[Robkalman-commits] r21 - in pkg/robKalman: . R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Mar 18 16:23:41 CET 2009


Author: ruckdeschel
Date: 2009-03-18 16:23:41 +0100 (Wed, 18 Mar 2009)
New Revision: 21

Removed:
   pkg/robKalman/R/0AllClass.R
   pkg/robKalman/R/ACMfilt.R
   pkg/robKalman/R/ACMfilter.R
   pkg/robKalman/R/AllGeneric.R
   pkg/robKalman/R/AllGenerics.R
   pkg/robKalman/R/AllInitialize.R
   pkg/robKalman/R/AllPlot.R
   pkg/robKalman/R/AllShow.R
   pkg/robKalman/R/Control.R
   pkg/robKalman/R/PosDefSymmMatrix.R
   pkg/robKalman/R/Psi.R
   pkg/robKalman/R/SSM.R
   pkg/robKalman/R/Util.R
   pkg/robKalman/R/arGM.R
   pkg/robKalman/R/arGMinternal.R
   pkg/robKalman/R/calibrateRLS.R
   pkg/robKalman/R/classKalman.R
   pkg/robKalman/R/generateSSMDistr.R
   pkg/robKalman/R/mACMfilter.R
   pkg/robKalman/R/mACMinternal.R
   pkg/robKalman/R/rLSfilter.R
   pkg/robKalman/R/recFilter-Methods.R
   pkg/robKalman/R/recFilter.R
   pkg/robKalman/R/simulateSScont.R
   pkg/robKalman/R/solve.R
   pkg/robKalman/R/tests.R
Modified:
   pkg/robKalman/DESCRIPTION
Log:
had wrong r-versions in trunc folder...
deleting them (step 1)

Modified: pkg/robKalman/DESCRIPTION
===================================================================
--- pkg/robKalman/DESCRIPTION	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/DESCRIPTION	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,13 +1,13 @@
 Package: robKalman
-Version: 0.2
-Date: 2007-07-03
+Version: 0.2.1
+Date: 2009-03-18
 Title: Robust Kalman Filtering
 Description: Routines for Robust Kalman Filtering --- the ACM- and rLS-filter
 Author: Peter Ruckdeschel, Bernhard Spangl
-Maintainer: Peter Ruckdeschel <Peter.Ruckdeschel at uni-bayreuth.de>
+Maintainer: Peter Ruckdeschel <Peter.Ruckdeschel at itwm.fraunhofer.de>
 Depends: R(>= 2.3.0), methods, graphics, startupmsg, dse1, dse2, MASS, limma, robustbase, numDeriv 
 Imports: stats, MASS
 SaveImage: no
 LazyLoad: yes
-License: GPL (version 2 or later)
-URL: http://www.uni-bayreuth.de/departments/math/org/mathe7/robKalman/
+License: LGPL-3
+URL: http://robkalman.r-forge.r-project.org/

Deleted: pkg/robKalman/R/0AllClass.R
===================================================================
--- pkg/robKalman/R/0AllClass.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/0AllClass.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,335 +0,0 @@
-################ general package preparation code, nothing to do with classes:
-
-.onLoad <- function(lib, pkg){
-    require("methods", character = TRUE, quietly = TRUE)
-
-}
-
-
-.onAttach <- function(library, pkg)
-{
-buildStartupMessage(pkg="robKalman", library=library, packageHelp=TRUE #, 
-                    #MANUAL=""
-                    )
-  invisible()
-}
-
-#.onUnload <- function(libpath)
-#{
-#    library.dynam.unload("distrEx", libpath)
-#}
-#
-
-
-################ Matrix class
-
-#### Code borrowed from package distrMod
-
-if (!(isClass("PosSemDefSymmMatrix")))
-setClass("PosSemDefSymmMatrix", contains = "matrix",
-            prototype = prototype(matrix(1)),
-            validity = function(object){
-                if(nrow(object) != ncol(object))
-                    stop("no square matrix")
-                if(any(!is.finite(object)))
-                    stop("inifinite or missing values in matrix")
-                if(!isTRUE(all.equal(object, t(object), .Machine$double.eps^0.5)))
-                    stop("matrix is not symmetric")
-                if(!all(eigen(object)$values > -100*.Machine$double.eps))
-                   stop("matrix is (numerically) not positive semi - definite")
-               return(TRUE)
-            })
-
-## positive definite, symmetric matrices with finite entries
-if (!(isClass("PosDefSymmMatrix")))
-setClass("PosDefSymmMatrix", contains = "PosSemDefSymmMatrix",
-            validity = function(object){
-               if(!all(eigen(object)$values > 100*.Machine$double.eps))
-                   stop("matrix is (numerically) not positive definite")
-               valid <- getValidity(getClass("PosSemDefSymmMatrix"))
-               valid(as(object, "PosSemDefSymmMatrix"))
-               return(TRUE)
-            })
-
-
-
-#
-## register zoo as "S4"-class
-setOldClass("zoo")
-#
-
-### infra-structure classes / class unions
-
-setClassUnion("IntegerOrNULL", c("integer", "NULL"))
-setClassUnion("ArrayOrNULL", c("array", "NULL"))
-setClassUnion("ArrayOrMatrix", c("array", "matrix"))
-setClassUnion("Hyperparamtype", 
-               c("NULL","ArrayOrMatrix", "OptionalFunction"))
-setClassUnion("sHyperparamtype", 
-               c("Hyperparamtype", "numeric"))
-setClassUnion("MatrixOrLogical", c("logical", "matrix"))
-
-
-###############################################################################
-#
-# State Space Model classes (SSMs)
-#
-###############################################################################
-
-
-# class SSM --- State space model
-setClass("SSM",
-          representation = representation(
-                                name = "character",   ## name of the ssm
-                                F = "Hyperparamtype", ## transition matrix/ces or NULL
-                                Z = "Hyperparamtype", ## observation matrix/ces or NULL
-                                Q = "Hyperparamtype", ## innovation covariance or NULL
-                                V = "Hyperparamtype", ## observation error covariance or NULL
-                                p = "numeric",  ## state dimension
-                                q = "numeric",  ## observation dimension
-                                a = "numeric", ##  mean value of starting state
-                                S = "Hyperparamtype", ##  variance of starting state
-                                time = "zoo"), ## time index
-          prototype = prototype(name = gettext("a state space"), 
-                                F = NULL,
-                                Z = NULL,
-                                Q = NULL,
-                                V = NULL,
-                                p = 1, 
-                                q = 1,
-                                a = 0,
-                                S = NULL,
-                                time = zoo(1)), 
-          )
-
-# class TimeInvariantSSM 
-setClass("TimeInvariantSSM",
-          prototype = prototype(name = gettext("a time-invariant state space"), 
-                                F = matrix(1),
-                                Z = matrix(1),
-                                Q = matrix(1),
-                                V = matrix(1),
-                                p = 1, 
-                                q = 1,
-                                a = 0,
-                                S = matrix(1)), 
-          validity = function(object){
-            if(!is.matrix(object at F)|!is.matrix(object at Z)|
-               !is.matrix(object at Q)|!is.matrix(object at V)|
-               !is.matrix(object at S))
-               stop("Hyperparameters have to be matrices")
-            return(TRUE)   
-          },
-          contains = "SSM")          
-
-###############################################################################
-#
-# Filter classes 
-#
-###############################################################################
-
-setClass("recFilter", representation(name = "character",
-                      SSM = "SSM", 
-                      Y = "array",
-                      X.filtered = "array",
-                      X.predicted = "array",
-                      Cov.filtered = "array",
-                      Cov.predicted = "array",
-                      Kalman.Gain = "array",
-                      time = "zoo"),
-         prototype = prototype(name="classical Kalman Filter",
-                              SSM = new("TimeInvariantSSM"),
-                              Y = array(1,dim=c(1,1,1)),
-                              X.filtered = array(1,dim=c(1,1,1)),
-                              X.predicted = array(1,dim=c(1,1,1)),
-                              Cov.filtered = array(1,dim = c(1,1,1)),
-                              Cov.predicted = array(1,dim = c(1,1,1)),
-                              Kalman.Gain = array(1,dim = c(1,1,1)),
-                              time = zoo(1))
-                              
-         )
-
-                              
-setClass("robrecFilter", representation(
-                      name.rob = "character",
-                      X.rob.filtered = "array",
-                      X.rob.predicted = "array",
-                      Cov.rob.filtered = "array",
-                      Cov.rob.predicted = "array",
-                      Kalman.rob.Gain = "array",
-                      IndIO = "MatrixOrLogical", 
-                      IndAO = "MatrixOrLogical",
-                      rob.correction.ctrl = "list",
-                      rob.prediction.ctrl = "list",
-                      nsim = "numeric",
-                      RNGstate = "IntegerOrNULL",
-                      Cov.rob.filtered.sim = "ArrayOrNULL",
-                      Cov.rob.predicted.sim = "ArrayOrNULL"
-                      ),
-         prototype = prototype(
-                      name="rLS Filter",
-                      X.rob.filtered = array(1,dim=c(1,1,1)),
-                      X.rob.predicted = array(1,dim=c(1,1,1)),
-                      Cov.rob.filtered = array(1,dim = c(1,1,1)),
-                      Cov.rob.predicted = array(1,dim = c(1,1,1)),
-                      Kalman.rob.Gain = array(1,dim = c(1,1,1)),
-                      IndIO = FALSE, 
-                      IndAO = FALSE,
-                      nsim = 0,
-                      RNGstate = as.integer(0),
-                      rob.correction.ctrl = list(NULL),
-                      rob.prediction.ctrl = list(NULL),
-                      Cov.rob.filtered.sim = array(1,dim = c(1,1,1)),
-                      Cov.rob.predicted.sim = array(1,dim = c(1,1,1))),
-         contains = "recFilter")
-                              
-###############################################################################
-#
-# Control classes 
-#
-###############################################################################
-#setClass("ACMcontrol",representation())
-#setClass("rLScontrol",representation())
-                                           
-
-setClass("RecFiltControl", representation(
-                      name = "character",
-                      init = "function",
-                      predict = "function",
-                      correct = "function"),                                 
-          contains = "VIRTUAL")
-
-setClass("KalmanControl",                                 
-          prototype = prototype(
-                      name = "classical Kalman Filter",
-                      init = .cKinitstep, 
-                      predict = .cKpredstep, 
-                      correct = .cKcorrstep),
-          contains="RecFiltControl"            
-          )
-                       
-setClass("robrecControl", representation(
-                       controls = "list",
-                       name.rob = "character",
-                       init.rob = "function",
-                       predict.rob = "function",
-                       correct.rob = "function"),                                 
-          prototype = prototype(
-                      name.rob = "rLS Filter",
-                      init.rob = .cKinitstep, 
-                      predict.rob = .cKpredstep, 
-                      correct.rob = .rLScorrstep,
-                      controls = list(b = 2, norm = EuclideanNorm)
-                      ),
-          contains="RecFiltControl"            
-              )
-#                                = paste(gettext(
-#                            "Control set and init, prediction and"
-#                                 ),gettext(
-#                            "correction step for the classical Kalman Filter\n"
-#                                 ),gettext(
-#                            "and the rLS Filter"
-#                                 )), 
-
-###############################################################################
-#
-# multivariate Distribution classes 
-#
-###############################################################################
-
-setClass("SSMDistribution.f", representation(
-                              r.init = "function",
-                              r.innov = "function",
-                              r.obs = "function"),
-          prototype = prototype(r.init = mvrnorm, 
-                                r.innov = mvrnorm, 
-                                r.obs = mvrnorm))                         
-
-setClass("SSMellDistribution.f", representation(
-                              m.init = "sHyperparamtype",
-                              S.init = "Hyperparamtype",
-                              m.innov = "sHyperparamtype",
-                              S.innov = "Hyperparamtype",
-                              m.obs = "sHyperparamtype",
-                              S.obs = "Hyperparamtype"),
-          prototype = prototype(m.init = 0, S.init = matrix(1),
-                                m.innov = 0, S.innov = matrix(1),
-                                m.obs = 0, S.obs = matrix(1)),
-          contains = "SSMDistribution.f")
-
-setClass("SSMConvDistribution.f", representation(
-                              ideal = "SSMDistribution.f",
-                              cont = "SSMellDistribution.f",
-                              r.IO = "numeric",
-                              r.AO = "numeric"),
-          prototype = prototype(ideal = new("SSMellDistribution.f"),
-                                cont = new("SSMellDistribution.f"),
-                                r.IO = 0, r.AO = 0),
-          validity = function(object){
-                     if (object at r.IO<0||object at r.AO<0||object at r.IO>1||object at r.AO>1)                      
-                         stop("Radii must be between 0 and 1")
-                     return(TRUE)})
-
-
-###############################################################################
-#
-# SSM + Distribution classes 
-#
-###############################################################################
-setClass("SSMwithDistribution", representation(
-                              SSM = "SSM",
-                              Distribution = "SSMDistribution.f"),
-          prototype = prototype(SSM = new("SSM"), 
-                      Distribution = SSMDistribution.f(new("SSM"))))
-setClass("SSMwithConvDistribution", representation(
-                              SSM = "SSM",
-                              Distribution = "SSMConvDistribution.f"),
-          prototype = prototype(SSM = new("SSM"), 
-                      Distribution = SSMContDistribution.f(new("SSM"))))
-
-setClassUnion("SSMDistr", c("SSMDistribution.f", 
-              "SSMConvDistribution.f"))
-
-###############################################################################
-#
-# SSM - Simulation classes 
-#
-###############################################################################
-setClass("SSMsimulation", representation(
-                              SSM = "SSM",
-                              Distr = "SSMDistr",
-                              RNGstate = "numeric",
-                              states = "ArrayOrMatrix",
-                              obs = "ArrayOrMatrix"),
-          prototype = prototype(SSM = new("SSM"), 
-                      Distr = new("SSMDistribution.f"),
-                      RNGstate = structure(1, kind = as.list(RNGkind())), 
-                      states = matrix(1), obs = matrix(1)))
-
-setClass("SSMcontSimulation", representation(
-                              states.id = "ArrayOrMatrix",
-                              obs.id = "ArrayOrMatrix",                              
-                              Ind.IO = "MatrixOrLogical",
-                              Ind.AO = "MatrixOrLogical"
-                              ),
-          prototype = prototype(
-                      Distr = new("SSMConvDistribution.f"),
-                      states.id = matrix(1), obs.id = matrix(1),
-                      Ind.IO = FALSE, Ind.AO = FALSE
-                      ),
-          validity = function(object){
-                fct <- function(m){ 
-                   mt <- paste(deparse(substitute(m)),sep="",collapse="")
-                   if(is.matrix(m)){
-                      if(!all(is.logical(m)))
-                          stop(gettextf("Matrix %s has to have logical entries.", mt))
-                      return(TRUE)
-                   }
-                   else return(TRUE)
-                 }                      
-               return(fct(object at Ind.IO)&&fct(object at Ind.AO))
-            },
-          contains = "SSMsimulation")
-          
-                      
-                                                                                                     
\ No newline at end of file

Deleted: pkg/robKalman/R/ACMfilt.R
===================================================================
--- pkg/robKalman/R/ACMfilt.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/ACMfilt.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,85 +0,0 @@
-ACMfilt <- function (x, gm, s0=0, 
-                     psi="Hampel", a=2.5, b=a, c=5.0, 
-                     flag="weights", lagsmo=TRUE)
-{
-###########################################
-##
-##  R-function: ACMfilt - approximate conditional-mean filtering (wrapper)
-##  author: Bernhard Spangl
-##  version: 1.1 (2007-08-13 and 2006-08-31)
-##  References: 
-##  [Mart79c] R.D. Martin, Approximate Conditional-mean Type Smoothers 
-##                and Interpolators (1979)
-##  [Mart81b] R.D. Martin, Robust Methods for Time Series (1981)
-##  [MarT82b] R.D. Martin & D.J. Thomson, Robust-resistent Spectrum 
-##                Estimation (1982)
-##
-###########################################
-
-##  Paramters:
-##  x ... univariate time series (vector)
-##  gm ... list as produced by function 'arGM' which includes components 
-##         'ar' containing the AR(p) coefficient estimates, 'sinnov' containing 
-##         innovation scale estiamtes from AR(p) fits of orders 1 through p;
-##         'Cx' containing an estimate of the p by p autocovariance matrix, 
-##         and 'mu', the estimated mean of 'x'. 
-##  s0 ... scale of nominal Gaussian component of the additive noise
-##  psi ... influence function to be used (default: "Hampel", 
-##          only Hampel's psi function available at the moment)
-##  a, b, c ... tuning constants for Hampel's psi-function
-##              (defaul: a=b=2.5, c=5.0)
-##  flag ... character, if "weights" (default), use psi(t)/t to calculate 
-##           the weights; if "deriv", use psi'(t)
-##  lagsmo ... logical, if TRUE (default) lag p-1 smoothing is performed; 
-##             if FALSE filtering from the top of ^X_t is performed
-
-##  Variable definitions:
-
-    N <- length(x)
-    phi <- gm$ar
-    p <- length(phi)
-    si <- gm$sinnov[p]
-    Cx <- gm$Cx
-    Phi <- cbind(rbind(phi[-p], diag(rep(1, (p-1)))), c(phi[p], rep(0, (p-1))))
-    Q <- matrix(0, p, p)
-##  Q <- diag(rep(0, p))
-    Q[1, 1] <- si^2
-    
-    m0 <- rep(0, p)
-    H <- matrix(c(1, rep(0, (p-1))), 1, p)
-    V <- matrix(s0^2)
-    psi <- .psi(psi)
-    
-    ##  Centering: 
-    x <- x - gm$mu
-    ACMres <- ACMfilter(Y = matrix(x,1,N), a = m0, S = Cx, F = Phi, 
-                        Q = Q, Z = H, V = V, 
-                        s0 = s0, psi = psi, apsi = a, bpsi = b, cpsi = c, 
-                        flag = flag)
-
-    ### from version ... the return value $X[r]f is of 
-    #         dimension p x runs x (N+1)
-    # =>  have to cast it back to dimension p x (N+1)
-
-    X.ck <- matrix(ACMres$Xf[,1,],  p, N+1);  X.ck <- X.ck[,2:(N+1)]
-    X   <-  matrix(ACMres$Xrf[,1,], p, N+1);  X <- X[,2:(N+1)]
-    st <- as.numeric(unlist(ACMres$rob1L))
-
-
-    if (!lagsmo) {
-        x.ck <- X.ck[1, ]
-        x <- X[1, ]
-    } else {
-        x.ck <- c(X.ck[p, p:N], X.ck[(p-1):1, N])
-        x <- c(X[p, p:N], X[(p-1):1, N])
-    }
-
-##  ARmodel <- .ARmodel(x, p)
-##  y <- ARmodel$y
-##  Z <- ARmodel$Z
-##  r <- resid(lm.fit(Z, y))
-    
-    return(list(filt.ck=x.ck +gm$mu, filt=x + gm$mu, st=st)) #, 
-##              r=c(rep(NA, p), r)))
-
-}

Deleted: pkg/robKalman/R/ACMfilter.R
===================================================================
--- pkg/robKalman/R/ACMfilter.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/ACMfilter.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,97 +0,0 @@
-.getcorrCovACM  <- function (S1, K,  Z, W=diag(nrow(Z)))
-{
-###########################################
-##
-##  R-function: .corrCov - computes filtering error covarince matrix
-##              (internal function)
-##  author: Bernhard Spangl
-##  version: 1.0 (2006-05-22)
-##
-###########################################
-
-##  Paramters:
-##  S1 ... prediction error covariance matrix
-##  K ... Kalman gain
-##  W ... weight matrix
-##  Z ... observation matrix
-
-    S1 - K %*% W %*% Z %*% S1
-}
-
-##steps for classical Kalman filter (cK)
-.ACMinitstep <- function(a, S,  i, ...) 
-              {dots <- list(...)
-               if(hasArg("s0")) 
-                    s0 <- dots$"s0"
-               else
-                    s0 <- NULL       
-               list( x0 = a,  S0 = S, s0 = s0)}
-
-
-.ACMpredstep <- function (x0, S0, F, Q,  i, rob0, s0, ...)  ### S=P F= Phi
-{
-###########################################
-##
-##  R-function: .ACMpredstep - prediction step (internal function)
-##  author: Bernhard Spangl
-##  version: 1.0 (2006-05-22)
-##
-###########################################
-
-##  Paramters:
-##  x0 ... state vector (filter estimate)
-##  F=Phi ... design matrix of state equation
-##  S0 ... filtering error covariance matrix
-##  Q ... covariance matrix of state innovation process
-##  rob0 ... general robust parameter --- here: scale s0 of nominal Gaussain component of additive noise
-    S1 <- .getpredCov(S0, F, Q)
-    return(list(x1 = F %*% x0, S1 = S1, rob1 = sqrt(S1[1, 1] + s0), Ind = FALSE))
-}
-
-.ACMcorrstep <- function (y, x1, S1, Z, V,  i, rob1, dum = NULL, 
-                          psi, apsi, bpsi, cpsi, flag, ...)
-{
-###########################################
-##
-##  R-function: .ACMcorrstep - correction step (internal function)
-##  author: Bernhard Spangl
-##  version: 1.0 (2006-05-22)
-##
-###########################################
-
-##  Paramters:
-##  y ... univariate time series 
-##  x1 ... state vector (one-step-ahead predictor)
-##  rob1 ... general robust parameter --- here st ... time-dependent scale parameter
-##  S1 ... prediction error covariance matrix 
-##  Z ... observation matrix
-##  dum ... dummy variable for compatibility with ... argument of calling function
-##  V ... covariance matrix of observation noise
-##  psi ... influence function to be used 
-##  apsi, bpsi, cpsi ... tuning constants for Hampel's psi-function
-##              (default: apsi=bpsi=2.5, cpsi=5.0)
-##  flag ... character, if "weights" (default), use psi(t)/t to calculate 
-##           the weights; if "deriv", use psi'(t)
-    
-    # to be compatible with parallel computing of a bunch of time series
-    y <- y[,1]
-    x1 <- x1[,1]
-    
-    st <- rob1
-
-    K <- .getKG(S1, Z, V)
-
-    rst <- (y - x1[1])/st
-
-    ps <- psi(rst, apsi, bpsi, cpsi)
-    dx <- K * st * ps
-    x0 <- x1 + dx
-
-    ind <- (abs(rst-ps)>10^-8)
-    
-    w <- psi(rst,  apsi, bpsi, cpsi, flag)
-    
-    S0 <- .getcorrCovACM(S1, K,  Z, W = w*diag(rep(1, nrow(Z))))
-
-    return(list(x0 = x0, K = K,  S0 = S0, Ind = ind, rob0 = rob1))
-}

Deleted: pkg/robKalman/R/AllGeneric.R
===================================================================
--- pkg/robKalman/R/AllGeneric.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/AllGeneric.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,10 +0,0 @@
-#if(!isGeneric("type")){ 
-#    setGeneric("type", function(object) standardGeneric("type"))
-#}
-#if(!isGeneric("center")){ 
-#    setGeneric("center", function(object) standardGeneric("center"))
-#}
-#if(!isGeneric("center<-")){
-#    setGeneric("center<-", function(object, value) standardGeneric("center<-"))
-#}
-#

Deleted: pkg/robKalman/R/AllGenerics.R
===================================================================
--- pkg/robKalman/R/AllGenerics.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/AllGenerics.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,123 +0,0 @@
-if(!isGeneric("solve")){
-    setGeneric("solve", function(a,b,...) standardGeneric("solve"))
-}
-############################################################################
-# Access methods
-############################################################################
-
-if(!isGeneric("name")) 
-    setGeneric("name", function(object) standardGeneric("name"))
-
-if(!isGeneric("getp")) 
-   setGeneric("getp", function(object) standardGeneric("getp"))
-if(!isGeneric("getq")) 
-   setGeneric("getq", function(object) standardGeneric("getq"))
-
-if(!isGeneric("getF")) 
-   setGeneric("getF", function(object) standardGeneric("getF"))
-if(!isGeneric("getZ")) 
-   setGeneric("getZ", function(object) standardGeneric("getZ"))
-if(!isGeneric("getQ")) 
-   setGeneric("getQ", function(object) standardGeneric("getQ"))
-if(!isGeneric("getV")) 
-   setGeneric("getV", function(object) standardGeneric("getV"))
-if(!isGeneric("geta")) 
-   setGeneric("geta", function(object) standardGeneric("geta"))
-if(!isGeneric("getS")) 
-   setGeneric("getS", function(object) standardGeneric("getS"))
-if(!isGeneric("time")) 
-   setGeneric("time", function(x,...) standardGeneric("time"))
-
-if(!isGeneric("SSM")) 
-   setGeneric("SSM", function(object, ...) standardGeneric("SSM"))
-if(!isGeneric("Y")) 
-   setGeneric("Y", function(object, ...) standardGeneric("Y"))
-if(!isGeneric("X.filtered")) 
-   setGeneric("X.filtered", function(object, ...) standardGeneric("X.filtered"))
-if(!isGeneric("X.predicted")) 
-   setGeneric("X.predicted", function(object, ...) standardGeneric("X.predicted"))
-if(!isGeneric("Cov.filtered")) 
-   setGeneric("Cov.filtered", function(object, ...) standardGeneric("Cov.filtered"))
-if(!isGeneric("Cov.predicted")) 
-   setGeneric("Cov.predicted", function(object, ...) standardGeneric("Cov.predicted"))
-if(!isGeneric("Kalman.Gain")) 
-   setGeneric("Kalman.Gain", function(object, ...) standardGeneric("Kalman.Gain"))
-if(!isGeneric("X.rob.filtered")) 
-   setGeneric("X.rob.filtered", function(object, ...) standardGeneric("X.rob.filtered"))
-if(!isGeneric("X.rob.predicted")) 
-   setGeneric("X.rob.predicted", function(object, ...) standardGeneric("X.rob.predicted"))
-if(!isGeneric("Cov.rob.filtered")) 
-   setGeneric("Cov.rob.filtered", function(object, ...) standardGeneric("Cov.rob.filtered"))
-if(!isGeneric("Cov.rob.predicted")) 
-   setGeneric("Cov.rob.predicted", function(object, ...) standardGeneric("Cov.rob.predicted"))
-if(!isGeneric("Kalman.rob.Gain")) 
-   setGeneric("Kalman.rob.Gain", function(object, ...) standardGeneric("Kalman.rob.Gain"))
-if(!isGeneric("rob.correction.ctrl")) 
-   setGeneric("rob.correction.ctrl", function(object, ...) standardGeneric("rob.correction.ctrl"))
-if(!isGeneric("rob.prediction.ctrl")) 
-   setGeneric("rob.prediction.ctrl", function(object, ...) standardGeneric("rob.prediction.ctrl"))
-if(!isGeneric("IndIO")) 
-   setGeneric("IndIO", function(object, ...) standardGeneric("IndIO"))
-if(!isGeneric("IndAO")) 
-   setGeneric("IndAO", function(object, ...) standardGeneric("IndAO"))
-if(!isGeneric("nsim")) 
-   setGeneric("nsim", function(object, ...) standardGeneric("nsim"))
-if(!isGeneric("RNGstate")) 
-   setGeneric("RNGstate", function(object, ...) standardGeneric("RNGstate"))
-if(!isGeneric("Cov.rob.filtered.sim")) 
-   setGeneric("Cov.rob.filtered.sim", function(object, ...) standardGeneric("Cov.rob.filtered.sim"))
-if(!isGeneric("Cov.rob.predicted.sim")) 
-   setGeneric("Cov.rob.predicted.sim", function(object, ...) standardGeneric("Cov.rob.predicted.sim"))
-if(!isGeneric("init")) 
-   setGeneric("init", function(object, ...) standardGeneric("init"))
-if(!isGeneric("predict")) 
-   setGeneric("predict", function(object, ...) standardGeneric("predict"))
-if(!isGeneric("correct")) 
-   setGeneric("correct", function(object, ...) standardGeneric("correct"))
-if(!isGeneric("init.rob")) 
-   setGeneric("init.rob", function(object, ...) standardGeneric("init.rob"))
-if(!isGeneric("name.rob")) 
-   setGeneric("name.rob", function(object, ...) standardGeneric("name.rob"))
-if(!isGeneric("predict.rob")) 
-   setGeneric("predict.rob", function(object, ...) standardGeneric("predict.rob"))
-if(!isGeneric("correct.rob")) 
-   setGeneric("correct.rob", function(object, ...) standardGeneric("correct.rob"))
-if(!isGeneric("controls")) 
-   setGeneric("controls", function(object, ...) standardGeneric("controls"))
-                              
-############################################################################
-# Replacement methods
-############################################################################
-
-if(!isGeneric("name<-")) 
-    setGeneric("name<-", 
-                function(object, value) standardGeneric("name<-"))
-
-if(!isGeneric("setp<-")) 
-   setGeneric("setp<-", function(object, value) standardGeneric("setp<-"))
-if(!isGeneric("setq<-")) 
-   setGeneric("setq<-", function(object, value) standardGeneric("setq<-"))
-
-if(!isGeneric("setF<-")) 
-   setGeneric("setF<-", function(object, value) standardGeneric("setF<-"))
-if(!isGeneric("setZ<-")) 
-   setGeneric("setZ<-", function(object, value) standardGeneric("setZ<-"))
-if(!isGeneric("setQ<-")) 
-   setGeneric("setQ<-", function(object, value) standardGeneric("setQ<-"))
-if(!isGeneric("setV<-")) 
-   setGeneric("setV<-", function(object, value) standardGeneric("setV<-"))
-if(!isGeneric("seta<-")) 
-   setGeneric("seta<-", function(object, value) standardGeneric("seta<-"))
-if(!isGeneric("setS<-")) 
-   setGeneric("setS<-", function(object, value) standardGeneric("setS<-"))
-if(!isGeneric("time<-")) 
-   setGeneric("time<-", function(x, value) standardGeneric("time<-"))
-
-if(!isGeneric(".make.project")) 
-setGeneric(".make.project",function(object, ...) standardGeneric(".make.project"))
-
-if(!isGeneric("kalman")) 
-setGeneric("kalman",function(smooth, ...) standardGeneric("kalman"))
-
-if(!isGeneric("kalmanRob")) 
-setGeneric("kalmanRob",function(method, smooth, ...) standardGeneric("kalmanRob"))

Deleted: pkg/robKalman/R/AllInitialize.R
===================================================================
--- pkg/robKalman/R/AllInitialize.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/AllInitialize.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,3 +0,0 @@
-#### as to whether to use Generating functions or to use initialize methods:
-#### http://tolstoy.newcastle.edu.au/R/e2/devel/07/01/1976.html
-                     

Deleted: pkg/robKalman/R/AllPlot.R
===================================================================
--- pkg/robKalman/R/AllPlot.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/AllPlot.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,7 +0,0 @@
-#setMethod("plot", "ParamFamily", 
-#    function(x,y=NULL,...){ 
-#        e1 <- x at distribution
-#        if(!is(e1, "UnivariateDistribution")) stop("not yet implemented")
-#
-#        plot(e1) 
-#    })

Deleted: pkg/robKalman/R/AllShow.R
===================================================================
--- pkg/robKalman/R/AllShow.R	2009-03-18 15:16:51 UTC (rev 20)
+++ pkg/robKalman/R/AllShow.R	2009-03-18 15:23:41 UTC (rev 21)
@@ -1,161 +0,0 @@
-#setMethod("show", "ParamFamParameter", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("name:\t", object at name, "\n")
-#        cat("main:\t", object at main, "\n")
-#        if(!is.null(object at nuisance))
-#            cat("nuisance:\t", object at nuisance, "\n")
-#        if(!identical(all.equal(object at trafo, diag(length(object)), 
-#                            tolerance = .Machine$double.eps^0.5), TRUE)){
-#            cat("trafo:\n")
-#            print(object at trafo)
-#        }
-#    })
-#setMethod("show", "Symmetry", 
-#    function(object){ 
-#        cat("type of symmetry:\t", object at type, "\n") 
-#        if(!is.null(object at SymmCenter))
-#            cat("center of symmetry:\n") 
-#            print(object at SymmCenter)
-#    })
-#setMethod("show", "ParamFamily", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("### name:\t", object at name, "\n")
-#        cat("\n### distribution:\t")
-#        print(object at distribution)
-#        cat("\n### param:\t")
-#        show(object at param)
-#        if(length(object at props) != 0){
-#            cat("\n### props:\n")
-#            show(object at props)
-#        }
-#    })
-#setMethod("show", "Neighborhood", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("type:\t", object at type, "\n")
-#        cat("radius:\t", object at radius, "\n")
-#    })
-#setMethod("show", "FixRobModel", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("###### center:\t")
-#        show(object at center)
-#        cat("\n###### neighborhood:\t")
-#        show(object at neighbor)
-#    })
-#setMethod("show", "InfRobModel", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("###### center:\t")
-#        show(object at center)
-#        cat("\n###### neighborhood:\t")
-#        show(object at neighbor)
-#    })
-#setMethod("show", "RiskType", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("risk type:\t", object at type, "\n")
-#    })
-#setMethod("show", "asUnOvShoot", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("risk type:\t", object at type, "\n")
-#        cat("width:\t", object at width, "\n")
-#    })
-#setMethod("show", "asHampel", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("risk type:\t", object at type, "\n")
-#        cat("bound:\t", object at bound, "\n")
-#    })
-#setMethod("show", "fiUnOvShoot", 
-#    function(object){
-#        cat(paste("An object of class", dQuote(class(object)), "\n"))
-#        cat("risk type:\t", object at type, "\n")
-#        cat("width:\t", object at width, "\n")
-#    })
-#setMethod("show", "fiHampel", 
-#    function(object){
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robkalman -r 21


More information about the Robkalman-commits mailing list