[Robast-commits] r1302 - in pkg/RobLox: . man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Feb 10 09:36:28 CET 2024


Author: stamats
Date: 2024-02-10 09:36:27 +0100 (Sat, 10 Feb 2024)
New Revision: 1302

Modified:
   pkg/RobLox/DESCRIPTION
   pkg/RobLox/man/0RobLox-package.Rd
   pkg/RobLox/man/finiteSampleCorrection.Rd
   pkg/RobLox/man/rlOptIC.Rd
   pkg/RobLox/man/rlsOptIC.AL.Rd
   pkg/RobLox/man/rlsOptIC.An1.Rd
   pkg/RobLox/man/rlsOptIC.An2.Rd
   pkg/RobLox/man/rlsOptIC.AnMad.Rd
   pkg/RobLox/man/rlsOptIC.BM.Rd
   pkg/RobLox/man/rlsOptIC.Ha3.Rd
   pkg/RobLox/man/rlsOptIC.Ha4.Rd
   pkg/RobLox/man/rlsOptIC.HaMad.Rd
   pkg/RobLox/man/rlsOptIC.Hu1.Rd
   pkg/RobLox/man/rlsOptIC.Hu2.Rd
   pkg/RobLox/man/rlsOptIC.Hu2a.Rd
   pkg/RobLox/man/rlsOptIC.Hu3.Rd
   pkg/RobLox/man/rlsOptIC.HuMad.Rd
   pkg/RobLox/man/rlsOptIC.M.Rd
   pkg/RobLox/man/rlsOptIC.MM2.Rd
   pkg/RobLox/man/rlsOptIC.Tu1.Rd
   pkg/RobLox/man/rlsOptIC.Tu2.Rd
   pkg/RobLox/man/rlsOptIC.TuMad.Rd
   pkg/RobLox/man/roblox.Rd
   pkg/RobLox/man/rowRoblox.Rd
   pkg/RobLox/man/rsOptIC.Rd
   pkg/RobLox/man/showdown.Rd
Log:
update of references, added DOIs and links

Modified: pkg/RobLox/DESCRIPTION
===================================================================
--- pkg/RobLox/DESCRIPTION	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/DESCRIPTION	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,9 +1,10 @@
 Package: RobLox
 Version: 1.2.1
-Date: 2024-02-04
+Date: 2024-02-10
 Title: Optimally Robust Influence Curves and Estimators for Location and Scale
 Description: Functions for the determination of optimally robust influence curves and
-            estimators in case of normal location and/or scale.
+             estimators in case of normal location and/or scale 
+             (see Chapter 8 in Kohl (2005) <https://epub.uni-bayreuth.de/839/2/DissMKohl.pdf>).
 Depends: R(>= 3.4), stats, distrMod(>= 2.8.0), RobAStBase(>= 1.2.0)
 Imports: methods, lattice, RColorBrewer, Biobase, RandVar(>= 1.2.0), distr(>= 2.8.0)
 Suggests: MASS

Modified: pkg/RobLox/man/0RobLox-package.Rd
===================================================================
--- pkg/RobLox/man/0RobLox-package.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/0RobLox-package.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -7,20 +7,29 @@
 }
 \description{
 Functions for the determination of optimally robust influence curves and 
-estimators in case of normal location and/or scale.
+estimators in case of normal location and/or scale 
+(see Chapter 8 in Kohl (2005) <https://epub.uni-bayreuth.de/839/2/DissMKohl.pdf>).
 }
 \author{Matthias Kohl  \email{matthias.kohl at stamats.de}}
 \references{
   M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
-  Dissertation. University of Bayreuth.
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-  Rieder, H., Kohl, M. and Ruckdeschel, P. (2008). The Costs of not Knowing
-  the Radius. \emph{Statistical Methods and Applications} \bold{17}(1) 13-40.
-  Extended version: \url{http://r-kurs.de/RRlong.pdf}
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
   
-  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation 
-  in General Smoothly Parametrized Models. \emph{Statistical Methods and Application}, 
-  \bold{19}(3):333-354. 
+  H. Rieder (1994): Robust Asymptotic Statistics. Springer. \doi{10.1007/978-1-4684-0624-5}
+  
+  H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius.
+  Statistical Methods and Applications  \emph{17}(1): 13-40. \doi{10.1007/s10260-007-0047-7}
+
+  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in 
+  General Smoothly Parametrized Models. Statistical Methods and Applications \emph{19}(3): 333-354.
+  \doi{10.1007/s10260-010-0133-0}.
+  
+  M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by 
+  optimally robust estimators. BMC Bioinformatics \emph{11}, 583.
+  \doi{10.1186/1471-2105-11-583}.
+  
+  M. Kohl (2012). Bounded influence estimation for regression and scale.
+  Statistics, \bold{46}(4): 437-488. \doi{10.1080/02331888.2010.540668}
 }
 \seealso{ \code{\link[RobAStBase:0RobAStBase-package]{RobAStBase-package}} }
 \section{Package versions}{

Modified: pkg/RobLox/man/finiteSampleCorrection.Rd
===================================================================
--- pkg/RobLox/man/finiteSampleCorrection.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/finiteSampleCorrection.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,54 +1,54 @@
-\name{finiteSampleCorrection}
-\Rdversion{1.1}
-\alias{finiteSampleCorrection}
-\title{Function to compute finite-sample corrected radii}
-\description{
-Given some radius and some sample size the function computes
-the corresponding finite-sample corrected radius.
-}
-\usage{
-finiteSampleCorrection(r, n, model = "locsc")
-}
-\arguments{
-  \item{r}{ asymptotic radius (non-negative numeric) }
-  \item{n}{ sample size }
-  \item{model}{ has to be \code{"locsc"} (for location and scale),
-  \code{"loc"} (for location) or \code{"sc"} (for scale), respectively. }
-}
-\details{
-The finite-sample correction is based on empirical results obtained via 
-simulation studies. 
-
-Given some radius of a shrinking contamination neighborhood which leads 
-to an asymptotically optimal robust estimator, the finite-sample empirical 
-MSE based on contaminated samples was minimized for this class of 
-asymptotically optimal estimators and the corresponding finite-sample 
-radius determined and saved.
-
-The computation is based on the saved results of these Monte-Carlo simulations.
-}
-\value{Finite-sample corrected radius.}
-\references{
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-
-  Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing
-  the Radius. Statistical Methods and Applications \emph{17}(1) 13-40.
-  Extended version: \url{http://r-kurs.de/RRlong.pdf}
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link{roblox}}, \code{\link{rowRoblox}}, 
-         \code{\link{colRoblox}} }
-\examples{
-finiteSampleCorrection(n = 3, r = 0.001, model = "locsc")
-finiteSampleCorrection(n = 10, r = 0.02, model = "loc")
-finiteSampleCorrection(n = 250, r = 0.15, model = "sc")
-}
-\concept{normal location}
-\concept{normal scale}
-\concept{normal location and scale}
-\concept{finite-sample correction}
-\keyword{robust}
+\name{finiteSampleCorrection}
+\Rdversion{1.1}
+\alias{finiteSampleCorrection}
+\title{Function to compute finite-sample corrected radii}
+\description{
+Given some radius and some sample size the function computes
+the corresponding finite-sample corrected radius.
+}
+\usage{
+finiteSampleCorrection(r, n, model = "locsc")
+}
+\arguments{
+  \item{r}{ asymptotic radius (non-negative numeric) }
+  \item{n}{ sample size }
+  \item{model}{ has to be \code{"locsc"} (for location and scale),
+  \code{"loc"} (for location) or \code{"sc"} (for scale), respectively. }
+}
+\details{
+The finite-sample correction is based on empirical results obtained via 
+simulation studies. 
+
+Given some radius of a shrinking contamination neighborhood which leads 
+to an asymptotically optimal robust estimator, the finite-sample empirical 
+MSE based on contaminated samples was minimized for this class of 
+asymptotically optimal estimators and the corresponding finite-sample 
+radius determined and saved.
+
+The computation is based on the saved results of these Monte-Carlo simulations.
+}
+\value{Finite-sample corrected radius.}
+\references{
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+  
+  H. Rieder (1994): Robust Asymptotic Statistics. Springer. \doi{10.1007/978-1-4684-0624-5}
+  
+  M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by 
+  optimally robust estimators. BMC Bioinformatics \emph{11}, 583.
+  \doi{10.1186/1471-2105-11-583}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link{roblox}}, \code{\link{rowRoblox}}, 
+         \code{\link{colRoblox}} }
+\examples{
+finiteSampleCorrection(n = 3, r = 0.001, model = "locsc")
+finiteSampleCorrection(n = 10, r = 0.02, model = "loc")
+finiteSampleCorrection(n = 250, r = 0.15, model = "sc")
+}
+\concept{normal location}
+\concept{normal scale}
+\concept{normal location and scale}
+\concept{finite-sample correction}
+\keyword{robust}

Modified: pkg/RobLox/man/rlOptIC.Rd
===================================================================
--- pkg/RobLox/man/rlOptIC.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlOptIC.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,54 +1,58 @@
-\name{rlOptIC}
-\alias{rlOptIC}
-\title{Computation of the optimally robust IC for AL estimators}
-\description{
-  The function \code{rlOptIC} computes the optimally robust IC for 
-  AL estimators in case of normal location and (convex) contamination 
-  neighborhoods. The definition of these estimators can be found 
-  in Rieder (1994) or Kohl (2005), respectively.
-}
-\usage{
-rlOptIC(r, mean = 0, sd = 1, bUp = 1000, computeIC = TRUE)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{mean}{ specified mean.}
-  \item{sd}{ specified standard deviation.}
-  \item{bUp}{ positive real: the upper end point of the 
-    interval to be searched for the clipping bound b. }
-  \item{computeIC}{ logical: should IC be computed. See details below. }
-}
-\details{
-  If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', and
-  'b' contained in the optimally robust IC are computed.
-}
-\value{
-  If 'computeIC' is 'TRUE' an object of class \code{"ContIC"} is returned, 
-  otherwise a list of Lagrange multipliers
-  \item{A}{ standardizing constant }
-  \item{a}{ centering constant; always '= 0' is this symmetric setup }
-  \item{b}{ optimal clipping bound }
-}
-\references{ 
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{ContIC-class}}, \code{\link{roblox}}}
-\examples{
-IC1 <- rlOptIC(r = 0.1)
-distrExOptions("ErelativeTolerance" = 1e-12)
-checkIC(IC1)
-distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
-Risks(IC1)
-cent(IC1)
-clip(IC1)
-stand(IC1)
-plot(IC1)
-}
-\concept{normal location}
-\concept{influence curve}
-\keyword{robust}
+\name{rlOptIC}
+\alias{rlOptIC}
+\title{Computation of the optimally robust IC for AL estimators}
+\description{
+  The function \code{rlOptIC} computes the optimally robust IC for 
+  AL estimators in case of normal location and (convex) contamination 
+  neighborhoods. The definition of these estimators can be found 
+  in Rieder (1994) or Kohl (2005), respectively.
+}
+\usage{
+rlOptIC(r, mean = 0, sd = 1, bUp = 1000, computeIC = TRUE)
+}
+\arguments{
+  \item{r}{ non-negative real: neighborhood radius. }
+  \item{mean}{ specified mean.}
+  \item{sd}{ specified standard deviation.}
+  \item{bUp}{ positive real: the upper end point of the 
+    interval to be searched for the clipping bound b. }
+  \item{computeIC}{ logical: should IC be computed. See details below. }
+}
+\details{
+  If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', and
+  'b' contained in the optimally robust IC are computed.
+}
+\value{
+  If 'computeIC' is 'TRUE' an object of class \code{"ContIC"} is returned, 
+  otherwise a list of Lagrange multipliers
+  \item{A}{ standardizing constant }
+  \item{a}{ centering constant; always '= 0' is this symmetric setup }
+  \item{b}{ optimal clipping bound }
+}
+\references{ 
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+  
+  H. Rieder (1994): Robust Asymptotic Statistics. Springer. \doi{10.1007/978-1-4684-0624-5}
+  
+  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in 
+  General Smoothly Parametrized Models. Statistical Methods and Applications \emph{19}(3): 333-354.
+  \doi{10.1007/s10260-010-0133-0}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobAStBase]{ContIC-class}}, \code{\link{roblox}}}
+\examples{
+IC1 <- rlOptIC(r = 0.1)
+distrExOptions("ErelativeTolerance" = 1e-12)
+checkIC(IC1)
+distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
+Risks(IC1)
+cent(IC1)
+clip(IC1)
+stand(IC1)
+plot(IC1)
+}
+\concept{normal location}
+\concept{influence curve}
+\keyword{robust}

Modified: pkg/RobLox/man/rlsOptIC.AL.Rd
===================================================================
--- pkg/RobLox/man/rlsOptIC.AL.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlsOptIC.AL.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,106 +1,110 @@
-\name{rlsOptIC.AL}
-\alias{rlsOptIC.AL}
-\title{Computation of the optimally robust IC for AL estimators}
-\description{
-  The function \code{rlsOptIC.AL} computes the optimally robust IC for 
-  AL estimators in case of normal location with unknown scale and 
-  (convex) contamination neighborhoods. The definition of 
-  these estimators can be found in Section 8.2 of Kohl (2005).
-}
-\usage{
-rlsOptIC.AL(r, mean = 0, sd = 1, A.loc.start = 1, a.sc.start = 0, 
-            A.sc.start = 0.5, bUp = 1000, delta = 1e-6, itmax = 100, 
-            check = FALSE, computeIC = TRUE)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{mean}{ specified mean.}
-  \item{sd}{ specified standard deviation.}
-  \item{A.loc.start}{ positive real: starting value for 
-    the standardizing constant of the location part. }
-  \item{a.sc.start}{ real: starting value for centering
-    constant of the scale part. }
-  \item{A.sc.start}{ positive real: starting value for 
-    the standardizing constant of the scale part. }
-  \item{bUp}{ positive real: the upper end point of the 
-    interval to be searched for the clipping bound b. }
-  \item{delta}{ the desired accuracy (convergence tolerance). }
-  \item{itmax}{ the maximum number of iterations. }
-  \item{check}{ logical: should constraints be checked. }
-  \item{computeIC}{ logical: should IC be computed. See details below. }
-}
-\details{The Lagrange multipliers contained in the expression
-  of the optimally robust IC can be accessed via the
-  accessor functions \code{cent}, \code{clip} and \code{stand}.
-  If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', 
-  and 'b' contained in the optimally robust IC are computed.
-}
-\value{
-  If 'computeIC' is 'TRUE' an object of class \code{"ContIC"} is returned, 
-  otherwise a list of Lagrange multipliers
-  \item{A}{ standardizing matrix }
-  \item{a}{ centering vector }
-  \item{b}{ optimal clipping bound }
-}
-\references{ 
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{ContIC-class}}, \code{\link{roblox}}}
-\examples{
-IC1 <- rlsOptIC.AL(r = 0.1, check = TRUE)
-distrExOptions("ErelativeTolerance" = 1e-12)
-checkIC(IC1)
-distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
-Risks(IC1)
-cent(IC1)
-clip(IC1)
-stand(IC1)
-
-## don't run to reduce check time on CRAN
-\dontrun{
-plot(IC1)
-infoPlot(IC1)
-
-## k-step estimation
-## better use function roblox (see ?roblox)
-## 1. data: random sample
-ind <- rbinom(100, size=1, prob=0.05) 
-x <- rnorm(100, mean=0, sd=(1-ind) + ind*9)
-mean(x)
-sd(x)
-median(x)
-mad(x)
-
-## 2. Kolmogorov(-Smirnov) minimum distance estimator (default)
-## -> we use it as initial estimate for one-step construction
-(est0 <- MDEstimator(x, ParamFamily = NormLocationScaleFamily()))
-
-## 3.1 one-step estimation: radius known
-IC1 <- rlsOptIC.AL(r = 0.5, mean = estimate(est0)[1], sd = estimate(est0)[2])
-(est1 <- oneStepEstimator(x, IC1, est0))
-
-## 3.2 k-step estimation: radius known
-## Choose k = 3
-(est2 <- kStepEstimator(x, IC1, est0, steps = 3L))
-
-## 4.1 one-step estimation: radius unknown
-## take least favorable radius r = 0.579
-## cf. Table 8.1 in Kohl(2005)
-IC2 <- rlsOptIC.AL(r = 0.579, mean = estimate(est0)[1], sd = estimate(est0)[2])
-(est3 <- oneStepEstimator(x, IC2, est0))
-
-## 4.2 k-step estimation: radius unknown
-## take least favorable radius r = 0.579
-## cf. Table 8.1 in Kohl(2005)
-## choose k = 3
-(est4 <- kStepEstimator(x, IC2, est0, steps = 3L))
-}
-}
-\concept{normal location and scale}
-\concept{influence curve}
-\keyword{robust}
+\name{rlsOptIC.AL}
+\alias{rlsOptIC.AL}
+\title{Computation of the optimally robust IC for AL estimators}
+\description{
+  The function \code{rlsOptIC.AL} computes the optimally robust IC for 
+  AL estimators in case of normal location with unknown scale and 
+  (convex) contamination neighborhoods. The definition of 
+  these estimators can be found in Section 8.2 of Kohl (2005).
+}
+\usage{
+rlsOptIC.AL(r, mean = 0, sd = 1, A.loc.start = 1, a.sc.start = 0, 
+            A.sc.start = 0.5, bUp = 1000, delta = 1e-6, itmax = 100, 
+            check = FALSE, computeIC = TRUE)
+}
+\arguments{
+  \item{r}{ non-negative real: neighborhood radius. }
+  \item{mean}{ specified mean.}
+  \item{sd}{ specified standard deviation.}
+  \item{A.loc.start}{ positive real: starting value for 
+    the standardizing constant of the location part. }
+  \item{a.sc.start}{ real: starting value for centering
+    constant of the scale part. }
+  \item{A.sc.start}{ positive real: starting value for 
+    the standardizing constant of the scale part. }
+  \item{bUp}{ positive real: the upper end point of the 
+    interval to be searched for the clipping bound b. }
+  \item{delta}{ the desired accuracy (convergence tolerance). }
+  \item{itmax}{ the maximum number of iterations. }
+  \item{check}{ logical: should constraints be checked. }
+  \item{computeIC}{ logical: should IC be computed. See details below. }
+}
+\details{The Lagrange multipliers contained in the expression
+  of the optimally robust IC can be accessed via the
+  accessor functions \code{cent}, \code{clip} and \code{stand}.
+  If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', 
+  and 'b' contained in the optimally robust IC are computed.
+}
+\value{
+  If 'computeIC' is 'TRUE' an object of class \code{"ContIC"} is returned, 
+  otherwise a list of Lagrange multipliers
+  \item{A}{ standardizing matrix }
+  \item{a}{ centering vector }
+  \item{b}{ optimal clipping bound }
+}
+\references{ 
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+  
+  H. Rieder (1994): Robust Asymptotic Statistics. Springer. \doi{10.1007/978-1-4684-0624-5}
+  
+  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in 
+  General Smoothly Parametrized Models. Statistical Methods and Applications \emph{19}(3): 333-354.
+  \doi{10.1007/s10260-010-0133-0}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobAStBase]{ContIC-class}}, \code{\link{roblox}}}
+\examples{
+IC1 <- rlsOptIC.AL(r = 0.1, check = TRUE)
+distrExOptions("ErelativeTolerance" = 1e-12)
+checkIC(IC1)
+distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
+Risks(IC1)
+cent(IC1)
+clip(IC1)
+stand(IC1)
+
+## don't run to reduce check time on CRAN
+\dontrun{
+plot(IC1)
+infoPlot(IC1)
+
+## k-step estimation
+## better use function roblox (see ?roblox)
+## 1. data: random sample
+ind <- rbinom(100, size=1, prob=0.05) 
+x <- rnorm(100, mean=0, sd=(1-ind) + ind*9)
+mean(x)
+sd(x)
+median(x)
+mad(x)
+
+## 2. Kolmogorov(-Smirnov) minimum distance estimator (default)
+## -> we use it as initial estimate for one-step construction
+(est0 <- MDEstimator(x, ParamFamily = NormLocationScaleFamily()))
+
+## 3.1 one-step estimation: radius known
+IC1 <- rlsOptIC.AL(r = 0.5, mean = estimate(est0)[1], sd = estimate(est0)[2])
+(est1 <- oneStepEstimator(x, IC1, est0))
+
+## 3.2 k-step estimation: radius known
+## Choose k = 3
+(est2 <- kStepEstimator(x, IC1, est0, steps = 3L))
+
+## 4.1 one-step estimation: radius unknown
+## take least favorable radius r = 0.579
+## cf. Table 8.1 in Kohl(2005)
+IC2 <- rlsOptIC.AL(r = 0.579, mean = estimate(est0)[1], sd = estimate(est0)[2])
+(est3 <- oneStepEstimator(x, IC2, est0))
+
+## 4.2 k-step estimation: radius unknown
+## take least favorable radius r = 0.579
+## cf. Table 8.1 in Kohl(2005)
+## choose k = 3
+(est4 <- kStepEstimator(x, IC2, est0, steps = 3L))
+}
+}
+\concept{normal location and scale}
+\concept{influence curve}
+\keyword{robust}

Modified: pkg/RobLox/man/rlsOptIC.An1.Rd
===================================================================
--- pkg/RobLox/man/rlsOptIC.An1.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlsOptIC.An1.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,46 +1,46 @@
-\name{rlsOptIC.An1}
-\alias{rlsOptIC.An1}
-\title{Computation of the optimally robust IC for An1 estimators}
-\description{
-  The function \code{rlsOptIC.An1} computes the optimally robust IC for 
-  An1 estimators in case of normal location with unknown scale and 
-  (convex) contamination neighborhoods. The definition of 
-  these estimators can be found in Subsection 8.5.3 of Kohl (2005).
-}
-\usage{
-rlsOptIC.An1(r, aUp = 2.5, delta = 1e-06)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{aUp}{ positive real: the upper end point of the interval 
-    to be searched for a. }
-  \item{delta}{ the desired accuracy (convergence tolerance). }
-}
-\details{The optimal value of the tuning constant a can be read off 
-  from the slot \code{Infos} of the resulting IC.}
-\value{Object of class \code{"IC"}}
-\references{ 
-  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
-  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
-  Princeton University Press.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{IC-class}}}
-\examples{
-IC1 <- rlsOptIC.An1(r = 0.1)
-checkIC(IC1)
-Risks(IC1)
-Infos(IC1)
-## don't run to reduce check time on CRAN
-\dontrun{
-plot(IC1)
-infoPlot(IC1)
-}
-}
-\concept{normal location and scale}
-\concept{influence curve}
-\keyword{robust}
+\name{rlsOptIC.An1}
+\alias{rlsOptIC.An1}
+\title{Computation of the optimally robust IC for An1 estimators}
+\description{
+  The function \code{rlsOptIC.An1} computes the optimally robust IC for 
+  An1 estimators in case of normal location with unknown scale and 
+  (convex) contamination neighborhoods. The definition of 
+  these estimators can be found in Subsection 8.5.3 of Kohl (2005).
+}
+\usage{
+rlsOptIC.An1(r, aUp = 2.5, delta = 1e-06)
+}
+\arguments{
+  \item{r}{ non-negative real: neighborhood radius. }
+  \item{aUp}{ positive real: the upper end point of the interval 
+    to be searched for a. }
+  \item{delta}{ the desired accuracy (convergence tolerance). }
+}
+\details{The optimal value of the tuning constant a can be read off 
+  from the slot \code{Infos} of the resulting IC.}
+\value{Object of class \code{"IC"}}
+\references{ 
+  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
+  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
+  Princeton University Press.
+
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobAStBase]{IC-class}}}
+\examples{
+IC1 <- rlsOptIC.An1(r = 0.1)
+checkIC(IC1)
+Risks(IC1)
+Infos(IC1)
+## don't run to reduce check time on CRAN
+\dontrun{
+plot(IC1)
+infoPlot(IC1)
+}
+}
+\concept{normal location and scale}
+\concept{influence curve}
+\keyword{robust}

Modified: pkg/RobLox/man/rlsOptIC.An2.Rd
===================================================================
--- pkg/RobLox/man/rlsOptIC.An2.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlsOptIC.An2.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,51 +1,51 @@
-\name{rlsOptIC.An2}
-\alias{rlsOptIC.An2}
-\title{Computation of the optimally robust IC for An2 estimators}
-\description{
-  The function \code{rlsOptIC.An2} computes the optimally robust IC for 
-  An2 estimators in case of normal location with unknown scale and 
-  (convex) contamination neighborhoods. The definition of 
-  these estimators can be found in Subsection 8.5.3 of Kohl (2005).
-}
-\usage{
-rlsOptIC.An2(r, a.start = 1.5, k.start = 1.5, delta = 1e-06, MAX = 100)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{a.start}{ positive real: starting value for a. }
-  \item{k.start}{ positive real: starting value for k. }
-  \item{delta}{ the desired accuracy (convergence tolerance). }
-  \item{MAX}{ if a or k are beyond the admitted values, 
-    \code{MAX} is returned. }
-}
-\details{
-  The computation of the optimally robust IC for An2 estimators
-  is based on \code{optim} where \code{MAX} is used to 
-  control the constraints on a and k. The optimal values of the 
-  tuning constants a and k can be read off from the slot 
-  \code{Infos} of the resulting IC.
-}
-%\details{}
-\value{Object of class \code{"IC"}}
-\references{ 
-  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
-  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
-  Princeton University Press.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{IC-class}}}
-\examples{
-IC1 <- rlsOptIC.An2(r = 0.1)
-checkIC(IC1)
-Risks(IC1)
-Infos(IC1)
-plot(IC1)
-infoPlot(IC1)
-}
-\concept{normal location and scale}
-\concept{influence curve}
-\keyword{robust}
+\name{rlsOptIC.An2}
+\alias{rlsOptIC.An2}
+\title{Computation of the optimally robust IC for An2 estimators}
+\description{
+  The function \code{rlsOptIC.An2} computes the optimally robust IC for 
+  An2 estimators in case of normal location with unknown scale and 
+  (convex) contamination neighborhoods. The definition of 
+  these estimators can be found in Subsection 8.5.3 of Kohl (2005).
+}
+\usage{
+rlsOptIC.An2(r, a.start = 1.5, k.start = 1.5, delta = 1e-06, MAX = 100)
+}
+\arguments{
+  \item{r}{ non-negative real: neighborhood radius. }
+  \item{a.start}{ positive real: starting value for a. }
+  \item{k.start}{ positive real: starting value for k. }
+  \item{delta}{ the desired accuracy (convergence tolerance). }
+  \item{MAX}{ if a or k are beyond the admitted values, 
+    \code{MAX} is returned. }
+}
+\details{
+  The computation of the optimally robust IC for An2 estimators
+  is based on \code{optim} where \code{MAX} is used to 
+  control the constraints on a and k. The optimal values of the 
+  tuning constants a and k can be read off from the slot 
+  \code{Infos} of the resulting IC.
+}
+%\details{}
+\value{Object of class \code{"IC"}}
+\references{ 
+  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
+  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
+  Princeton University Press.
+
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobAStBase]{IC-class}}}
+\examples{
+IC1 <- rlsOptIC.An2(r = 0.1)
+checkIC(IC1)
+Risks(IC1)
+Infos(IC1)
+plot(IC1)
+infoPlot(IC1)
+}
+\concept{normal location and scale}
+\concept{influence curve}
+\keyword{robust}

Modified: pkg/RobLox/man/rlsOptIC.AnMad.Rd
===================================================================
--- pkg/RobLox/man/rlsOptIC.AnMad.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlsOptIC.AnMad.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,44 +1,44 @@
-\name{rlsOptIC.AnMad}
-\alias{rlsOptIC.AnMad}
-\title{Computation of the optimally robust IC for AnMad estimators}
-\description{
-  The function \code{rlsOptIC.AnMad} computes the optimally robust IC for 
-  AnMad estimators in case of normal location with unknown scale and 
-  (convex) contamination neighborhoods. These estimators were 
-  considered in Andrews et al. (1972). A definition of these estimators 
-  can also be found in Subsection 8.5.3 of Kohl (2005).
-}
-\usage{
-rlsOptIC.AnMad(r, aUp = 2.5, delta = 1e-06)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{aUp}{ positive real: the upper end point of the interval 
-    to be searched for a. }
-  \item{delta}{ the desired accuracy (convergence tolerance). }
-}
-\details{The optimal value of the tuning constant a can be read off 
-  from the slot \code{Infos} of the resulting IC.}
-\value{Object of class \code{"IC"}}
-\references{ 
-  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
-  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
-  Princeton University Press.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{IC-class}}}
-\examples{
-IC1 <- rlsOptIC.AnMad(r = 0.1)
-checkIC(IC1)
-Risks(IC1)
-Infos(IC1)
-plot(IC1)
-infoPlot(IC1)
-}
-\concept{normal location and scale}
-\concept{influence curve}
-\keyword{robust}
+\name{rlsOptIC.AnMad}
+\alias{rlsOptIC.AnMad}
+\title{Computation of the optimally robust IC for AnMad estimators}
+\description{
+  The function \code{rlsOptIC.AnMad} computes the optimally robust IC for 
+  AnMad estimators in case of normal location with unknown scale and 
+  (convex) contamination neighborhoods. These estimators were 
+  considered in Andrews et al. (1972). A definition of these estimators 
+  can also be found in Subsection 8.5.3 of Kohl (2005).
+}
+\usage{
+rlsOptIC.AnMad(r, aUp = 2.5, delta = 1e-06)
+}
+\arguments{
+  \item{r}{ non-negative real: neighborhood radius. }
+  \item{aUp}{ positive real: the upper end point of the interval 
+    to be searched for a. }
+  \item{delta}{ the desired accuracy (convergence tolerance). }
+}
+\details{The optimal value of the tuning constant a can be read off 
+  from the slot \code{Infos} of the resulting IC.}
+\value{Object of class \code{"IC"}}
+\references{ 
+  Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
+  Rogers, W.H. and Tukey, J.W. (1972) \emph{Robust estimates of location}. 
+  Princeton University Press.
+
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobAStBase]{IC-class}}}
+\examples{
+IC1 <- rlsOptIC.AnMad(r = 0.1)
+checkIC(IC1)
+Risks(IC1)
+Infos(IC1)
+plot(IC1)
+infoPlot(IC1)
+}
+\concept{normal location and scale}
+\concept{influence curve}
+\keyword{robust}

Modified: pkg/RobLox/man/rlsOptIC.BM.Rd
===================================================================
--- pkg/RobLox/man/rlsOptIC.BM.Rd	2024-02-08 22:25:34 UTC (rev 1301)
+++ pkg/RobLox/man/rlsOptIC.BM.Rd	2024-02-10 08:36:27 UTC (rev 1302)
@@ -1,53 +1,56 @@
-\name{rlsOptIC.BM}
-\alias{rlsOptIC.BM}
-\title{Computation of the optimally robust IC for BM estimators}
-\description{
-  The function \code{rlsOptIC.BM} computes the optimally robust IC for 
-  BM estimators in case of normal location with unknown scale and 
-  (convex) contamination neighborhoods. These estimators were proposed 
-  by Bednarski and Mueller (2001). A definition of these 
-  estimators can also be found in Section 8.4 of Kohl (2005).
-}
-\usage{
-rlsOptIC.BM(r, bL.start = 2, bS.start = 1.5, delta = 1e-06, MAX = 100)
-}
-\arguments{
-  \item{r}{ non-negative real: neighborhood radius. }
-  \item{bL.start}{ positive real: starting value for \eqn{b_{\rm loc}}{b_loc}. }
-  \item{bS.start}{ positive real: starting value for \eqn{b_{{\rm sc},0}}{b_sc,0}. }
-  \item{delta}{ the desired accuracy (convergence tolerance). }
-  \item{MAX}{ if \eqn{b_{\rm loc}}{b_loc} or \eqn{b_{{\rm sc},0}}{b_sc,0} 
-    are beyond the admitted values, \code{MAX} is returned. }
-}
-\details{
-  The computation of the optimally robust IC for BM estimators
-  is based on \code{optim} where \code{MAX} is used to 
-  control the constraints on \eqn{b_{\rm loc}}{b_loc} 
-  and \eqn{b_{{\rm sc},0}}{b_sc,0}. The optimal values of the  
-  tuning constants \eqn{b_{\rm loc}}{b_loc}, \eqn{b_{{\rm sc},0}}{b_sc,0}, 
-  \eqn{\alpha}{alpha} and \eqn{\gamma}{gamma} can be read off 
-  from the slot \code{Infos} of the resulting IC.
-}
-\value{Object of class \code{"IC"}}
-\references{ 
-  Bednarski, T and Mueller, C.H. (2001) Optimal bounded influence
-  regression and scale M-estimators in the context of experimental
-  design. Statistics, \bold{35}(4): 349--369.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobAStBase]{IC-class}}}
-\examples{
-IC1 <- rlsOptIC.BM(r = 0.1)
-checkIC(IC1)
-Risks(IC1)
-Infos(IC1)
-plot(IC1)
-infoPlot(IC1)
-}
-\concept{normal location and scale}
-\concept{influence curve}
-\keyword{robust}
+\name{rlsOptIC.BM}
+\alias{rlsOptIC.BM}
+\title{Computation of the optimally robust IC for BM estimators}
+\description{
+  The function \code{rlsOptIC.BM} computes the optimally robust IC for 
+  BM estimators in case of normal location with unknown scale and 
+  (convex) contamination neighborhoods. These estimators were proposed 
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 1302


More information about the Robast-commits mailing list