter", representation(name = "character",
+                      SSM = "SSM", 
+                      Y = "array",
+                      X.filtered = "array",
+                      X.predicted = "array",
+                      Cov.filtered = "array",
+                      Cov.predicted = "array",
+                      Kalman.Gain = "array",
+                      time = "zoo"),
+         prototype = prototype(name="classical Kalman Filter",
+                              SSM = new("TimeInvariantSSM"),
+                              Y = array(1,dim=c(1,1,1)),
+                              X.filtered = array(1,dim=c(1,1,1)),
+                              X.predicted = array(1,dim=c(1,1,1)),
+                              Cov.filtered = array(1,dim = c(1,1,1)),
+                              Cov.predicted = array(1,dim = c(1,1,1)),
+                              Kalman.Gain = array(1,dim = c(1,1,1)),
+                              time = zoo(1))
+                              
+         )
+
+                              
+setClass("robrecFilter", representation(
+                      name.rob = "character",
+                      X.rob.filtered = "array",
+                      X.rob.predicted = "array",
+                      Cov.rob.filtered = "array",
+                      Cov.rob.predicted = "array",
+                      Kalman.rob.Gain = "array",
+                      IndIO = "MatrixOrLogical", 
+                      IndAO = "MatrixOrLogical",
+                      rob.correction.ctrl = "list",
+                      rob.prediction.ctrl = "list",
+                      nsim = "numeric",
+                      RNGstate = "IntegerOrNULL",
+                      Cov.rob.filtered.sim = "ArrayOrNULL",
+                      Cov.rob.predicted.sim = "ArrayOrNULL"
+                      ),
+         prototype = prototype(
+                      name="rLS Filter",
+                      X.rob.filtered = array(1,dim=c(1,1,1)),
+                      X.rob.predicted = array(1,dim=c(1,1,1)),
+                      Cov.rob.filtered = array(1,dim = c(1,1,1)),
+                      Cov.rob.predicted = array(1,dim = c(1,1,1)),
+                      Kalman.rob.Gain = array(1,dim = c(1,1,1)),
+                      IndIO = FALSE, 
+                      IndAO = FALSE,
+                      nsim = 0,
+                      RNGstate = as.integer(0),
+                      rob.correction.ctrl = list(NULL),
+                      rob.prediction.ctrl = list(NULL),
+                      Cov.rob.filtered.sim = array(1,dim = c(1,1,1)),
+                      Cov.rob.predicted.sim = array(1,dim = c(1,1,1))),
+         contains = "recFilter")
+                              
+###############################################################################
+#
+# Control classes 
+#
+###############################################################################
+#setClass("ACMcontrol",representation())
+#setClass("rLScontrol",representation())
+                                           
+
+setClass("RecFiltControl", representation(
+                      name = "character",
+                      init = "function",
+                      predict = "function",
+                      correct = "function"),                                 
+          contains = "VIRTUAL")
+
+setClass("KalmanControl",                                 
+          prototype = prototype(
+                      name = "classical Kalman Filter",
+                      init = .cKinitstep, 
+                      predict = .cKpredstep, 
+                      correct = .cKcorrstep),
+          contains="RecFiltControl"            
+          )
+                       
+setClass("robrecControl", representation(
+                       controls = "list",
+                       name.rob = "character",
+                       init.rob = "function",
+                       predict.rob = "function",
+                       correct.rob = "function"),                                 
+          prototype = prototype(
+                      name.rob = "rLS Filter",
+                      init.rob = .cKinitstep, 
+                      predict.rob = .cKpredstep, 
+                      correct.rob = .rLScorrstep,
+                      controls = list(b = 2, norm = EuclideanNorm)
+                      ),
+          contains="RecFiltControl"            
+              )
+#                                = paste(gettext(
+#                            "Control set and init, prediction and"
+#                                 ),gettext(
+#                            "correction step for the classical Kalman Filter\n"
+#                                 ),gettext(
+#                            "and the rLS Filter"
+#                                 )), 
+
+###############################################################################
+#
+# multivariate Distribution classes 
+#
+###############################################################################
+
+setClass("SSMDistribution.f", representation(
+                              r.init = "function",
+                              r.innov = "function",
+                              r.obs = "function"),
+          prototype = prototype(r.init = mvrnorm, 
+                                r.innov = mvrnorm, 
+                                r.obs = mvrnorm))                         
+
+setClass("SSMellDistribution.f", representation(
+                              m.init = "sHyperparamtype",
+                              S.init = "Hyperparamtype",
+                              m.innov = "sHyperparamtype",
+                              S.innov = "Hyperparamtype",
+                              m.obs = "sHyperparamtype",
+                              S.obs = "Hyperparamtype"),
+          prototype = prototype(m.init = 0, S.init = matrix(1),
+                                m.innov = 0, S.innov = matrix(1),
+                                m.obs = 0, S.obs = matrix(1)),
+          contains = "SSMDistribution.f")
+
+setClass("SSMConvDistribution.f", representation(
+                              ideal = "SSMDistribution.f",
+                              cont = "SSMellDistribution.f",
+                              r.IO = "numeric",
+                              r.AO = "numeric"),
+          prototype = prototype(ideal = new("SSMellDistribution.f"),
+                                cont = new("SSMellDistribution.f"),
+                                r.IO = 0, r.AO = 0),
+          validity = function(object){
+                     if (object at r.IO<0||object at r.AO<0||object at r.IO>1||object at r.AO>1)                      
+                         stop("Radii must be between 0 and 1")
+                     return(TRUE)})
+
+
+###############################################################################
+#
+# SSM + Distribution classes 
+#
+###############################################################################
+setClass("SSMwithDistribution", representation(
+                              SSM = "SSM",
+                              Distribution = "SSMDistribution.f"),
+          prototype = prototype(SSM = new("SSM"), 
+                      Distribution = SSMDistribution.f(new("SSM"))))
+setClass("SSMwithConvDistribution", representation(
+                              SSM = "SSM",
+                              Distribution = "SSMConvDistribution.f"),
+          prototype = prototype(SSM = new("SSM"), 
+                      Distribution = SSMContDistribution.f(new("SSM"))))
+
+setClassUnion("SSMDistr", c("SSMDistribution.f", 
+              "SSMConvDistribution.f"))
+
+###############################################################################
+#
+# SSM - Simulation classes 
+#
+###############################################################################
+setClass("SSMsimulation", representation(
+                              SSM = "SSM",
+                              Distr = "SSMDistr",
+                              RNGstate = "numeric",
+                              states = "ArrayOrMatrix",
+                              obs = "ArrayOrMatrix"),
+          prototype = prototype(SSM = new("SSM"), 
+                      Distr = new("SSMDistribution.f"),
+                      RNGstate = structure(1, kind = as.list(RNGkind())), 
+                      states = matrix(1), obs = matrix(1)))
+
+setClass("SSMcontSimulation", representation(
+                              states.id = "ArrayOrMatrix",
+                              obs.id = "ArrayOrMatrix",                              
+                              Ind.IO = "MatrixOrLogical",
+                              Ind.AO = "MatrixOrLogical"
+                              ),
+          prototype = prototype(
+                      Distr = new("SSMConvDistribution.f"),
+                      states.id = matrix(1), obs.id = matrix(1),
+                      Ind.IO = FALSE, Ind.AO = FALSE
+                      ),
+          validity = function(object){
+                fct <- function(m){ 
+                   mt <- paste(deparse(substitute(m)),sep="",collapse="")
+                   if(is.matrix(m)){
+                      if(!all(is.logical(m)))
+                          stop(gettextf("Matrix %s has to have logical entries.", mt))
+                      return(TRUE)
+                   }
+                   else return(TRUE)
+                 }                      
+               return(fct(object at Ind.IO)&&fct(object at Ind.AO))
+            },
+          contains = "SSMsimulation")
+          
+                      
+                                                                                                     
\ No newline at end of file

Added: branches/robKalman_itwm/pkg/robKalman/R/ACMfilt.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/ACMfilt.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/ACMfilt.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,85 @@
+ACMfilt <- function (x, gm, s0=0, 
+                     psi="Hampel", a=2.5, b=a, c=5.0, 
+                     flag="weights", lagsmo=TRUE)
+{
+###########################################
+##
+##  R-function: ACMfilt - approximate conditional-mean filtering (wrapper)
+##  author: Bernhard Spangl
+##  version: 1.1 (2007-08-13 and 2006-08-31)
+##  References: 
+##  [Mart79c] R.D. Martin, Approximate Conditional-mean Type Smoothers 
+##                and Interpolators (1979)
+##  [Mart81b] R.D. Martin, Robust Methods for Time Series (1981)
+##  [MarT82b] R.D. Martin & D.J. Thomson, Robust-resistent Spectrum 
+##                Estimation (1982)
+##
+###########################################
+
+##  Paramters:
+##  x ... univariate time series (vector)
+##  gm ... list as produced by function 'arGM' which includes components 
+##         'ar' containing the AR(p) coefficient estimates, 'sinnov' containing 
+##         innovation scale estiamtes from AR(p) fits of orders 1 through p;
+##         'Cx' containing an estimate of the p by p autocovariance matrix, 
+##         and 'mu', the estimated mean of 'x'. 
+##  s0 ... scale of nominal Gaussian component of the additive noise
+##  psi ... influence function to be used (default: "Hampel", 
+##          only Hampel's psi function available at the moment)
+##  a, b, c ... tuning constants for Hampel's psi-function
+##              (defaul: a=b=2.5, c=5.0)
+##  flag ... character, if "weights" (default), use psi(t)/t to calculate 
+##           the weights; if "deriv", use psi'(t)
+##  lagsmo ... logical, if TRUE (default) lag p-1 smoothing is performed; 
+##             if FALSE filtering from the top of ^X_t is performed
+
+##  Variable definitions:
+
+    N <- length(x)
+    phi <- gm$ar
+    p <- length(phi)
+    si <- gm$sinnov[p]
+    Cx <- gm$Cx
+    Phi <- cbind(rbind(phi[-p], diag(rep(1, (p-1)))), c(phi[p], rep(0, (p-1))))
+    Q <- matrix(0, p, p)
+##  Q <- diag(rep(0, p))
+    Q[1, 1] <- si^2
+    
+    m0 <- rep(0, p)
+    H <- matrix(c(1, rep(0, (p-1))), 1, p)
+    V <- matrix(s0^2)
+    psi <- .psi(psi)
+    
+    ##  Centering: 
+    x <- x - gm$mu
+    ACMres <- ACMfilter(Y = matrix(x,1,N), a = m0, S = Cx, F = Phi, 
+                        Q = Q, Z = H, V = V, 
+                        s0 = s0, psi = psi, apsi = a, bpsi = b, cpsi = c, 
+                        flag = flag)
+
+    ### from version ... the return value $X[r]f is of 
+    #         dimension p x runs x (N+1)
+    # =>  have to cast it back to dimension p x (N+1)
+
+    X.ck <- matrix(ACMres$Xf[,1,],  p, N+1);  X.ck <- X.ck[,2:(N+1)]
+    X   <-  matrix(ACMres$Xrf[,1,], p, N+1);  X <- X[,2:(N+1)]
+    st <- as.numeric(unlist(ACMres$rob1L))
+
+
+    if (!lagsmo) {
+        x.ck <- X.ck[1, ]
+        x <- X[1, ]
+    } else {
+        x.ck <- c(X.ck[p, p:N], X.ck[(p-1):1, N])
+        x <- c(X[p, p:N], X[(p-1):1, N])
+    }
+
+##  ARmodel <- .ARmodel(x, p)
+##  y <- ARmodel$y
+##  Z <- ARmodel$Z
+##  r <- resid(lm.fit(Z, y))
+    
+    return(list(filt.ck=x.ck +gm$mu, filt=x + gm$mu, st=st)) #, 
+##              r=c(rep(NA, p), r)))
+
+}

Added: branches/robKalman_itwm/pkg/robKalman/R/ACMfilter.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/ACMfilter.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/ACMfilter.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,97 @@
+.getcorrCovACM  <- function (S1, K,  Z, W=diag(nrow(Z)))
+{
+###########################################
+##
+##  R-function: .corrCov - computes filtering error covarince matrix
+##              (internal function)
+##  author: Bernhard Spangl
+##  version: 1.0 (2006-05-22)
+##
+###########################################
+
+##  Paramters:
+##  S1 ... prediction error covariance matrix
+##  K ... Kalman gain
+##  W ... weight matrix
+##  Z ... observation matrix
+
+    S1 - K %*% W %*% Z %*% S1
+}
+
+##steps for classical Kalman filter (cK)
+.ACMinitstep <- function(a, S,  i, ...) 
+              {dots <- list(...)
+               if(hasArg("s0")) 
+                    s0 <- dots$"s0"
+               else
+                    s0 <- NULL       
+               list( x0 = a,  S0 = S, s0 = s0)}
+
+
+.ACMpredstep <- function (x0, S0, F, Q,  i, rob0, s0, ...)  ### S=P F= Phi
+{
+###########################################
+##
+##  R-function: .ACMpredstep - prediction step (internal function)
+##  author: Bernhard Spangl
+##  version: 1.0 (2006-05-22)
+##
+###########################################
+
+##  Paramters:
+##  x0 ... state vector (filter estimate)
+##  F=Phi ... design matrix of state equation
+##  S0 ... filtering error covariance matrix
+##  Q ... covariance matrix of state innovation process
+##  rob0 ... general robust parameter --- here: scale s0 of nominal Gaussain component of additive noise
+    S1 <- .getpredCov(S0, F, Q)
+    return(list(x1 = F %*% x0, S1 = S1, rob1 = sqrt(S1[1, 1] + s0), Ind = FALSE))
+}
+
+.ACMcorrstep <- function (y, x1, S1, Z, V,  i, rob1, dum = NULL, 
+                          psi, apsi, bpsi, cpsi, flag, ...)
+{
+###########################################
+##
+##  R-function: .ACMcorrstep - correction step (internal function)
+##  author: Bernhard Spangl
+##  version: 1.0 (2006-05-22)
+##
+###########################################
+
+##  Paramters:
+##  y ... univariate time series 
+##  x1 ... state vector (one-step-ahead predictor)
+##  rob1 ... general robust parameter --- here st ... time-dependent scale parameter
+##  S1 ... prediction error covariance matrix 
+##  Z ... observation matrix
+##  dum ... dummy variable for compatibility with ... argument of calling function
+##  V ... covariance matrix of observation noise
+##  psi ... influence function to be used 
+##  apsi, bpsi, cpsi ... tuning constants for Hampel's psi-function
+##              (default: apsi=bpsi=2.5, cpsi=5.0)
+##  flag ... character, if "weights" (default), use psi(t)/t to calculate 
+##           the weights; if "deriv", use psi'(t)
+    
+    # to be compatible with parallel computing of a bunch of time series
+    y <- y[,1]
+    x1 <- x1[,1]
+    
+    st <- rob1
+
+    K <- .getKG(S1, Z, V)
+
+    rst <- (y - x1[1])/st
+
+    ps <- psi(rst, apsi, bpsi, cpsi)
+    dx <- K * st * ps
+    x0 <- x1 + dx
+
+    ind <- (abs(rst-ps)>10^-8)
+    
+    w <- psi(rst,  apsi, bpsi, cpsi, flag)
+    
+    S0 <- .getcorrCovACM(S1, K,  Z, W = w*diag(rep(1, nrow(Z))))
+
+    return(list(x0 = x0, K = K,  S0 = S0, Ind = ind, rob0 = rob1))
+}

Added: branches/robKalman_itwm/pkg/robKalman/R/AllGeneric.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/AllGeneric.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/AllGeneric.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,10 @@
+#if(!isGeneric("type")){ 
+#    setGeneric("type", function(object) standardGeneric("type"))
+#}
+#if(!isGeneric("center")){ 
+#    setGeneric("center", function(object) standardGeneric("center"))
+#}
+#if(!isGeneric("center<-")){
+#    setGeneric("center<-", function(object, value) standardGeneric("center<-"))
+#}
+#

Added: branches/robKalman_itwm/pkg/robKalman/R/AllGenerics.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/AllGenerics.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/AllGenerics.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,123 @@
+if(!isGeneric("solve")){
+    setGeneric("solve", function(a,b,...) standardGeneric("solve"))
+}
+############################################################################
+# Access methods
+############################################################################
+
+if(!isGeneric("name")) 
+    setGeneric("name", function(object) standardGeneric("name"))
+
+if(!isGeneric("getp")) 
+   setGeneric("getp", function(object) standardGeneric("getp"))
+if(!isGeneric("getq")) 
+   setGeneric("getq", function(object) standardGeneric("getq"))
+
+if(!isGeneric("getF")) 
+   setGeneric("getF", function(object) standardGeneric("getF"))
+if(!isGeneric("getZ")) 
+   setGeneric("getZ", function(object) standardGeneric("getZ"))
+if(!isGeneric("getQ")) 
+   setGeneric("getQ", function(object) standardGeneric("getQ"))
+if(!isGeneric("getV")) 
+   setGeneric("getV", function(object) standardGeneric("getV"))
+if(!isGeneric("geta")) 
+   setGeneric("geta", function(object) standardGeneric("geta"))
+if(!isGeneric("getS")) 
+   setGeneric("getS", function(object) standardGeneric("getS"))
+if(!isGeneric("time")) 
+   setGeneric("time", function(x,...) standardGeneric("time"))
+
+if(!isGeneric("SSM")) 
+   setGeneric("SSM", function(object, ...) standardGeneric("SSM"))
+if(!isGeneric("Y")) 
+   setGeneric("Y", function(object, ...) standardGeneric("Y"))
+if(!isGeneric("X.filtered")) 
+   setGeneric("X.filtered", function(object, ...) standardGeneric("X.filtered"))
+if(!isGeneric("X.predicted")) 
+   setGeneric("X.predicted", function(object, ...) standardGeneric("X.predicted"))
+if(!isGeneric("Cov.filtered")) 
+   setGeneric("Cov.filtered", function(object, ...) standardGeneric("Cov.filtered"))
+if(!isGeneric("Cov.predicted")) 
+   setGeneric("Cov.predicted", function(object, ...) standardGeneric("Cov.predicted"))
+if(!isGeneric("Kalman.Gain")) 
+   setGeneric("Kalman.Gain", function(object, ...) standardGeneric("Kalman.Gain"))
+if(!isGeneric("X.rob.filtered")) 
+   setGeneric("X.rob.filtered", function(object, ...) standardGeneric("X.rob.filtered"))
+if(!isGeneric("X.rob.predicted")) 
+   setGeneric("X.rob.predicted", function(object, ...) standardGeneric("X.rob.predicted"))
+if(!isGeneric("Cov.rob.filtered")) 
+   setGeneric("Cov.rob.filtered", function(object, ...) standardGeneric("Cov.rob.filtered"))
+if(!isGeneric("Cov.rob.predicted")) 
+   setGeneric("Cov.rob.predicted", function(object, ...) standardGeneric("Cov.rob.predicted"))
+if(!isGeneric("Kalman.rob.Gain")) 
+   setGeneric("Kalman.rob.Gain", function(object, ...) standardGeneric("Kalman.rob.Gain"))
+if(!isGeneric("rob.correction.ctrl")) 
+   setGeneric("rob.correction.ctrl", function(object, ...) standardGeneric("rob.correction.ctrl"))
+if(!isGeneric("rob.prediction.ctrl")) 
+   setGeneric("rob.prediction.ctrl", function(object, ...) standardGeneric("rob.prediction.ctrl"))
+if(!isGeneric("IndIO")) 
+   setGeneric("IndIO", function(object, ...) standardGeneric("IndIO"))
+if(!isGeneric("IndAO")) 
+   setGeneric("IndAO", function(object, ...) standardGeneric("IndAO"))
+if(!isGeneric("nsim")) 
+   setGeneric("nsim", function(object, ...) standardGeneric("nsim"))
+if(!isGeneric("RNGstate")) 
+   setGeneric("RNGstate", function(object, ...) standardGeneric("RNGstate"))
+if(!isGeneric("Cov.rob.filtered.sim")) 
+   setGeneric("Cov.rob.filtered.sim", function(object, ...) standardGeneric("Cov.rob.filtered.sim"))
+if(!isGeneric("Cov.rob.predicted.sim")) 
+   setGeneric("Cov.rob.predicted.sim", function(object, ...) standardGeneric("Cov.rob.predicted.sim"))
+if(!isGeneric("init")) 
+   setGeneric("init", function(object, ...) standardGeneric("init"))
+if(!isGeneric("predict")) 
+   setGeneric("predict", function(object, ...) standardGeneric("predict"))
+if(!isGeneric("correct")) 
+   setGeneric("correct", function(object, ...) standardGeneric("correct"))
+if(!isGeneric("init.rob")) 
+   setGeneric("init.rob", function(object, ...) standardGeneric("init.rob"))
+if(!isGeneric("name.rob")) 
+   setGeneric("name.rob", function(object, ...) standardGeneric("name.rob"))
+if(!isGeneric("predict.rob")) 
+   setGeneric("predict.rob", function(object, ...) standardGeneric("predict.rob"))
+if(!isGeneric("correct.rob")) 
+   setGeneric("correct.rob", function(object, ...) standardGeneric("correct.rob"))
+if(!isGeneric("controls")) 
+   setGeneric("controls", function(object, ...) standardGeneric("controls"))
+                              
+############################################################################
+# Replacement methods
+############################################################################
+
+if(!isGeneric("name<-")) 
+    setGeneric("name<-", 
+                function(object, value) standardGeneric("name<-"))
+
+if(!isGeneric("setp<-")) 
+   setGeneric("setp<-", function(object, value) standardGeneric("setp<-"))
+if(!isGeneric("setq<-")) 
+   setGeneric("setq<-", function(object, value) standardGeneric("setq<-"))
+
+if(!isGeneric("setF<-")) 
+   setGeneric("setF<-", function(object, value) standardGeneric("setF<-"))
+if(!isGeneric("setZ<-")) 
+   setGeneric("setZ<-", function(object, value) standardGeneric("setZ<-"))
+if(!isGeneric("setQ<-")) 
+   setGeneric("setQ<-", function(object, value) standardGeneric("setQ<-"))
+if(!isGeneric("setV<-")) 
+   setGeneric("setV<-", function(object, value) standardGeneric("setV<-"))
+if(!isGeneric("seta<-")) 
+   setGeneric("seta<-", function(object, value) standardGeneric("seta<-"))
+if(!isGeneric("setS<-")) 
+   setGeneric("setS<-", function(object, value) standardGeneric("setS<-"))
+if(!isGeneric("time<-")) 
+   setGeneric("time<-", function(x, value) standardGeneric("time<-"))
+
+if(!isGeneric(".make.project")) 
+setGeneric(".make.project",function(object, ...) standardGeneric(".make.project"))
+
+if(!isGeneric("kalman")) 
+setGeneric("kalman",function(smooth, ...) standardGeneric("kalman"))
+
+if(!isGeneric("kalmanRob")) 
+setGeneric("kalmanRob",function(method, smooth, ...) standardGeneric("kalmanRob"))

Added: branches/robKalman_itwm/pkg/robKalman/R/AllInitialize.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/AllInitialize.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/AllInitialize.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,3 @@
+#### as to whether to use Generating functions or to use initialize methods:
+#### http://tolstoy.newcastle.edu.au/R/e2/devel/07/01/1976.html
+                     

Added: branches/robKalman_itwm/pkg/robKalman/R/AllPlot.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/AllPlot.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/AllPlot.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,7 @@
+#setMethod("plot", "ParamFamily", 
+#    function(x,y=NULL,...){ 
+#        e1 <- x at distribution
+#        if(!is(e1, "UnivariateDistribution")) stop("not yet implemented")
+#
+#        plot(e1) 
+#    })

Added: branches/robKalman_itwm/pkg/robKalman/R/AllShow.R
===================================================================
--- branches/robKalman_itwm/pkg/robKalman/R/AllShow.R	                        (rev 0)
+++ branches/robKalman_itwm/pkg/robKalman/R/AllShow.R	2009-03-18 14:47:20 UTC (rev 18)
@@ -0,0 +1,161 @@
+#setMethod("show", "ParamFamParameter", 
+#    function(object){
+#        cat(paste("An object of class", dQuote(class(object)), "\n"))
+#        cat("name:\t", object at name, "\n")
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robkalman -r 18


More information about the Robkalman-commits mailing list