[Robast-commits] r1299 - in pkg/ROptEst: . man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Feb 7 08:24:55 CET 2024


Author: stamats
Date: 2024-02-07 08:24:55 +0100 (Wed, 07 Feb 2024)
New Revision: 1299

Modified:
   pkg/ROptEst/DESCRIPTION
   pkg/ROptEst/man/0ROptEst-package.Rd
   pkg/ROptEst/man/getInfGamma.Rd
Log:
minor changes for submittsion

Modified: pkg/ROptEst/DESCRIPTION
===================================================================
--- pkg/ROptEst/DESCRIPTION	2024-02-07 02:50:34 UTC (rev 1298)
+++ pkg/ROptEst/DESCRIPTION	2024-02-07 07:24:55 UTC (rev 1299)
@@ -1,9 +1,9 @@
 Package: ROptEst
-Version: 1.3.2
-Date: 2024-02-06
+Version: 1.3.3
+Date: 2024-02-07
 Title: Optimally Robust Estimation
 Description: R infrastructure for optimally robust estimation in general smoothly
-            parameterized models using S4 classes and methods as decribed Kohl, M.,
+            parameterized models using S4 classes and methods as described Kohl, M.,
             Ruckdeschel, P., and Rieder, H. (2010), <doi:10.1007/s10260-010-0133-0>, and in
             Rieder, H., Kohl, M., and Ruckdeschel, P. (2008), <doi:10.1007/s10260-007-0047-7>.
 Depends: R(>= 3.4), methods, distr(>= 2.8.0), distrEx(>= 2.8.0), distrMod(>= 2.8.1),

Modified: pkg/ROptEst/man/0ROptEst-package.Rd
===================================================================
--- pkg/ROptEst/man/0ROptEst-package.Rd	2024-02-07 02:50:34 UTC (rev 1298)
+++ pkg/ROptEst/man/0ROptEst-package.Rd	2024-02-07 07:24:55 UTC (rev 1299)
@@ -1,87 +1,87 @@
-\name{ROptEst-package}
-\alias{ROptEst-package}
-\alias{ROptEst}
-\docType{package}
-\title{
-Optimally robust estimation
-}
-\description{
-Optimally robust estimation in general smoothly parameterized models 
-using S4 classes and methods.
-}
-\details{
-\tabular{ll}{
-Package: \tab ROptEst \cr
-Version: \tab 1.3.2 \cr
-Date: \tab 2024-02-06 \cr
-Depends: \tab R(>= 3.4), methods, distr(>= 2.8.0), distrEx(>= 2.8.0), distrMod(>= 2.8.1),RandVar(>= 1.2.0), RobAStBase(>= 1.2.0) \cr
-Suggests: \tab RobLox \cr
-Imports: \tab startupmsg, MASS, stats, graphics, utils, grDevices \cr
-ByteCompile: \tab yes \cr
-Encoding: \tab latin1 \cr
-License: \tab LGPL-3 \cr
-URL: \tab https://robast.r-forge.r-project.org/\cr
-VCS/SVNRevision: \tab 1286 \cr
-}
-}
-\author{
-Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de},\cr%
-Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr
-Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
-\references{
-  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
-  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
-  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in 
-  General Smoothly Parametrized Models. Statistical Methods and Applications \emph{19}(3): 333-354.
-  \doi{10.1007/s10260-010-0133-0}.
-  H. Rieder (1994): Robust Asymptotic Statistics. Springer. 
-  \doi{10.1007/978-1-4684-0624-5}
-  H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius.
-  Statistical Methods and Applications  \emph{17}(1): 13-40. \doi{10.1007/s10260-007-0047-7}
-  P. Ruckdeschel (2005). Optimally One-Sided Bounded Influence Curves.
-  Mathematical Methods of Statistics \emph{14}(1), 105-131.
-  P. Ruckdeschel and H. Rieder (2004). Optimal Influence Curves for
-  General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
-  \doi{10.1524/stnd.22.3.201.57067}
-}
-\seealso{
-\code{\link[distr:0distr-package]{distr-package}}, 
-\code{\link[distrEx:0distrEx-package]{distrEx-package}},
-\code{\link[distrMod:0distrMod-package]{distrMod-package}}, 
-\code{\link[RandVar:0RandVar-package]{RandVar-package}},
-\code{\link[RobAStBase:0RobAStBase-package]{RobAStBase-package}}
-}
-\section{Package versions}{
-Note: The first two numbers of package versions do not necessarily reflect
- package-individual development, but rather are chosen for the
- RobAStXXX family as a whole in order to ease updating "depends"
- information.
-}
-\examples{
-## don't test to reduce check time on CRAN
-\donttest{
-library(ROptEst)
-## Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)
-x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532), 
-       rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27), 
-       rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
-## ML-estimate from package distrMod
-MLest <- MLEstimator(x, PoisFamily())
-MLest
-## confidence interval based on CLT
-confint(MLest)
-## compute optimally (w.r.t to MSE) robust estimator (unknown contamination)
-robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
-estimate(robEst)
-## check influence curve
-pIC(robEst)
-checkIC(pIC(robEst))
-## plot influence curve
-plot(pIC(robEst))
-## confidence interval based on LAN - neglecting bias
-confint(robEst)
-## confidence interval based on LAN - including bias
-confint(robEst, method = symmetricBias())
-}
-}
-\keyword{package}
+\name{ROptEst-package}
+\alias{ROptEst-package}
+\alias{ROptEst}
+\docType{package}
+\title{
+Optimally robust estimation
+}
+\description{
+Optimally robust estimation in general smoothly parameterized models 
+using S4 classes and methods.
+}
+\details{
+\tabular{ll}{
+Package: \tab ROptEst \cr
+Version: \tab 1.3.3 \cr
+Date: \tab 2024-02-07 \cr
+Depends: \tab R(>= 3.4), methods, distr(>= 2.8.0), distrEx(>= 2.8.0), distrMod(>= 2.8.1),RandVar(>= 1.2.0), RobAStBase(>= 1.2.0) \cr
+Suggests: \tab RobLox \cr
+Imports: \tab startupmsg, MASS, stats, graphics, utils, grDevices \cr
+ByteCompile: \tab yes \cr
+Encoding: \tab latin1 \cr
+License: \tab LGPL-3 \cr
+URL: \tab https://robast.r-forge.r-project.org/\cr
+VCS/SVNRevision: \tab 1286 \cr
+}
+}
+\author{
+Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de},\cr%
+Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr
+Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
+\references{
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth. \url{https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf}.
+  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in 
+  General Smoothly Parametrized Models. Statistical Methods and Applications \emph{19}(3): 333-354.
+  \doi{10.1007/s10260-010-0133-0}.
+  H. Rieder (1994): Robust Asymptotic Statistics. Springer. 
+  \doi{10.1007/978-1-4684-0624-5}
+  H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius.
+  Statistical Methods and Applications  \emph{17}(1): 13-40. \doi{10.1007/s10260-007-0047-7}
+  P. Ruckdeschel (2005). Optimally One-Sided Bounded Influence Curves.
+  Mathematical Methods of Statistics \emph{14}(1), 105-131.
+  P. Ruckdeschel and H. Rieder (2004). Optimal Influence Curves for
+  General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
+  \doi{10.1524/stnd.22.3.201.57067}
+}
+\seealso{
+\code{\link[distr:0distr-package]{distr-package}}, 
+\code{\link[distrEx:0distrEx-package]{distrEx-package}},
+\code{\link[distrMod:0distrMod-package]{distrMod-package}}, 
+\code{\link[RandVar:0RandVar-package]{RandVar-package}},
+\code{\link[RobAStBase:0RobAStBase-package]{RobAStBase-package}}
+}
+\section{Package versions}{
+Note: The first two numbers of package versions do not necessarily reflect
+ package-individual development, but rather are chosen for the
+ RobAStXXX family as a whole in order to ease updating "depends"
+ information.
+}
+\examples{
+## don't test to reduce check time on CRAN
+\donttest{
+library(ROptEst)
+## Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)
+x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532), 
+       rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27), 
+       rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
+## ML-estimate from package distrMod
+MLest <- MLEstimator(x, PoisFamily())
+MLest
+## confidence interval based on CLT
+confint(MLest)
+## compute optimally (w.r.t to MSE) robust estimator (unknown contamination)
+robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
+estimate(robEst)
+## check influence curve
+pIC(robEst)
+checkIC(pIC(robEst))
+## plot influence curve
+plot(pIC(robEst))
+## confidence interval based on LAN - neglecting bias
+confint(robEst)
+## confidence interval based on LAN - including bias
+confint(robEst, method = symmetricBias())
+}
+}
+\keyword{package}

Modified: pkg/ROptEst/man/getInfGamma.Rd
===================================================================
--- pkg/ROptEst/man/getInfGamma.Rd	2024-02-07 02:50:34 UTC (rev 1298)
+++ pkg/ROptEst/man/getInfGamma.Rd	2024-02-07 07:24:55 UTC (rev 1299)
@@ -1,119 +1,119 @@
-\name{getInfGamma}
-\alias{getInfGamma}
-\alias{getInfGamma-methods}
-\alias{getInfGamma,UnivariateDistribution,asGRisk,ContNeighborhood,BiasType-method}
-\alias{getInfGamma,UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType-method}
-\alias{getInfGamma,RealRandVariable,asMSE,ContNeighborhood,BiasType-method}
-\alias{getInfGamma,RealRandVariable,asMSE,TotalVarNeighborhood,BiasType-method}
-\alias{getInfGamma,UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType-method}
-\alias{getInfGamma,UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias-method}
-\alias{getInfGamma,UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias-method}
-
-\title{Generic Function for the Computation of the Optimal Clipping Bound}
-\description{
-  Generic function for the computation of the optimal clipping bound.
-  This function is rarely called directly. It is called by \code{getInfClip} 
-  to compute optimally robust ICs.
-}
-\usage{
-getInfGamma(L2deriv, risk, neighbor, biastype, ...)
-
-\S4method{getInfGamma}{UnivariateDistribution,asGRisk,ContNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype, cent, clip)
-
-\S4method{getInfGamma}{UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype, cent, clip)
-
-\S4method{getInfGamma}{RealRandVariable,asMSE,ContNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)
-
-\S4method{getInfGamma}{RealRandVariable,asMSE,TotalVarNeighborhood,BiasType}(L2deriv,
-     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)
-
-\S4method{getInfGamma}{UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType}(L2deriv,
-     risk, neighbor, biastype, cent, clip)
-
-\S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias}(L2deriv, 
-     risk, neighbor, biastype, cent, clip)
-
-\S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias}(L2deriv, 
-    risk, neighbor, biastype, cent, clip)
-}
-\arguments{
-  \item{L2deriv}{ L2-derivative of some L2-differentiable family 
-    of probability measures. }
-  \item{risk}{ object of class \code{"RiskType"}. }
-  \item{neighbor}{ object of class \code{"Neighborhood"}. }
-  \item{biastype}{ object of class \code{"BiasType"}. }
-  \item{\dots}{ additional parameters, in particular for expectation \code{E}. }
-  \item{cent}{ optimal centering constant. }
-  \item{clip}{ optimal clipping bound. }
-  \item{stand}{ standardizing matrix. }
-  \item{Distr}{ object of class \code{"Distribution"}. }
-  \item{power}{ exponent for the integrand; by default \code{1}, but
-   may also be \code{2}, for optimization in \code{getLagrangeMultByOptim}. }
-}
-\details{
-  The function is used in case of asymptotic G-risks; confer
-  Ruckdeschel and Rieder (2004).
-}
-\value{The optimal clipping height is computed. More spefically, the optimal
- clipping height \eqn{b} is determined in a zero search of a certain function
- \eqn{\gamma}{gamma}, where the respective  \code{getInf}-method will return 
- the value of  \eqn{\gamma(b)}{gamma(b)}. The actual function \eqn{\gamma}{gamma}
- varies according to whether the parameter is one dimensional or higher dimensional,
- according to the risk, according to the neighborhood, and according to the
- bias type, which leads to the different methods.}
-\section{Methods}{
-\describe{
-  \item{L2deriv = "UnivariateDistribution", risk = "asGRisk", 
-        neighbor = "ContNeighborhood", 
-        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
-
-  \item{L2deriv = "UnivariateDistribution", risk = "asGRisk", 
-        neighbor = "TotalVarNeighborhood", 
-        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
-
-  \item{L2deriv = "RealRandVariable", risk = "asMSE", 
-        neighbor = "ContNeighborhood", 
-        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
-
-  \item{L2deriv = "RealRandVariable", risk = "asMSE",
-        neighbor = "TotalVarNeighborhood",
-        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
-
-  \item{L2deriv = "UnivariateDistribution", risk = "asUnOvShoot", 
-        neighbor = "ContNeighborhood", 
-        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
-
-  \item{L2deriv = "UnivariateDistribution", risk = "asMSE", 
-        neighbor = "ContNeighborhood", 
-        biastype = "onesidedBias"}{ used by \code{getInfClip} for onesided bias. }
-
-  \item{L2deriv = "UnivariateDistribution", risk = "asMSE", 
-        neighbor = "ContNeighborhood", 
-        biastype = "asymmetricBias"}{ used by \code{getInfClip} for asymmetric bias. }
-}}
-\references{
-  Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. \bold{8}: 106--115.
-
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-
-  Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
-  General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
-  
-  Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves.
-  Mathematical Methods in Statistics \emph{14}(1), 105-131.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de},
-        Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
-%\note{}
-\seealso{\code{\link[distrMod]{asGRisk-class}}, \code{\link[distrMod]{asMSE-class}},
-        \code{\link[distrMod]{asUnOvShoot-class}}, \code{\link[RobAStBase]{ContIC-class}}, 
-        \code{\link[RobAStBase]{TotalVarIC-class}}}
-%\examples{}
-\concept{influence curve}
-\keyword{robust}
+\name{getInfGamma}
+\alias{getInfGamma}
+\alias{getInfGamma-methods}
+\alias{getInfGamma,UnivariateDistribution,asGRisk,ContNeighborhood,BiasType-method}
+\alias{getInfGamma,UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType-method}
+\alias{getInfGamma,RealRandVariable,asMSE,ContNeighborhood,BiasType-method}
+\alias{getInfGamma,RealRandVariable,asMSE,TotalVarNeighborhood,BiasType-method}
+\alias{getInfGamma,UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType-method}
+\alias{getInfGamma,UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias-method}
+\alias{getInfGamma,UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias-method}
+
+\title{Generic Function for the Computation of the Optimal Clipping Bound}
+\description{
+  Generic function for the computation of the optimal clipping bound.
+  This function is rarely called directly. It is called by \code{getInfClip} 
+  to compute optimally robust ICs.
+}
+\usage{
+getInfGamma(L2deriv, risk, neighbor, biastype, ...)
+
+\S4method{getInfGamma}{UnivariateDistribution,asGRisk,ContNeighborhood,BiasType}(L2deriv, 
+     risk, neighbor, biastype, cent, clip)
+
+\S4method{getInfGamma}{UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType}(L2deriv, 
+     risk, neighbor, biastype, cent, clip)
+
+\S4method{getInfGamma}{RealRandVariable,asMSE,ContNeighborhood,BiasType}(L2deriv, 
+     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)
+
+\S4method{getInfGamma}{RealRandVariable,asMSE,TotalVarNeighborhood,BiasType}(L2deriv,
+     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L, ...)
+
+\S4method{getInfGamma}{UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType}(L2deriv,
+     risk, neighbor, biastype, cent, clip)
+
+\S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias}(L2deriv, 
+     risk, neighbor, biastype, cent, clip)
+
+\S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias}(L2deriv, 
+    risk, neighbor, biastype, cent, clip)
+}
+\arguments{
+  \item{L2deriv}{ L2-derivative of some L2-differentiable family 
+    of probability measures. }
+  \item{risk}{ object of class \code{"RiskType"}. }
+  \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{biastype}{ object of class \code{"BiasType"}. }
+  \item{\dots}{ additional parameters, in particular for expectation \code{E}. }
+  \item{cent}{ optimal centering constant. }
+  \item{clip}{ optimal clipping bound. }
+  \item{stand}{ standardizing matrix. }
+  \item{Distr}{ object of class \code{"Distribution"}. }
+  \item{power}{ exponent for the integrand; by default \code{1}, but
+   may also be \code{2}, for optimization in \code{getLagrangeMultByOptim}. }
+}
+\details{
+  The function is used in case of asymptotic G-risks; confer
+  Ruckdeschel and Rieder (2004).
+}
+\value{The optimal clipping height is computed. More specifically, the optimal
+ clipping height \eqn{b} is determined in a zero search of a certain function
+ \eqn{\gamma}{gamma}, where the respective  \code{getInf}-method will return 
+ the value of  \eqn{\gamma(b)}{gamma(b)}. The actual function \eqn{\gamma}{gamma}
+ varies according to whether the parameter is one dimensional or higher dimensional,
+ according to the risk, according to the neighborhood, and according to the
+ bias type, which leads to the different methods.}
+\section{Methods}{
+\describe{
+  \item{L2deriv = "UnivariateDistribution", risk = "asGRisk", 
+        neighbor = "ContNeighborhood", 
+        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
+
+  \item{L2deriv = "UnivariateDistribution", risk = "asGRisk", 
+        neighbor = "TotalVarNeighborhood", 
+        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
+
+  \item{L2deriv = "RealRandVariable", risk = "asMSE", 
+        neighbor = "ContNeighborhood", 
+        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
+
+  \item{L2deriv = "RealRandVariable", risk = "asMSE",
+        neighbor = "TotalVarNeighborhood",
+        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
+
+  \item{L2deriv = "UnivariateDistribution", risk = "asUnOvShoot", 
+        neighbor = "ContNeighborhood", 
+        biastype = "BiasType"}{ used by \code{getInfClip} for symmetric bias. }
+
+  \item{L2deriv = "UnivariateDistribution", risk = "asMSE", 
+        neighbor = "ContNeighborhood", 
+        biastype = "onesidedBias"}{ used by \code{getInfClip} for onesided bias. }
+
+  \item{L2deriv = "UnivariateDistribution", risk = "asMSE", 
+        neighbor = "ContNeighborhood", 
+        biastype = "asymmetricBias"}{ used by \code{getInfClip} for asymmetric bias. }
+}}
+\references{
+  Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. \bold{8}: 106--115.
+
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+
+  Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
+  General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
+  
+  Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves.
+  Mathematical Methods in Statistics \emph{14}(1), 105-131.
+
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Bayreuth: Dissertation.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de},
+        Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
+%\note{}
+\seealso{\code{\link[distrMod]{asGRisk-class}}, \code{\link[distrMod]{asMSE-class}},
+        \code{\link[distrMod]{asUnOvShoot-class}}, \code{\link[RobAStBase]{ContIC-class}}, 
+        \code{\link[RobAStBase]{TotalVarIC-class}}}
+%\examples{}
+\concept{influence curve}
+\keyword{robust}



More information about the Robast-commits mailing list